
Thesis Proposal
Towards a More Principled Compiler:

Progressive Backend Compiler Optimization

David Ryan Koes

August 2006

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Seth Copen Goldstein, Chair

Peter Lee
Anupam Gupta

Michael D. Smith, Harvard University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2006 David Ryan Koes



Keywords: Compilers, Register Allocation, Instruction Selection, Backend Optimization



Abstract
As we reach the limits of processor performance and architectural complexity in-

creases, more principled approaches to compiler optimization are necessary to fully
exploit the performance potential of modern architectures. Existing compiler opti-
mizations are typically heuristic-driven and lack a detailed model of the target archi-
tecture. In this proposal I develop the beginnings of a framework for a principled
backend optimizer.

Ideally, a principled compiler would consist of tightly integrated, locally opti-
mal, optimization passes which explicitly and exactly model and optimize for the
target architecture. Towards this end this proposal investigates two pivotal backend
optimizations: register allocation and instruction selection. I propose to tightly inte-
grate these optimizations in an expressive model which can be solved progressively,
approaching optimality as more time is allowed for compilation.

I present an expressive model for register allocation based on multi-commodity
network flow that explicitly captures the important components of register allocation
such as spill code optimization, register preferences, coalescing, and rematerializa-
tion. I also describe a progressive solution technique for this model that utilizes
the theory of Lagrangian relaxation and domain-specific heuristics to approach the
optimal solution and provide optimality-bound guarantees on solutions. As future
work, I discuss some improvements that can be made to this model and solution
technique to improve their performance and usefulness, and I sketch how I believe
this model and solution technique can be extended to incorporate instruction selec-
tion and present some preliminary results that indicate the benefit achievable from
such an integration.
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Chapter 1

Introduction

1.1 Motivation

As we reach the limits of processor performance and architectural complexity increases, more
principled approaches to compiler optimization are necessary to fully exploit the performance
potential of modern architectures. Existing compiler optimization frameworks are lacking in that

• many optimization passes use an extremely simplified model of the target architecture

• the various optimization passes are not tightly integrated, and

• not all optimization passes are internally optimal.
A more principled approach to compiler optimization must address all three of these points.

Many compiler optimization passes use a simplified model of the target architecture and, as a
result, may actually produce less optimized code. As an example, partial redundancy elimination
(PRE), which might be (falsely) considered a target-independent optimization, depends crucially
on the register resources of the target architecture. This architectural dependency is typically
simply modeled by a heuristic which crudely estimates the benefit of eliminating a redundant ex-
pression and the cost of introducing a long-lived temporary to hold the value of that expression.
As a result, the application of PRE can sometimes reduce performance. For instance, the PRE
pass of the GNUgcc version 3.4.4 compiler, which improves performance on some SPEC2000
benchmarks by as much as 4.3%, also decreases the performance of some benchmarks by as
much as 2% (overall, it provides an average improvement). These slowdowns are caused by
increased spilling within loops as a result of aggressive PRE. Even optimizations that are in-
trinsically linked to architectural features, such as register allocation, may use inappropriately
simple architectural models. For example, traditional register allocators were designed for regu-
lar, RISC-like architectures with large uniform register sets. Embedded architectures, such as the
68k, ColdFire, x86, ARM Thumb, MIPS16, and NEC V800 architectures, tend to be irregular,
CISC architectures. These architectures may have small register sets, restrictions on how and
when registers can be used, support for memory operands within arbitrary instructions, variable
sized instructions, or other features that complicate register allocation. The register allocator in
a principled compiler would need to explicitly represent and optimize for these features.

The importance of leveraging architectural features can be seen even in today’s compilers
by comparing the performance of code compiled for a generic x86 processor and code compiled
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to run specifically on a Pentium 4. The performance of SPEC2000 benchmarks improves by as
much as 33% usinggcc 3.4.4 (although the overall average improvement is less than 1%) and as
much as 100% using the Intel compilericc version 9.0 (with an average improvement of 14%).
The effect of simplistic architectural models and a lack of tight integration between compiler
passes is further highlighted by studies in adaptive and iterative compilation [7, 46, 53, 70, 88,
103] that search for better orderings and combinations of existing compiler optimizations. These
studies get between 5% and 20% average performance improvements on SPEC benchmarks,
with some SPEC benchmarks increasing in performance by as much as 75%, and can get up to
factors of four performance improvements on some numerical kernels.

The general optimization problem, finding a correct instruction sequence that results in the
shortest possible execution time, is clearly undecidable since such an optimizer could be used
to solve the halting problem. However, if instead of seeking a result that is optimal in the most
general case, we consider only the optimality of a specific optimization at performing its partic-
ular task, it potentially becomes tractable to design optimal algorithms. For example, dead-code
elimination may not be able to remove all code that is not executed for all inputs of a program,
but it can eliminate all code that is dead in a meets over all paths static analysis. In this sense
dead-code elimination can be thought of asinternally optimal; given a restricted, but reasonable,
definition of the problem (remove all static dead code) it finds the optimal result. In contrast,
some compiler optimizations, such as register allocation and instruction scheduling, are prov-
ably NP-hard for even simple representations of the problem. In these cases it is unlikely that
internally optimal efficient algorithms exist. However, internal optimality can be approached and
the trade off between compile time and optimality made explicit through the use ofprogressive
compilation.

Progressive compilation bridges the gap between fast heuristics and slow optimal algorithms.
A progressive optimization algorithm quickly finds a good solution and then progressively finds
better solutions until an optimal solution is found or a preset time limit is reached. The use of
progressive solution techniques fundamentally changes how compiler optimizations are enabled.
Instead of selecting an optimization level, a programmerexplicitly trades compilation time for
improved optimization.

The goal of the work in this proposal is to move towards a more principled compiler. Given
their substantial influence on all other optimizations, I plan to investigate the crucial backend
optimizations of register allocation and instruction selection. I propose to tightly integrate these
optimizations in an expressive model which can be solved progressively. Successfully achieving
this goal will result in compilers which can more capably exploit the performance potential of
modern architectures.

1.2 Problem Description

Register allocation and instruction selection are essential passes of any compiler backend. To-
gether they are responsible for finalizing a compiler’s intermediate representation of code into
machine executable assembly. As such, it is important to define what these passes entail and to
characterize their difficulty.
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v(R0) <- 1

w(R1) <- v(R0) + 3

x(R2) <- w(R1) + v(R0)

MEMw <- w(R1)

u(R0) <- v(R0)

t(R1) <- u(R0) + x(R2)

<- x(R2)

w(R2) <- MEMw
<- w(R2)

<- t(R1)

<- u(R0)

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

RARA

Figure 1.1: A simple example of register allocation. In this example there are only three registers. After
the definition oft there are four live variables,x, w, t, andu, so it is necessary to spill a variable to
memory, in this casew.

