
1

School of Computer Science

Towards a More
Principled Compiler:

Progressive Backend
Compiler Optimization

David Koes
8/28/2006

1
School of Computer Science

Performance Gains Due to Compiler (gcc)

2.8Ghz Pentium 4, 1GB RAM, -O3 …

2
School of Computer Science

The Future of Compiler Optimization

is this possible?

10-30% improvement just from
reordering compiler phases
http://www.cs.rice.edu/~keith/Adapt/

Yes!Yes!How do we exploit the existing
optimization potential?

Need a more principled compilerNeed a more principled compiler

2

3
School of Computer Science

Compiler code size improvement

4
School of Computer Science

A Principled Compiler

A compiler thatA compiler that
–– knows right from wrongknows right from wrong

(less optimal from more optimal)(less optimal from more optimal)
–– follows a rigorous procedure to get the desired outputfollows a rigorous procedure to get the desired output

5
School of Computer Science

Today’s Compiler

target dependenttarget dependent

target independenttarget independent

const
proploop

unroll

GVN
strength
reductSCCP

code
motion

…copy
prop

inlining
DCE

PRE

peephole
…

reg alloc
insn sched

branch
opt

optimized program

machine
description

Problems
– some phases not

internally optimal
• purely heuristic solution

– machine description
mostly ignored

– lack of integration
between phases

insn select

3

6
School of Computer Science

optimized program

machine
description

copy
prop

loop
unroll

DCE

PRE
const
prop

code
motion

inline GVN
strength
reduct

peep-
hole

CSE

SCCP
reg

alloc
branch

opt
insn

select
…

Ideal Compiler
– each phase locally optimal
– makes full use of machine

description
– tight integration between

phases

Absolutely Absolutely nono idea how to do idea how to do
this or if itthis or if it’’s even s even possiblepossible

7
School of Computer Science

optimized program

machine
description

copy
prop

loop
unroll

DCE

PRE
const
prop

code
motion

inline GVN
strength
reduct

peep-
hole

CSE

SCCP
reg

alloc
branch

opt

…

Towards a More Principled Compiler
– each phase locally optimal
– makes full use of machine

description
– tight integration between

phases

insn
select

reg
alloc

8
School of Computer Science

Outline
I. Motivation
II. Related Work
III. Completed Work
IV. Proposed Work
V. Contributions & Timeline

4

9
School of Computer Science

Register Allocation Problem

…
v = 1
w = v + 3
x = w + v
u = v
t = u + x

print(x);
print(w);
print(t);
print(u);
…

registerregister
allocatorallocator

unbounded number ofunbounded number of
program variablesprogram variables

limited number oflimited number of
processor registers +processor registers +
slow memoryslow memory

eax
ebx
ecx
edx
esi
edi

ebp
esp

spill code optimizationspill code optimization

memory operandsmemory operands

register preferencesregister preferences
rematerializationrematerialization

live range splittinglive range splitting

 Related WorkRelated Work

10
School of Computer Science

Linear Scan

OptimalFastExpressiveMethod

//Partitioned Boolean
Quadratic Programming

Integer Linear
Programming

Graph Coloring

Register Allocation Previous Work
 Related WorkRelated Work

11
School of Computer Science

Instruction Selection Problem

movl (p),t1
leal (x,t1),t2
leal 1(y),t3
leal (t2,t3),r

IRIR AssemAssem

instruction
selector

minimum cost tilingminimum cost tiling
?

IR RepresentationIR Representation

 Related WorkRelated Work

5

12
School of Computer Science

Instruction Selection Previous Work
DAG
Tiling

Exhaustive Search

Dynamic Programming

OptimalFastRegister
Allocation AwareMethod

AVIV Code Generator

Peephole Based
Instruction Selection

Binate Covering

 Related WorkRelated Work

13
School of Computer Science

Outline
I. Motivation
II. Related Work
III. Completed Work
IV. Proposed Work
V. Contributions & Timeline

14
School of Computer Science

A More Principled Register Allocator
– fully utilize machine description

• explicit and expressive model
of costs of allocation for given
architecture

– optimal solutions

reg
alloc

machine
description

 Completed WorkCompleted Work

6

15
School of Computer Science

Multi-commodity Network Flow:
An Expressive Model
Given network (directed graph) with

– cost and capacity on each edge
– sources & sinks for multiple commodities

Find lowest cost flow of commodities
NP-complete for integer flows

Example:
edges have unit capacity

a b

a b

01

 Completed WorkCompleted Work

16
School of Computer Science

Variables → Commodities
Variable Definition → Source
Variable Last Use → Sink
Nodes → Allocation Classes (Reg/Mem/Const)

