Towards a More
Principled Compiler:
Progressive Backend
Compiler Optimization

David Koes
8/28/2006

Ca
School of Compt

Performance Gains Due to Compiler (gcc)

SPEC2000 Performance Improvement

50%

IS
&
8

IS
3
8

w
o
8

w
]
8

N
o
8

N
5]
8

,_.
Q
8

,_.
5]
8

o
8

=)
8

Nov-95

2.8Ghz Pentium 4, 1GB RAM, -03

Nov-96
Nov-97
Nov-98
Nov-99
Nov-00
Nov-01
Nov-02
Nov-03
Nov-04
Nov-05
Nov-06
Nov-07
Nov-08
Nov-09

School

The Future of Compiler Optimization

SPEC2000 Performance Improvement

50%

IS
a
8

IS
3
8

w
o
8

w
8
8

N
o
8

N
S
8

,_.
Q
8

,_.
5]
8

o
8

=)
8

is this possible?
How do we exploit the existing - Yes!

optimization potential? /,/

Need a more principled compiler
- 10-30% improvement just from
7 reordering compiler phases

// http://www.cs.rice.edu/~keith/Adapt/
W o N ® @ 9 o N m o o¥ m o8 N o® o
7T 2 2 2 2 2 2 2 2 2 2 2 2 2 <9
$ 03 % 5 5 3 3 3 3 3 3 3 33 %
2 % 3 3 5 % 3 3 3 5 5 3 3 & 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Sl

1

Compiler code size improvement
25%
€ 20%
[}
E
[
>
215%
-3
E
8 0%
"]
[
o
85%
0%
2885588888853 3833333
3 School

A Principled Compiler

prin-(‘i-pled |'prinsapald |

P adjective

j 1 (of a person or their behavior) acting in accordance with morality and
ecognition of right and wrong : a principled politician.

ystem or method) based on a given set of rules : a coherent and

principled approach.

A compiler that
—knows right from wrong
(less optimal from more optimal)
—follows a rigorous procedure to get the desired output

«

School,

Today’s Compiler
L Problems

ftarget independent — some phases not
internally optimal
« purely heuristic solution
— machine description
mostly ignored
— lack of integration
— between phases

(&

/target dependent

reg alloc

\

optimized program

Ideal Compiler

— each phase locally optimal

— makes full use of machine
description

— tight integration between
phases

Absolutely no idea how to do
this or if it's even possible

optimized program

Towards a More Principled Compiler

— each phase locally optimal

— makes full use of machine
description

— tight integration between
phases

optimized program

Outline

Il. Related Work

lll. Completed Work

IV. Proposed Work

V. Contributions & Timeline

Register Allocation Problem

unbounded number of

spill code optimization

ycdister
allecator:

memory operands
print(t);
print(u) ;

RELATED WORK

limited number of
processor registers +
slow memory

Register Allocation Previous Work

RELATED WORK

Linear Scan X vv X
Graph Coloring X v

Programming v X %
Quadratio Programming | ¥/ | VIX | X IV

Instruction Selection Problem

IR

?%

00

IR Representation ;
minimum cost tiling

?

instruction
selector

RELATED WORK

Assem

movl (p),tl
leal (x,tl),t2
leal 1(y),t3

leal (t2,t3),r

Instruction Selection Previous Work

MethOd
v

Dynamic Programming

Binate Covering

Peephole Based
Instruction Selection

AVIV Code Generator

Exhaustive Search

x | N\ N |\ |x

12

Outline

lll. Completed Work
IV. Proposed Work
V. Contributions & Timeline

A More Principled Register Allocator

— fully utilize machine description

« explicit and expressive model
reg of costs of allocation for given
architecture
alloc

— optimal solutions

Multi-commodity Network Flow:
An Expressive Model

Given network (directed graph) with

— cost and capacity on each edge

— sources & sinks for multiple commodities
Find lowest cost flow of commodities
NP-complete for integer flows

Example: b
edges have unit capacity

1 [}

a b

Register Allocation as a MCNF

Variables — Commodities
Variable Definition — Source &/
Variable Last Use — Sink A
Nodes — Allocation Classes (Reg/Mem/Const)
®®®O ,
Registers Limits — Node Capacities QJ_'D (aen) d)
3