1.2.1 Register Allocation

Theregister allocation problemis to find a desirable assignment of program variables to memory
locations and hardware registers as illustrated by Figure 1.1. Various metrics, such as execution
speed, code size, or energy usage, can be used to evaluate the desirability of the allocation. Local
register allocation considers only the task of allocating a single basic block with no control flow.
Global register allocation finds an allocation for an entire function. Inter-procedural register
allocation is typically not done; instead, calling conventions dictate the use of registers across
function boundaries.

The register sufficiency problem, which is unfortunately often confused with the register al-
location problem, is to determine, for a particular function, if it is possible to find an assignment
of variables to only the available registers. That is, it is not necessary tospill, store to memory, a
variable. It is this problem that Chaitin et. al. [29] proved to be NP-hard for arbitrary control flow
graphs. However, later work has shown that program structure can be exploited to more easily
solve the register sufficiency problem [19]. For programs with bounded treewidth [16], which
includes all programs written in Java andgoto -free C [51, 101], the register sufficiency prob-
lem can be solved in linear time (but exponential in the constant number of registers) [15, 90] or
constant factor approximation algorithms can be used [60, 101]. For programs that are in SSA
form, the register sufficiency problem is also readily solved [24, 52], although converting out of
SSA form remains difficult [92].

Although the register sufficiency problem is readily solved, there is much more to the prob-
lem of register allocation than register sufficiency. Other important components of the register
allocation problem arespill code optimization, rematerialization, coalescing, andregister prefer-
ences. When program variables cannot be allocated solely to registers, it is necessary to generate
spill code which stores and loads values to and from memory. Determining the minimum number
of loads and stores needed is NP-hard even for the local case [38]. In some cases the register
allocator may be able to avoid spilling by rematerializing a know value. In addition, the register
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allocator may be able to improve code quality by allocating two variables to the same register.
For example, if the two variables are joined by a move instruction it may be possible tocoalesce
the variables into the same register and eliminate the need for the move instruction. Optimal
coalescing is NP-hard, even for structured programs [18]. Many architectures, such as the x86
architecture, do not have uniform register sets. Instead, the operands of certain instructions pre-
fer or require specific registers. For example, the x86div instruction always writes its result
to theeax andedx registers. Solving the register sufficiency problem, even in the local case,
in the presence of such constraints is NP-hard [107], although fixed parameter tractable in the
number of registers [14]. In order to generate quality code, a register allocator must take register
preferences into account.

The register allocation problem is an NP-hard problem consisting of several important com-
ponents. In order to generate quality code, a register allocator must not only perform register
assignment, but also optimize spill code, perform coalescing and rematerialization, and take reg-
ister preferences into account.

1.2.2 Instruction Selection

The instruction selection problemis to find an efficient conversion from the compiler’s target-
independent intermediate representation (IR) of a program to a target-specific assembly listing.
An example of instruction selection, where a tree-based IR is converted to x86 assembly, is
shown in Figure 1.2. In this example, and in general, there are many possible correct instruction
sequences. The difficulty of the instruction selection problem is finding the best sequence, where
best may refer to code performance, code size, or some other statically determined metric.

In the most general case, instruction selection is undecidable since an optimal instruction
selector could solve the halting problem (halting side-effect free code would be replaced by a
nop and non-halting code by an empty infinite loop). Because of this, instruction selection
selection is usually defined as finding an optimaltiling of the intermediate code with predefined
tiles of machine instructions. Each tile is a mapping from IR code to assembly code and has
an associated cost. An optimal instruction selection minimizes the total cost of the tiling. The
instruction selection problem is difficult even for basic blocks since straight-line code can be
represented as a directed acyclic graph (DAG) [3] and optimal tiling of DAGs is known to be NP-
complete even for simple machine models [25]. However, if the code is represented as a sequence
of expression trees (i.e., there are no common sub-expressions explicit in the representation), then
efficient optimal tiling algorithms exist [1].

Although optimal instruction selection algorithms exist for tree-based intermediate represen-
tations, the actual optimality of the result is limited by the accuracy of the costs associated with
each tile. If instruction selection is done independently from register allocation, these tile costs
are inherently inaccurate since spills, register preferences, and move coalescing may change the
instructions corresponding to a tile. For example, in Figure 1.2, which instruction sequence is
better is determined by the ability of the register allocator to coalesce certain variables and elim-
inate the cost of moves. An instruction selection algorithm that integrates with the register allo-
cator would be able to assign more accurate costs to tiles, but would also inherit the NP-hardness
of register allocation.

4



+

+ +

MEM

p

xy1

(a)

+

+ +

MEM

p

xy1

(b)

movl (p),t1
leal (x,t1),t2
leal 1(y),t3
leal (t2,t3),r

(c)

movl x,t1
addl t1,(p)
movl y,t2
incl t2
movl t2,r
addl r,t1

(d)

movl (ecx),ebx
leal (edx,ebx),edx
leal 1(eax),eax
leal (edx,eax),eax

(e)

movl edx,edx
addl edx,(ecx)
movl eax,eax
incl eax
movl eax,eax
addl eax,edx

(f)

Figure 1.2: An example of instruction selection on a tree-based IR. Two possible tilings, (a) and (b), with
their corresponding instruction sequences, (c) and (d), are shown. Although sequence (c) is shorter, it is
possible that register allocation will be able to coalesce the move instructions in (d) resulting in an even
shorter sequence as illustrated by (e) and (f).
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Chapter 2

Related Work

Register allocation is a fundamental part of any compiler backend and has been extensively stud-
ied. The textbook [5, 8, 34, 83, 84] approach to register allocation is to represent the problem as
a graph coloring problem. Although many improvements to this technique have been proposed,
the graph coloring representation is fundamentally limited, especially when compiling for highly
constrained and irregular architectures such as the x86. Less limited methods of register allo-
cation which use more expressive models and find optimal allocations have been proposed but
are prohibitively slow. The progressive solution techniques of the thesis will bridge the gap be-
tween existing slow, but optimal, and fast, but suboptimal, allocators allowing programmers to
explicitly trade compilation time for code quality.

Although instruction selection by itself has been extensively studied, the integration of in-
struction selection with register allocation remains an open problem. Through the use of register
allocation aware instruction selection, the thesis will build on the existing body of knowledge to
more tightly integrate these two key compiler passes.

2.1 Graph Coloring Register Allocation

A traditional graph coloring allocator constructs an interference graph which is then labeled with
“colors” representing each ofk available registers.

Build Simplify Potential Spill Select Actual Spill

Coloring Heuristic

Figure 2.1: The flow of a traditional graph coloring algorithm.
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2.1.1 Algorithm

The traditional optimistic graph coloring algorithm [20, 23, 28] consists of five main phases as
shown in Figure 2.1:
Build An interference graph is constructed using the results of data flow analysis. A node in

the graph represents a variable. An edge connects two nodes if the variables represented
by the nodes interfere and cannot be allocated to the same register. Restrictions on what
registers a variable may be allocated to can be implemented by adding precolored nodes to
the graph.