Registers Limits → Node Capacities

Spill Costs → Edge Costs

Allocation → Flow

Register Allocation as a MCNF

a

a

r0 r1 mem 1

r1 mem 1

r0 r1 mem 1

3

 Completed WorkCompleted Work

17
School of Computer Science

Example
Source Code
int example(int a, int b)
{
 int d = 1;
 int c = a - b;
 return c+d;
}

Pre-alloc Assembly
MOVE 1 -> d
SUB a,b -> c
ADD c,d -> c
MOVE c -> r0

insn pref cost

mem access cost

load cost

 Completed WorkCompleted Work

7

18
School of Computer Science

Control Flow
MCNF can only represent straight-line code

– need to link together networks from basic blocks

Extend MCNF model with merge
and split nodes to implement
boundary constraints.

a: %a: %eaxeax

a: %a: %eaxeaxa: %a: %eaxeax

a:a: memmem

a:a: memmem

a:a: memmem

a:a: memmem

details in proposal documentdetails in proposal document……

along with modeling persistence ofalong with modeling persistence of
values in memoryvalues in memory

 Completed WorkCompleted Work

19
School of Computer Science

A Better Register Allocator
– fully utilize machine description

• explicit and expressive model
of costs of allocation for given
architecture: Global MCNF

– locally optimal
• NP-hard, so use progressive

solution technique

reg
alloc

machine
description

 Completed WorkCompleted Work

20
School of Computer Science

A Better Register Allocator
– fully utilize machine description

• explicit and expressive model of
costs of allocation for given
architecture: Global MCNF

– locally optimal
• NP-hard, so use progressive

solution technique

reg
alloc

machine
description

 Completed WorkCompleted Work

8

21
School of Computer Science

Progressive Solution Technique
Quickly find a good allocation
Then progressively find better allocations

– until optimal allocation found
– or time limit is reached

Compile Time

Al
lo

ca
tio

n
Q

ua
lit

y

Lagrangian relaxation
directed allocators

Technique:Technique:

 Completed WorkCompleted Work

22
School of Computer Science

Lagrangian Relaxation: Intuition
Relaxes the hard constraints

– only have to solve single commodity flow
Combines easy subproblems using a

Lagrangian multiplier (price)
– an additional price on each edge
– a price on each split/merge node

a b

a b

01

Example:
edges have unit capacity

a b

a b

0+11with price, solution to single
commodity flow can be
solution to multicommodity flow

 Completed WorkCompleted Work

23
School of Computer Science

Solution Procedure
Compute prices with iterative

subgradient optimization
– guaranteed converge to optimal prices
– optimal for linear relaxation

At each iteration, construct a feasible
integer solution using current prices
– iterative allocator in documentin document

– simultaneous allocator
– trace-based simultaneous allocator

a b

a b

0+1+11

a b

a b

0+11

 Completed WorkCompleted Work

9

24
School of Computer Science

Simultaneous Allocator

XX XX

Current cost:
-1-1-3-3-2-2

Edges to/from
memory cost 3

 Completed WorkCompleted Work

25
School of Computer Science

Trace-Based Allocation
Decompose function into traces of basic blocks

– run simultaneous allocator on each trace
– control flow internal to trace presents difficulty

addressed in proposal documentaddressed in proposal document

 Completed WorkCompleted Work

26
School of Computer Science

Evaluation
Implemented in gcc 3.4.4 targeting x86
Optimize for code sizecode size

– perfect static evaluation
– important metric in its own right

MediaBench, MiBench, Spec95, Spec2000
– over 10,000 functions

 Completed WorkCompleted Work

10

27
School of Computer Science

Progressiveness
squareEncrypt

 Completed WorkCompleted Work

28
School of Computer Science

Progressiveness
quicksort

 Completed WorkCompleted Work

29
School of Computer Science

Code Size

Progressive!