Spill Costs — Edge Costs
) @

Allocation — Flow

Example VA
a_b
Source Code (oen)
int example(int a, int b) =2 5 crossbar
{
int d = 1;
int ¢ = a - b;

return c+d;

}

MOVE 1 -> d

crossbar

Pre-alloc Assembly
MOVE 1 -> d
SUB a,b -> c
ADD c,d -> ¢
MOVE c -> r0

COMPLETED WORK

Control Flow

MCNF can only represent straight-line code
— need to link together networks from basic blocks

Extend MCNF model with merge
% and split nodes to implement
. boundary constraints.
atiar] oA

details in proposal document...

along with modeling persistence of
values in memory

armem

COMPLETED WORK

A Better Register Allocator

— fully utilize machine description

« explicit and expressive model
reg of costs of allocation for given
architecture: Global MCNF
alloc

— locally optimal

* NP-hard, so use progressive
solution technique

A Better Register Allocator

COMPLETED WORK

— fully utilize machine description

« explicit and expressive model of
reg costs of allocation for given
architecture: Global MCNF
alloc

— locally optimal

* NP-hard, so use progressive
solution technique

Progressive Solution Technique

Quickly find a good allocation

Then progressively find better allocations
— until optimal allocation found
— or time limit is reached

Technique:

Lagrangian relaxation
directed allocators

Allocation Quality

Compile Time

Lagrangian Relaxation: Intuition

Relaxes the hard constraints
—only have to solve single commodity flow
Combines easy subproblems using a
Lagrangian multiplier (price)
— an additional price on each edge
— a price on each split/merge node

Example: a b b
edges have unit capacity
with price, solution to single 1 0 1 0+1
commodity flow can be
solution to multicommodity flow

a b

Solution Procedure
a b
Compute prices with iterative
subgradient optimization 1 ?gon
— guaranteed converge to optimal prices ?\
— optimal for linear relaxation a b
At each iteration, construct a feasible
integer solution using current prices x b
) 1\' ?on
— simultaneous allocator %
— trace-based simultaneous allocator EAR N

Simultaneous Allocator

0 Al Edges to/from
- t 3
Current cost: memory cosi

-2

SUB a,b —> ¢

-
Trace-Based Allocation

Decompose function into traces of basic blocks
— run simultaneous allocator on each trace
— control flow internal to trace presents difficulty

(g

ojes

PR

.
Evaluation

Implemented in gcc 3.4.4 targeting x86
Optimize for code size

— perfect static evaluation

— important metric in its own right

MediaBench, MiBench, Spec95, Spec2000
—over 10,000 functions

Progressiveness

squareEncrypt
1300 T — —
Progressive iterative allocator
Progressive simultaneous trace-based allocator
1200 © Default allocator 4
—_ Graph allocator
8 CPLEX10 m
Z 1100 Optimal - - -
°
<
2 1000 | 1
®
3
5 900 ¥ 1
3 800 4
©
&
2 700 1
55
[
600 4
500 - -
0 100 200 300 400 500 600 700 800

27 Time (s)

Progressiveness

quicksort
650 T T — - T
® Progressive iterative allocator
Progressive simultaneous allocator
600 F i is trace-based allocator
— P ive sil tr based allocator (full update)
8 550 Default allocator]
B Graph allocator
= 3 CPLEX 10
g s0 Optimal g
£
$ 450
<
8
® 400
3
k-]
® 350
g
2
2 300
[
250
200
0 20 40 60 80 100
28 Time (s) o

®
&

N
E

@
&

@
&

Average code size improvement over graph allocator
= N o IS
B E & B

9
&

initial heuristics only 10 iterations 100 iterations

1000 iterations default allocator

10

Optimality

100%
90%
80%
70% Proven
optimality
60% 1 >25% from optimal

' <=25% from optimal
1 <=10% from optimal
<=5% from optimal
' <=1% from optimal

40% 1 optimal

Percent of functions
o«
g
2

0, 1 iteration 10 iterations 100 iterations 1000 itemﬁoni.._.. CarnegieMiellon g

Compile Time Slowdown :-(

Default
Allocator

Graph
Allocator

9.2x slow

Progressive
Allocator

0 5 10 15 20
Factor slower than graph allocator

[Initialization M Initial Simultaneous Allocation
[Initial Iterative Allocation W One Iteration