Simplify A heuristic is used to reduce the size of the graph. In the most commonly used heuristic
[61] any node with degree less thank, wherek is the number of available registers, is
removed from the graph and placed on a stack. This is repeated until all nodes are removed,
in which case we skip to the Select phase, or no further simplification is possible. More
complicated heuristics [78, 104] can also be used to further simplify the graph.

Potential Spill If only nodes with degree greater thank are left, we mark a node as a potential
spill node, remove it from the graph, and optimistically push it onto the stack. We repeat
this process until there exist nodes in the graph with degree less thank, at which point we
return to the Simplify phase.

Select In this phase all of the nodes have been removed from the graph. We now pop the nodes
off the stack. If the node was not marked as a potential spill node then there must be a
color we can assign this node that does not conflict with any colors already assigned to this
node’s neighbors. If it is a potential spill node, then it still may be possible to assign it a
color; if it is not possible to color the potential spill node, we mark it as an actual spill and
leave it uncolored.

Actual Spill If any nodes are marked as actual spills, we generate spill code which loads and
stores the variables represented by these nodes into new, short lived, temporary variables
everywhere the variable is used and defined. Because new variables are created, it is nec-
essary to rebuild the interference graph and start over.

Note that the Simplify, Potential Spill, and Select phases together form a heuristic for graph
coloring. If this heuristic is successful, there will be no actual spills. Otherwise, the graph
is modified so that it is easier to color by spilling variables and the entire process is repeated.
This coloring heuristic is a “bottom-up” coloring [34]. A “top-down” coloring uses high-level
program information instead of interference graph structure to determine a priority coloring order
[30, 31] for the variables and then greedily colors the graph.

As an alternative to the iterative approach where the interference graph is rebuilt and reallo-
cated every time variables are spilled, a single-pass allocator can be used. A single-pass allocator
reserves registers for spilling. These registers are not allocated in the coloring phase and instead
are used to generate spill code for all variables that did not get a register assignment.

2.1.2 Improvements

A number of improvements to the basic graph coloring algorithm have been proposed. Four
common improvements are:
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Web Building [28, 59] Instead of a node in the interference graph representing all the live ranges
of a variable, a node can just represent the connected live ranges of a variable (called webs).
For example, if a variablei is used as a loop iteration variable in several independent loops,
then each loop represents an unconnected live range. Each web can then be allocated to a
different register, even though they represent the same variable.

Coalescing [23, 28, 47, 91]If the live ranges of two variables are joined by a move instruc-
tion and the variables are allocated to the same register it may be possible to coalesce
(eliminate) the move instruction. Coalescing is implemented by adding move edges to the
interference graph. If two nodes are connected by a move edge, they should be assigned
the same color. Move edges can be removed to prevent unnecessary spilling. Coalescing
techniques differ in how aggressively they coalesce nodes and when and how the decision
to coalesce is finalized.

Spill Heuristic [13] A heuristic is used when determining what node to mark in the Potential
Spill stage. An ideal node to mark is one with a low spill cost (requiring only a small num-
ber of dynamic loads and stores to spill) but one whose absence will make the interference
graph easier to color and therefore reduce the number of future potential spill nodes.

Improved Spilling [12, 23, 33] If a variable is spilled, loads and stores to memory may not be
needed at every read and write of the variable. It may be cheaper to rematerialize [22]
the value of the variable (if it is a constant, for example). Alternatively, the live range of
the variable can be partially spilled. In this case, the variable is only spilled to memory
in regions of high interference. Techniques that perform such live range splitting can be
applied before or during register allocation [33, 71, 87].

2.1.3 Limitations

The graph coloring model of register allocation has several fundamental limitations. The basic
graph coloring model is only effective at solving the register sufficiency problem. It must be
extended in anad hocfashion in order to incorporate other components of the register allocation
problem. The graph coloring model implicitly assumes a uniform register model and so must be
further extended to target irregular architectures [21, 23, 58, 69, 100]. However, as we shall see,
the graph coloring register allocation is not well suited for targeting irregular and constrained
architectures.

Simply solving the register sufficiency problem is not enough to obtain quality code. As
shown in Figure 2.2, architectures with limited registers sets, such as the Intel x86 architecture,
frequently do not have sufficient registers to avoid spilling. Since almost half of all the functions
in Figure 2.2 had to generate spill code, it is clearly important that the compiler explicitly opti-
mize spill code. The importance of components besides register sufficiency and the shortcomings
of the graph coloring model are further demonstrated in Figure 2.3, which shows the effect of re-
placing the heuristic coloring algorithm in a traditional graph coloring allocator with an optimal
allocator as described in [65]. The use of an optimal coloring algorithm substantially degrades
code quality unless additional components of register allocation are incorporated into the objec-
tive function of the optimal allocator. Since this is done in anad hocmanner (no explicit cost
model is used), the results are mixed with the optimal-coloring based allocator performing more
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Figure 2.2: The percent of over 10,000 functions assembled from various benchmark suites for which no
spilling is necessary. Three architectures with different numbers of registers are evaluated. In these cases
a graph coloring based allocator successfully found an allocation without spilling. Note that all functions
are treated equally; no attempt is made to weight functions by execution frequency or size. Although these
results are for a heuristic allocator, the heuristic used fails to find a spill-free allocation when one actually
exists in only a handful of cases [65].

poorly on average than a purely heuristic based allocator. These results strongly suggest that de-
veloping a register allocator around the register sufficiency problem, as with the graph coloring
paradigm, and then heuristically extending it to incorporate the additional components of register
allocation is not the the best approach when targeting constrained and irregular architectures.

2.2 Alternative Allocators

Although graph-coloring based allocators are the textbook approach to register allocation, sev-
eral other approaches have been studied and implemented in production compilers. Several al-
locators, includinggcc , separate the register allocation problem into global allocation and local
allocation, each of which is done separately, while other allocators attempt to exploit program
structure when performing allocation. Linear scan techniques focus on improving the speed of
the register allocator itself, usually in the context of a just-in-time compiler.

Although allocators which perform local and global register allocation separately may per-
form global allocation first [83], typically local allocation is performed first in order to take
advantage of fast and effective local register allocation algorithms [38, 56, 77]. In probabilistic
register allocation [95] and demand-driven allocation [96], the results of local allocation are used
by the global allocator to determine which variables get registers. In thegcc (as of version 3.4.4
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Figure 2.3: The effect of incorporating various components of register allocation into the coloring algo-
rithm. The coloring heuristic of a traditional graph allocator is replaced with an optimal coloring algo-
rithm. Results are shown for an algorithm that optimal minimizes the number of spilled variables, that
minimizes the total heuristic cost of spilled variables, and that minimizes total spill cost while preferring
allocations that are biased towards coalescing and register preferences.

[43]) allocator, the local allocator performs a simple priority-based allocation. The global allo-
cator then performs its own single-pass priority-based allocation. A final reload phase generates
the necessary spills for any variables that remain unallocated. When compilation time is at a
premium, the global pass, which must calculate a full interference graph, can be skipped.