 Completed WorkCompleted Work

11

30
School of Computer Science

Optimality

Proven
optimality

 Completed WorkCompleted Work

31
School of Computer Science

Compile Time Slowdown :-(

9.2x slower

 Completed WorkCompleted Work

32
School of Computer Science

A Better Register Allocator
– fully utilize machine description

• explicit and expressive model of
costs of allocation for given
architecture: Global MCNF

– locally optimal
• approach optimality using

progressive solution technique:
Lagrangian directed allocators

reg
alloc

machine
description

 Completed WorkCompleted Work

12

33
School of Computer Science

Outline
I. Motivation
II. Related Work
III. Completed Work
IV. Proposed Work
V. Contributions & Timeline

34
School of Computer Science

A Better Better Register Allocator
Solver Improvements

– Improve initial solution
– Improve quality as prices converge
– Hope to prove approximation bounds

Model Improvements
– Improve accuracy of model
– Model simplification
– Represent uniform register sets efficiently

 Proposed WorkProposed Work

35
School of Computer Science

Model Simplification
Summarize overly expressive sections of the model

Conservative simplification
does not change optimal value

Aggressive simplification
explore tradeoff between model
complexity and optimality

 Proposed WorkProposed Work

13

36
School of Computer Science

Instruction Selection Interaction

perform same operation
which instruction is best

depends on the register allocator
so let register allocator decide

 Proposed WorkProposed Work

37
School of Computer Science

Register Allocation Aware
Instruction SElection (RA2ISE)
Instruction selection not finalized

until register allocation
IR tiled with Register Allocation

Aware Tiles (RAATs)
A RAAT represents several

instruction sequences
– different costs
– a sequence for every possible

register allocation

 Proposed WorkProposed Work

38
School of Computer Science

RA2ISE

tilingtiling

IR RAAT

modelmodel
creationcreation

registerregister
allocationallocationcwtl %eax

 Proposed WorkProposed Work

14

39
School of Computer Science

Implementing RA2ISE
Add side-constraints to Global MCNF model

– implement inter-variable preferences and constraints
• “if x allocated to r1 and y allocated to r2, then save three bytes”
• “x and y must be allocated to the same register”

Implement x86 RAATs
– RAAT tables created manually
– GMCNF RAAT representation automatically generated

from RAAT table with minimum use of side constraints
Algorithms for tiling RAATs

– leverage existing algorithms
– exploit feedback between passes

 Proposed WorkProposed Work

40
School of Computer Science

Tiling RAATs

3

2

4
2

4

1

1

5
3

3

2

1

1

1

5
3

3

2

1

11

13

1

1

4

1

1
4

2

3

tilingtiling

1

1
4

2

3

4

3
eax

edx memmem

register
register

allocate
allocate

feedback

feedback

 Proposed WorkProposed Work

41
School of Computer Science

Evaluation
Implement in production quality compiler (gcc)
Evaluate code size and simple code speed metric
Evaluate on three different architectures

– x86 (8 registers)
– 68k/ColdFire (16 registers)
– PPC (32 registers)

 Proposed WorkProposed Work

15

42
School of Computer Science

Outline
I. Motivation
II. Related Work
III. Completed Work
IV. Proposed Work
V. Contributions & Timeline

43
School of Computer Science

Contributions
RA2ISE

– register allocation aware tiles (RAATs) explicitly encode
effect of register allocation on instruction sequence

– algorithms for tiling RAATs
– expressive model of register allocation that operates

on RAATs and explicitly represents all important
components of register allocation

– progressive solver for this model that can quickly find
decent solution and approaches optimality as more time
is allowed for compilation

Comprehensive evaluation of RA2ISE

44
School of Computer Science

Thesis Statement

RARA22ISE is a principled and effective systemISE is a principled and effective system
for performing instruction selection andfor performing instruction selection and

register allocation.register allocation.

16

45
School of Computer Science

One Step Towards a More Principled Compiler

optimized program

machine
description

copy
prop

loop
unroll

DCE

PRE
const
prop

code
motion

inline GVN
strength
reduct

peep-
hole

CSE

SCCP
reg

alloc
branch

opt

…insn
select

reg
alloc

46
School of Computer Science

Timeline

 finish writing thesisSpring 2008

begin writing thesis
work on improving compile time performanceWinter 2007

add 68k/ColdFire and PowerPC targets
investigate uniform register set simplifications
improve model accuracy and solver performance

Fall 2007

finish work on RA2ISE
investigate and develop tiling algorithms
improve model accuracy and solver performance

Summer 2007

finish implementation of side-constraints and gcc RAATs
begin work on RA2ISE infrastructure
create gcc-independent set of RAATs for x86
improve model accuracy and solver performance

Spring 2007

finish model simplification work
add side-constraints to model
implement existing gcc tiles as RAATs
improve model accuracy and solver performance

Winter 2006

add simple speed metric option to model
begin model simplification work
improve model accuracy and solver performance

Fall 2006

47
School of Computer Science

Andrew Richard Koes

17

48
School of Computer Science

Questions?

?