A Better Register Allocator

— fully utilize machine description
« explicit and expressive model of

reg costs of allocation for given
architecture: Global MCNF
alloc :
— locally optimal

« approach optimality using
progressive solution technique:
Lagrangian directed allocators

32 i Carnegic Viellon g

11

Outline

[. Motivation

[I. Related Work

[ll. Completed Work

IV. Proposed Work

V. Contributions & Timeline

A Better Better Register Allocator

Solver Improvements
— Improve initial solution
— Improve quality as prices converge
— Hope to prove approximation bounds

Model Improvements
— Improve accuracy of model
— Model simplification
— Represent uniform register sets efficiently

Model Simplification
Summarize overly expressive sections of the model
Q}%{Q
\0 (=)

12

Instruction Selection Interaction

sign_extend a->b
cwtl (1 byte)

sign_extend a->b
movsx (4 bytes)

Register Allocation Aware

Instruction SElection (RA2ISE)
Instruction selection not finalized
until register allocation
IR tiled with Register Allocation
Aware Tiles (RAATS)
A RAAT represents several
instruction sequences
— different costs

— a sequence for every possible
register allocation

PROFPOSED WORK

RAZISE

sign extend z —y RAAT

IR lx:16
x\y eax edx <.+ mem
eax | cwtl(l) movsx(4)
edx | movsx(4) movsx(4)
y:32 ‘ i
£
L

mem | movsx(5) movsx(5)

mode]
@ creation

L4
L
L
register
cwtl %eax allocation

sign_extend a->b
(4 bytes)

Carnegie Mellon
School, &

13

Implementing RA2ISE

Add side-constraints to Global MCNF model

— implement inter-variable preferences and constraints
« “if x allocated to r; and y allocated to r,, then save three bytes”
« “x and y must be allocated to the same register”

Implement x86 RAATs
— RAAT tables created manually
— GMCNF RAAT representation automatically generated
from RAAT table with minimum use of side constraints
Algorithms for tiling RAATs
— leverage existing algorithms
— exploit feedback between passes

Tiling RAATs 333

Evaluation

Implement in production quality compiler (gcc)
Evaluate code size and simple code speed metric
Evaluate on three different architectures

— x86 (8 registers)

— 68k/ColdFire (16 registers)

— PPC (32 registers)

41

Outline

V. Contributions & Timeline

42

Contributions
RA2|ISE

— register allocation aware tiles (RAATSs) explicitly encode
effect of register allocation on instruction sequence

— algorithms for tiling RAATs

— expressive model of register allocation that operates
on RAATSs and explicitly represents all important
components of register allocation

— progressive solver for this model that can quickly find
decent solution and approaches optimality as more time
is allowed for compilation

Comprehensive evaluation of RA2ISE

43

Thesis Statement

RAZ?ISE is a principled and effective system
for performing instruction selection and

register allocation.

44

15

One Step Towards a More Principled Compiler

loop

const — code

prop motion

- optimized program (“..Qg

School

Timeline

add simple speed metric option to model

Fall 2006 begin model simplification work ¢ V!
improve model accuracy and solver performance NS]
finish model simplification work -

add side-constraints to model

Winter 2006 implement existing gcc tiles as RAATs
improve model accuracy and solver performance
finish implementation of side-constraints and gcc RAATs
5 Tl
Spring 2007 begin work on RA2ISE infrastructure

create gcc-independent set of RAATS for x86
improve model accuracy and solver performance
finish work on RAZ2ISE

Summer 2007 | investigate and develop tiling algorithms

improve model accuracy and solver performance
add 68k/ColdFire and PowerPC targets

Fall 2007 investigate uniform register set simplifications
improve model accuracy and solver performance
begin writing thesis

work on improving compile time performance

Winter 2007

Spring 2008 | finish writing thesis

Carnegie Mellon g
46 P— A

rew Richard Koes

48

Questions?

17