Allocators which exploit program structure break the control flow graph into regions or tiles.
In hierarchical register allocation [26, 32] a tile tree corresponding to the control-flow hierarchy
is constructed. A partial allocation is computed in a bottom-up pass of the tile tree and then the
final register assignment is calculated on a second top-down pass. A similar technique can also be
used with regions derived from program dependence graphs [89]. Hierarchical allocation results
in a more control-flow aware allocation (for example, less spill code in loops), but decisions made
when fixing the allocation of a tile may have globally poor results. A graph fusion allocator [79]
avoids fixing an allocation at tile boundaries. Instead, tiles are “fused” together until the entire
control flow graph is covered by one fused tile. Each fusion operation maintains the invariant that
the interference graph of a fused tile is simplifiable (easily colored) by splitting live ranges and
spilling variables as necessary. Register assignment is then performed on the final interference
graph. Hierarchical allocators typical exhibit mixed results, with an average case improvement
over graph-coloring allocators. When these allocators perform poorly, it is usually because the
built-in heuristics fail and excessive spill and shuffle code is generated at tile boundaries.
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Linear scan allocators find a register allocation in a single sweep of the program code. They
are usually designed for just-in-time compilers and sacrifice code quality for compile-time speed.
Each variable is represented by a single linear lifetime range and registers are assigned to lifetime
ranges in a single quick pass [93]. This basic method can be extended to support holes in lifetime
intervals, the splitting of intervals and other efficient optimizations [102, 106]. Although these
improvements can result in significant benefits over the basic linear scan algorithm, linear scan
allocators remain inferior to more traditional allocators in terms of code quality.

2.3 Optimal Register Allocation

The NP-hard nature of register allocation makes it unlikely that a practical optimal register al-
location algorithm exists. However, several optimal or partially optimal approaches have been
investigated. Although these algorithms do not demonstrate practical running times, they provide
insight into what is achievable and, in some cases, suggest improvements to heuristic solutions.

The local register allocation problem has been solved optimally using a dynamic program-
ming algorithm that requires exponential space and time [56]. This algorithm has been extended
to handle loops and irregular architectures [67] and multi-issue machines [82]. Essentially, this
algorithm performs a pruned exhaustive search of all possible register allocations. The exponen-
tial part of the algorithm can be replaced by a heuristic to get an efficient local allocator that
outperforms other local allocators on average and is generally close to optimal. Local regis-
ter allocation can also be solved in polynomial space and exponential time using integer linear
programming techniques [77].

The global register sufficiency problem has been solved optimally [15, 90] or approximately
[101] by exploiting the bounded treewidth property of structured programs. The optimal solu-
tions include a constant factor that is exponential in the number of registers. While the ability of
these algorithms to exploit program structure is insightful, they do not actually solve the complete
register allocation problem.

The complete register allocation problem for both regular [44, 45, 50] and irregular [48,
68, 85, 86] architectures has been solved by expressing the problem as an integer linear pro-
gram (ILP) which is then solved using powerful commercial solvers. Although these tech-
niques demonstrate the significant reduction in spill code possible using optimal allocators, their
compile-time performance does not scale well as the size of the input grows. In particular, the
ILP solver is unable to find any solution (let alone the optimal solution) for most functions with
more than 1000 instructions [45].

As an alternative to ILP formulations, a simplified version of the register allocation problem
has been modeled as a partitioned boolean quadratic optimization problem (PBQP) [55, 98]. This
formulation can then either be solved optimally, but exponentially slowly, or with an efficient
polynomial-time heuristic which is competitive with graph coloring allocators.
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2.4 Instruction Selection

Instruction selection, or code generation, converts the compiler’s intermediate representation
(IR) of code into a target-specific assembly listing. Instruction selection and register allocation
are typically done as independent passes with instruction selection preceding register allocation.
However, particularly with irregular architectures such as the x86, the interaction between these
two passes can significantly impact code quality.

The textbook approach to instruction selection [5, 8, 34, 84] is to represent the problem as a
tiling problem. Each tile is a mapping from IR code to assembly code and has an associated cost.
An optimal instruction selection minimizes the total cost of the tiling. If the IR is a sequence
of trees, this tiling can be done optimally using dynamic programming [1, 4, 99, 105], even for
super-scalar machines [17]. Furthermore, code-generator generators based on this approach have
been developed [4, 27, 37, 40, 41, 49, 94] which simplify the construction and maintenance of
a compiler. If the IR consists of directed acyclic graphs (DAGs) then a simplified version of the
problem can be solved within a constant approximation ratio using heuristics [2].

An alternative method for tiling instruction DAGs that is particularly relevant when targeting
DSP [73] and SIMD [74] processors is to tile the IR as if it were a sequence of trees, but gener-
ate several possible tilings for each tree using partial tiles which my potentially be invalid. For
example, two tilings, by themselves, may be invalid because they both contain half of a SIMD in-
struction. A pass after tiling attempts to reconcile the invalid tilings. For example, the two halves
of the SIMD instruction would be combined to produce a valid tiling of the DAG. Unfortunately,
the reconcile phase is itself NP-hard. When evaluated on small DSP kernels, this technique suc-
cessfully increased the parallelism explicitly exposed to the processor, but, due to the use of an
optimal integer-programming based reconcile phase, the compile-times did not scale beyond tree
sizes of 40 operations.

Instruction selection on a DAG IR can also be represented as an instance of a binate covering
problem [75, 76]. The binate covering problem is to find an assignment of boolean variables
that satisfies a given set of logical clauses (consisting only of disjunctions of variables or their
complement) that minimizes a given cost function. Optimal branch-and-bound based solvers can
then be used to find solutions that are significantly better than optimal solutions that work on
sequences of trees. (Approximately a 10% size improvement on selected basic blocks). Unfortu-
nately, this technique does not scale well (several seconds are required to compile a single block
with fewer than 100 instructions).

An alternative method of instruction selection, which is better suited for linear, as opposed
to tree-like, IRs, is to incorporate instruction selection into peephole optimization [34, 36, 42,
63]. In peephole optimization [81], pattern matching transformations are performed over a small
window of instructions, the “peephole.” This window may be either a physical window, where
the instructions considered are only those scheduled next to each other in the current instruction
list, or it may be a logical window where the instructions considered are just those that are
data or control related to the instruction currently being scanned. When performing peephole-
based instruction selection, the peepholer simply converts a window of IR operations into target-
specific instructions. If a logical window is being used, then this technique can be considered
a heuristic method for tiling a DAG. Code-generator generators have also been developed using
the peephole method of instruction selection [35, 39].
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Several techniques that partially integrate instruction scheduling and register allocation have
been developed. A tree-tiling based instruction selector can be extended to incorporate the notion
of usable or efficient register classes into each tile [9, 105]. The AVIV retargetable code genera-
tor [54] performs instruction selection over a split-DAG, which additionally represents function
unit resource constraints, and inserts spills (sub-optimally) during instruction selection if neces-
sary to keep the number of live variables less than the number of registers. Similarly, instruction
selection, combined with instruction duplication, has been used to reduce register pressure re-
sulting in a better final register allocation [97]. Instruction selection and register assignment (no
spilling) have been performed using an exhaustive search with memoization of the search space
[62]. Due to the nature of instruction selection, if register allocation is performed, it is only a lo-
cal register allocation. Otherwise, the instruction selector produces code that is hopefully easier
to allocate and then the global register allocator runs independently.
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Chapter 3

Completed Work

3.1 Expressive Model

In this section we describe a model of register allocation based on multi-commodity network
flow. We first describe the general MCNF problem and show how to create an expressive model
of register allocation for straight-line code using MCNF. We then extend the MCNF model to
handle control flow. Finally, we discuss some limitations of the model. Overall, the our global
MCNF model explicitly and exactly represents the pertinent components of the register allocation
problem.

3.1.1 Multi-commodity Network Flow

The multi-commodity network flow (MCNF) problem is finding a minimum cost flow of com-
modities through a constrained network. The network is defined by nodes and edges where each
edge has costs and capacities. Without loss of generality, we can also apply costs and capaci-
ties to nodes. The costs and capacities can be specific for each commodity, but edges also have
bundle constraintswhich constrain the total capacity of the edge. For example, if an edge has
a bundle constraint of 2 and commodities are restricted to a single unit of integer flow, at most
two commodities can use that edge in any valid solution. Each commodity has a source and
sink node such that the flow from the source must equal the flow into the sink. Although finding
the minimum cost flow of a single commodity is readily solved in polynomial time, finding a
solution to the MCNF problem where all flows are integer is NP-complete [6].

Formally, the MCNF problem is to minimize the costs of the flows through the network:

min
∑

k

ckxk

subject to the constraints: ∑
k

xk
ij ≤ uij

0 ≤ xk
ij ≤ vk

ij

Nxk = bk
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whereck is the cost vector containing the cost of each edge for commodityk, xk is the flow
vector for commodityk wherexk

ij is the flow of commodityk along edge(i, j), uij is the bundle
constraint for edge(i, j), vk

ij is an individual constraint on commodityk over edge(i, j), the
matrixN represents the network topology, and the vectorbk contains the inflow and outflow
constraints (source and sink information).

3.1.2 Local Register Allocation Model

Multi-commodity network flow is a natural basis for an expressive model of the register alloca-
tion problem. A flow in our MCNF model corresponds to a detailed allocation of that variable. A
simplified example of our MCNF model of register allocation is shown in Figure 3.1. Although
simplified, this example demonstrates how our MCNF model explicitly represents spill costs,
constant rematerialization, and instruction register usage constraints and preferences.

The commodities of the MCNF model correspond to variables. The design of the network and
individual commodity constraints is dictated by how variables are used. The bundle constraints
enforce the limited number of registers available and model instruction usage constraints. The
edge costs are used to model both the cost of spilling and the costs of register preferences.

Each node in the network represents an allocation class: a register, constant class, or memory
space where a variable’s value may be stored. Although a register node represents exactly one
register, constant and memory allocation classes do not typically correspond to a single constant
or memory location. Instead they refer to a class of constants or memory locations that are all
accessed similarly (e.g., constant integers versus symbolic constants).

Nodes are grouped into either instruction or crossbar groups. There is an instruction group
for every instruction in the program and a crossbar group for every point between instructions.
An instruction group represents a specific instruction in the program and contains a single node
for each allocation class that may be used by the instruction. The source node of a variable
connects to the network at the defining instruction and the sink node of a variable removes the
variable from the network immediately after the last instruction to use the variable. The nodes
in an instruction group constrain which allocation classes are legal for the variables used by that
instruction. For example, if an instruction does not support memory operands, such as the load of
the integer constant one in Figure 3.1, then no variables are allowed to flow through the memory
allocation class node. Similarly, if only a single memory operand is allowed within an instruc-
tion, the bundle constraints of the instruction’s memory edges are set to 1. This is illustrated
in Figure 3.1 by the thin edges connecting to the memory node of theSUB instruction group.
Variables used by an instruction must flow through the nodes of the corresponding instruction
group. Variables not used by the instruction bypass the instruction into the next crossbar group.
This behavior can been seen in the behavior of variablesa andb in Figure 3.1. The flows of these
variables bypass the first instruction but are forced to flow through theSUBinstruction.

Crossbar groups are inserted between every instruction group and allow variables to change
allocation classes. For example, the ability to store a variable to memory is represented by
an edge within a crossbar group from a register node to a memory allocation class node. In
Figure 3.1 the variablea, which is assumed to start as a parameter on the stack, flows from the
memory node tor0 , which corresponds to a load. The crossbar groups shown in Figure 3.1 are
full crossbars which means that for some allocations the use of swap instructions, instead of a
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int example(int a, int b)
{

int d = 1;
int c = a - b;
return c+d;

}

Source code of example

MOVE 1 -> d
SUB a,b -> c
ADD c,d -> c
MOVE c -> r0

Assembly before register
allocation

MOVE STACK(a) -> r0
SUB r0,STACK(b) -> r0
INC r0
Resulting register allocation

Figure 3.1: A simplified example of the multi-commodity network flow model of register allocation.
Thin edges have a capacity of 1 (as only one variable can be allocated to a register and instructions only
support a single memory operand). A thick edge indicates that the edge is uncapacitated. For clarity, edges
not used by the displayed solution are in gray and much of the capacity and cost information is omitted.
The commodity and cost along each edge used in the solution are shown if the cost is non-zero. In this
example the cost of a load is 3, the cost of using a memory operand in theSUBinstruction is 1, the benefit
(negative cost) of allocatingc to r0 in the finalMOVEinstruction is 2 since the move can be deleted in this
case. Similarly, allocatingd to a constant when it is defined has a benefit of 2. If an operand of theADD
instruction is the constant one, then a benefit of 2 is accrued because the more efficientINC instruction
can be used. The total cost of this solution is -2.

16



a

a a'

a'

mem

mem

mem

3

reg

reg

reg

0 3

mem

mem

mem

reg

reg

reg

0 3

r

Figure 3.2: An example of anti-variables. The anti-variable ofa, a′, is restricted to the memory subnet-
work (dashed edges). The edger is redundant and need not be in the actual network. The cost of the
second store can be paid by the first edge. If ther edge is left in the graph, it would have a cost of three,
the cost of a store in this example. Multiple anti-variable eviction edges can also be used to model the
case where stores have different costs depending on their placement in the instruction stream.

simple series of move instructions, might be necessary. If swap instructions are not available
or are not efficient relative to simple moves, a more elaborate zig-zag crossbar structure can be
used.

The cost of an operation, such as a load or move, can usually be represented by a cost on
the edge that represents the move between allocation classes. However, this does not accurately
reflect the cost of storing to memory. If a variable has already been stored to memory and its
value has not changed, it is not necessary to pay the cost of an additional store. That is, values in
memory are persistent, unlike those in registers which are assumed to be overwritten.

In order to model the persistence of data in memory, we introduce the notion of anti-variables
which are used as shown in Figure 3.2. An anti-variable is restricted to the memory subnetwork
and is constrained such that it cannot coexist with its corresponding variable along any memory
edge. An anti-variable can either leave the memory sub-network when the variable itself exits
the network or the cost of a store can be paid to leave the memory sub-network early. There is
no cost associated with edges from registers to memory, but for these edges to be usable, the
anti-variable must be evicted from memory. The cost of evicting the anti-variable is exactly the
cost of a single store. In this way a variable may flow from registers to memory multiple times
and yet only pay the cost of a single store (of course, every transition from memory to a register
pays the cost of a load). An actual store is only generated for the first move to memory.
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Figure 3.3: The types of nodes in a global MCNF representation of register allocation. The merge/split
nodes not only modify the traditional flow equations with a multiplier, but also require uniformity in the
distribution of inputs/outputs.

Figure 3.4: A GMCNF based representation of an register allocation with a sample allocation shown with
the thicker line. Each block can be thought of as a crossbar where the cost of each edge is the shortest
path between a given merge and split node.

3.1.3 Global Register Allocation Model

Although the described MCNF model is very expressive and able to explicitly model many im-
portant components of register allocation, it is unsuitable as a model of global register allocation
since it does not model control flow. In order to represent the global register allocation problem,
boundary constraints are added to link together the local allocation problems. These constraints
are represented bysplit andmergenodes as shown in Figure 3.3.

Similar to normal nodes, split and merge nodes represent a specific allocation class. Merge
nodes denote the entry to a basic block. A variable with a flow through a specific merge node
is allocated to that allocation class at the entry of the relevant block. The merge property of the
merge node, as enforced by the flow equations in Figure 3.3, requires that a variable be allocated
to the same allocation class at the entry of a block as at the exit of all of the predecessors of the
block. Similarly, a split node requires that an allocation of a variable at the exit of a block match
the allocation at the entry to each of the successors to the block.

More formally, we add the following equality constraint for every commodityk and for every
pair (split, merge) of connected split and merge nodes to the definition of the MCNF problem
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given in Section 3.1.1:
xk

in,split = xk
merge,out

Note that split nodes are defined to have exactly one incoming edge and merge nodes to have
exactly one outgoing edge. We refer to these constraints as theboundary constraints. These
constraints replace the normal flow constraint between nodes for split and merge nodes.

A simplified example of a single allocation in the global MCNF model is shown in Figure 3.4.
In this example, the full MCNF representation of each basic block is reduced to a simple crossbar.
Unlike the local MCNF model, finding the optimal allocation for a single variable is not a simple
shortest path computation. In fact, for general flow graphs the problem is NP-complete (by a
reduction from graph coloring).

3.1.4 Limitations

Our global MCNF model can explicitly model instruction usage constraints and preferences,
spill and copy insertion, and constant rematerialization. In addition, our model can model a
limited amount of register-allocation driven instruction selection. For example, in Figure 3.1 the
model explicitly encodes the fact that if an operand of theADDinstruction is the constant one,
a more efficientINC instruction can be used. However, the model can not currently represent
inter-variable register usage preferences or constraints. That is, the model can not represent a
statement such as, “ifa is allocated to X andb is allocated to Y in this instruction, then a 2 byte
smaller instruction can be used.” For example, on the x86 a sign extension from a 16-bit variable
a to a 32-bit variableb is normally implemented with a 3-bytemovsxw instruction, but if botha
andb are allocated to the registereax then a 1-bytecwde instruction may be used with the same
effect. This saving in code size cannot be exactly represented in our model because edge costs
only apply to the flow of a single variable. If the instruction stream was modified so that a move
from a to b were performed before the sign extension and the sign extension hadb as its only
operand, then the model would be capable of exactly representing the cost savings of allocating
b to eax with the caveat of requiring a more constrained instruction stream as input.

Another example where inter-variable register usage preferences are useful is in the model-
ing of the conversion of a three operand representation of a commutative instruction into a two
operand representation. Internally, a compiler might represent addition asc = a + b even though
the target architecture requires that one of the source operands be allocated to the same register as
the destination operand. Ideally, the model would be able to exactly represent the constraint that
one of the source operands,a or b, be allocated identically withc. Converting non-commutative
instructions into two operand form does not pose a problem for our model as these instructions
can be put into standard form without affecting the quality of register allocation.

On some architectures inter-variable register usage constraints might exist that require a
double-width value to be placed into two consecutive registers. The SPARC architecture, for
example, requires that 64-bit floating point values be allocated to an even numbered 32-bit float-
ing point register and its immediate successor. Our MCNF model currently is not capable of
representing such a constraint.

Our model does not explicitly represent the benefits of move coalescing. Instead, moves
are aggressively coalesced before register allocation; the model explicitly represents the benefit
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of inserting a move so there is no harm in removing as many move instructions as possible.
Inter-variable register usage preferences are necessary in order to exactly represent the move
coalescing component of register allocation.

An additional limitation of our model is that it assumes that it is never beneficial to allocate
the same variable to multiple registers at the same program point. This arises because there is
a direct correspondence between the flow of a variable through the network and the allocation
of the variable at each program point. The assumption that it will not be beneficial to allocate a
variable to multiple registers at the same program point seems reasonable for architectures with
few registers. If desired, this limitation can be removed by using a technique similar to how
anti-variables are used to model stores.

3.2 Progressive Solvers

In this section we present a progressive solver for the global MCNF problem. This solver quickly
finds a solution using heuristic allocators and then uses iterative subgradient optimization to find
the Lagrangian prices of the network. These prices are used in each iteration by heuristic alloca-
tors to find progressively better solutions. We first describe our use of the theory of Lagrangian
relaxation and then describe and discuss two heuristic allocators (additional heuristic allocators
are discussed in [64]).

3.2.1 Lagrangian Relaxation

Ideally, we would like to build a solution from simple shortest path computations. Each indi-
vidual variable’s shortest path would need to take into account not only the immediate costs
for that variable, but also the marginal cost of that allocation with respect to all other variables.
Lagrangian relaxation provides a formal way of computing these marginal costs.

Lagrangian relaxation is a general solution technique [6, 72] that removes one or more con-
straints from a problem and integrates them into the objective function using Lagrangian multi-
pliers resulting in a more easily solved Lagrangian subproblem. In the case of multi-commodity
network flow, the Lagrangian subproblem is to find a price vectorw such thatL(w) is maximal,
whereL(w) is defined:

L(w) = min
∑

k

ckxk +
∑
(i,j)

wij

(∑
k

xk
ij − uij

)
(3.1)

which can be rewritten as:
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L(w) = min
∑

k

∑
(i,j)

(
ck
ij + wij

)
xk

ij −
∑
(i,j)

wijuij (3.2)

subject to
xk

ij ≥ 0

Nxk = bk∑
i

xk
i,split =

∑
j

xk
merge,j

The bundle constraints have been integrated into the objective function. If an edgexij is over-
allocated, then the term

∑
k xk

ij − uij will increase the value of the objective function, making
it less likely that an over-allocated edge will exist in a solution that minimizes this objective
function. Thewij terms are the Lagrangian multipliers, called prices in the context of MCNF.
The prices,w, are arguments to the subproblem and it is the flow vectors,xk, that are the free
variables in the minimization problem. The Lagrangian subproblem is still subject to the same
network and individual flow constraints as in the MCNF problem. As can be seen in (3.2), the
minimum solution to the Lagrangian subproblem decomposes into the minimum solutions of the
individual single commodity problems.

Unfortunately, in our global MCNF model the individual single commodity problem remains
NP-complete because of the boundary constraints. Fortunately, the boundary constraints can also
be brought into the objective function using Lagrangian multipliers:

L(w) = min
∑

k

∑
(i,j)

(
ck
ij + wij

)
xk

ij −
∑
(i,j)

wijuij +

∑
(split,merge)

wk
split,merge

(
xk

merge,out − xk
in,split

)
(3.3)

subject to
xk

ij ≥ 0

Nxk = bk

Since there are no normal flow constraints between split and merge nodes, the solution to (3.3)
is simply a set of disconnected single commodity flow problems.

The functionL(w) has several useful properties [6]. LetL∗ = maxwL(w), thenL∗ provides
a lower bound for the optimal solution value. Furthermore, a solution,x, to the relaxed sub-
problem which is feasible in the original MCNF problem is likely to be optimal. In fact, if the
solution obeys the complementary slackness condition, it is provably optimal. The complemen-
tary slackness condition simply requires that any edge with a non-zero price be used to its full
capacity in the solution.

We solve forL∗ using an iterative subgradient optimization algorithm. At a stepq in the
algorithm, we start with a price vector,wq, and solveL(wq) for xk to get an optimal flow vector,
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yk, by performing a multiple shortest paths computation in each block. We then updatew using
the rules:

wq+1
ij = max

(
wq

ij + θq

(∑
k

yk
ij − uij

)
, 0

)

wk
split,merge

q+1
= wk

split,merge

q
+ θq

(
yk

merge,out − yk
in,split

)
whereθq is the current step size. This algorithm is guaranteed to converge ifθq satisfies the
conditions:

lim
q→∞

θq = 0

lim
q→∞

q∑
i=1

θi = ∞

An example of a method for calculating a step size that satisfies these conditions is the ratio
method,θq = 1/q. More sophisticated techniques to calculate the step size and update the prices
[10, 80] can also be used.

Although the iterative subgradient algorithm is guaranteed to converge, it is not guaranteed
to do so in polynomial time. Furthermore,L∗ does not directly lead to an optimal solution of
the original, unrelaxed global MCNF problem. However, the Lagrangian prices can be used
to effectively guide the allocation algorithms towards better solutions and to provide optimality
guarantees.

3.2.2 Progressive Solver

We combine the Lagrangian relaxation technique with allocation heuristics to create a progres-
sive solver. The solver first finds an initial solution in the unpriced network. Then, in each
iteration of the iterative subgradient algorithm, the current set of prices are used to find another
feasible solution. When finding solutions in the priced network, the allocation heuristics com-
pute shortest paths using edge and boundary prices in addition to edge costs. Global information,
such as the interference graph, is not used except to break ties between identically priced paths.
Instead, the allocators rely exclusively on the influence of the prices in the network to account
for the global effect of allocation decisions.

The heuristic allocators attempt to build a feasible solution to the global MCNF problem
whose cost in the priced network is as close as possible to the cost of the unconstrained solution
found during the update step of the subgradient algorithm. If the algorithm is successful and the
found solution obeys the complementary slackness condition, then the solution is provably opti-
mal. When selecting among similarly priced allocation decisions, we can increase the likelihood
that the solution will satisfy the complementary slackness condition by favoring allocations with
the lowest unpriced cost.

We present an iterative heuristic allocator, which attempts to find the best allocation on a
variable-by-variable basis, a simultaneous heuristic allocator, which attempts to find the best
allocation on a block-by-block basis, and a trace-based simultaneous allocator which extends the
simultaneous allocator to work on traces of basic blocks.
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Figure 3.5: An example of a step in the iterative heuristic allocator. The variablesa andb have already
been allocated. The allocation forc is found through a shortest path computation. Note that the allocation
of b avoided using the last available register in theSUBinstruction group to avoid preventing the allocation
of c.

Iterative Heuristic Allocator

The iterative heuristic allocator (Figure 3.5) allocates variables in some heuristically determined
order. A variable is allocated by traversing the control flow graph in depth first order and com-
puting the shortest path for the variable in the priced network of each block. Because the blocks
are traversed in order, the split nodes at the exit of a processed block will fix the starting point
for the shortest path in each successor block. Within each block we will always be able to find a
feasible solution because the memory network is uncapacitated. We constrain our shortest-path
algorithm to conservatively ignore paths that could potentially make the network infeasible for
variables that still need to be allocated. For example, if an instruction requires a currently unallo-
cated operand to be in a register and there is only one register left that is available for allocation,
all other variables are required to be in memory at that point.

The iterative heuristic allocator performs a shortest path computation for every variablev in
every block. This shortest path computation is linear in the number of instructions,n, because
each block is a topologically ordered directed acyclic graph. Therefore the worst case running
time of the algorithm isO(nv).

Simultaneous Heuristic Allocator

As an alternative to the iterative allocator, we describe a simultaneous allocator (Figure 3.6)
which functions similarly to a second-chance binpacking allocator [102] but uses the global
MCNF model to guide eviction decisions. The algorithm traverses the control flow graph in depth
first order. For each block, it performs both a forwards and backwards shortest-path computation
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Edges to/from

memory cost 3

Figure 3.6: An example of a step in the simultaneous heuristic allocator. The variablesa, b, andd have
all been allocated up to the point before theSUBinstruction. The definition ofc requires that a variable
be evicted from a register. Since it is cheapest to evicta, its allocation is changed to go through memory
andc is allocated tor1 .

for every variable. These paths take into account that the entry and exit allocations of a variable
may have been fixed by an allocation of a previous block. Having performed this computation,
the cost of the best allocation for a variable at a specific program point and allocation class
in a block can be easily determined by simply summing the cost of the shortest paths to the
corresponding node from the source and sink of the given variable.

After computing the shortest paths, the algorithm scans through the block, maintaining an
allocation for every live variable. The allocations of live-in variables are fixed to their alloca-
tions at the exit of the already allocated predecessor blocks. At each level in the network, each
variable’s allocation is updated to follow the previously computed shortest path to the sink node
of that variable (the common case is for a variable to remain in its current location). If two vari-
ables’ allocations overlap, the conflict is resolved by evicting one of the variables to an alternative
allocation.

When a variable is defined, the minimum cost allocation is computed using the shortest path
information and a calculation of the cost of evicting any variable already allocated to a desired
location. The cost of evicting a variable from its current location is computed by finding the
shortest path in the network to a valid eviction edge (an edge from the previous allocation to a
new allocation). In computing this shortest path we avoid already allocated nodes in the graph.
That is, we do not recursively evict other variables in an attempt to improve the eviction cost.
The shortest path is not necessarily a simple store immediately before the eviction location. For
example, if the defining instruction of the variable being evicted supports a memory operand,
it might be cheaper to define the variable into memory instead of defining it into a register and
performing a more costly store later. When a variable is evicted to memory the cost of the
corresponding anti-variable eviction is also computed and added to the total eviction cost. When
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Figure 3.7: A example control flow graph (left) decomposed into traces (right). The bold edge is an
example of control flow internal to a trace that complicates allocation.

choosing a variable to evict we break ties in the eviction cost by following the standard practice
and choosing the variable whose next use is farthest away [11, 77].

Only intra-block evictions are allowed; the earliest a variable can be evicted is at the begin-
ning of the current block. Because of this limitation, this allocator performs more poorly as the
amount of control flow increases since poor early allocation decisions can not be undone later in
the control flow graph.

The simultaneous heuristic allocator, like the iterative algorithm, must compute shortest paths
for every variablev in every block. Unlike the iterative algorithm, the simultaneous allocator
does not need to compute each path successively and instead can compute all paths in the same
pass. However, although this results in an empirical performance improvement, the worst case
asymptotic running time remainsO(nv).

Trace-Based Simultaneous Allocator

In an attempt to improve upon the simultaneous allocator we have developed a trace-based simul-
taneous allocator. Instead of processing each basic block independently, the trace-based allocator
decomposes the control flow graph into linear traces of basic blocks, which may contain inter-
nal and external control flow, and allocates each trace similarly to how a single basic block is
allocated by the simultaneous allocator. To construct our traces we simply find the longest pos-
sible traces using depth first search while ensuring that loop headers start a new trace (as in the
example in Figure 3.7).

The presence of control flow within each trace creates some complications. When computing
shortest paths care must be taken to take the correct edge spanning basic blocks within a trace
(there may be holes in a trace where a variable is not live). When an allocation decision is made
at a block boundary, that decision must be propagated to all connected blocks within the trace.
For example, the exit allocation of block 1 in Figure 3.7 fixes the starting allocation of both
blocks 5 and 7 and the exit allocation of block 6 in the same trace. Similarly, it may not be
straightforward to evict a variable across block boundaries if doing so affects other blocks in the
trace.
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We consider two techniques for propagating boundary allocation decisions within a trace.
The first, easy-update, does the minimal amount of recomputation necessary for correctness.
Only blocks directly effected by the boundary allocation have their shortest path computations
redone. For example, in Figure 3.7, after allocating block 1, only block 6 would have to be
recomputed as its exit allocations have changed. Although these recomputations result in extra
work compared to the original simultaneous allocator, they are necessary for the correct alloca-
tion of the trace. The second technique,full-update, recomputes the shortest paths for all unal-
located blocks prior to and including the blocks effected by the boundary allocation. The full-
update technique is computationally more expensive (potentially quadratically more updates) but
provides more up-to-date information for the simultaneous allocator in blocks not immediately
affected by the boundary allocation. For example, in Figure 3.7, if a variable were to spill to
memory and then be loaded back into a register in block 5, it would likely be best for the variable
to be loaded into the same register it was allocated to at the exit of block 1 (to avoid a move into
that register before the exit of block 6). With full-update the allocator would be aware of this
cost since both blocks 5 and 6 would have been recomputed after the allocation of block 1.

3.2.3 Allocation Difficulties

There are several factors that prevent the allocation algorithms from finding the optimal solution
given a priced network. Until the iterative subgradient method has fully converged, the prices in
the network are only approximations. As a result, we may compute a shortest path for a variable
that would not be a shortest path in a network with fully converged prices. The simultaneous
allocators are less sensitive to this effect since they can undo bad allocation decisions. However,
the values of the boundary prices are critical to the performance of the simultaneous allocators
as allocation decisions get fixed at block or trace boundaries.

A potentially more significant impediment to finding an optimal solution is that the lower
bound computed using Lagrangian relaxation converges to the value of the optimal solution of
the global MCNF problem without integer constraints. If the difference between the value of the
solution to the integer problem and the linear problem is nonzero, we will not be able to prove
the optimality of a solution. Fortunately, it has been shown empirically that this difference is
rarely nonzero [66].

Even given perfectly converged prices and ana priori knowledge that the integrality gap is
not problematic, the allocation problem remains difficult. The allocators must choose among
identically priced allocations, not all of which may be valid allocations in an optimal solution.
Again, the simultaneous allocators are somewhat insulated from this difficulty since they can
undo bad decisions within a block, but they still must rely upon the value of the boundary prices
to avoid locally good, globally poor, allocation decisions.

The challenges faced by the allocators in converting a priced network into an optimal register
allocation are not unexpected given the NP-completeness of the problem. However, as we shall
see, as the iterative subgradient algorithm converges, the quality of solutions found by the allo-
cation heuristics improve and the lower bound on the optimal solution value increases resulting
in provably optimal or near-optimal solutions.
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Figure 3.8: Code size improvement with our easy-update trace-based simultaneous allocator compared
to a standard iterative graph coloring allocator. All benchmarks were compiled using the-Os optimiza-
tion flag. Note the improvement over time with our allocator. The benchmarkqsort had the largest
improvement with a size improvement of 18.28% after 1000 iterations.

3.3 Results

3.3.1 Implementation

We have implemented our global MCNF allocation framework as a replacement for the register
allocator ingcc 3.4.4 when targeting the Intel x86 architecture. Before allocation, we execute
a preconditioning pass which aggressively coalesces moves and translates instructions that are
not in an allocable form. For example, the compiler represents instructions as three operand
instructions even though the architecture only supports two operand instructions. If all three
operands are live out of the instruction, it is not possible to allocate these three variables to
distinct registers and still generate an x86 two operand instruction. The preconditioning pass
translates such instructions so that two of the three operands are the same variable.

We next build a global MCNF model for the procedure. In our model, crossbars are repre-
sented as zig-zags sincegcc does not support the generation of the x86 swap instruction. We
simplify the network by only permitting loads and stores of a variable to occur at block bound-
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Figure 3.9: Code size improvement with our easy-update trace-based simultaneous allocator compared
to the default allocator ofgcc . All benchmarks were compiled using the-Os optimization flag. Our al-
locator outperforms the default allocator on all benchmarks after 100 iterations. The benchmarkpegwit
had the largest improvement with a size improvement of 10.78% after 1000 iterations.

aries and after a write to the variable (for a store) or before a read of the variable (for a load).
This simplification does not change the value of the optimal solution.

We use code size as the cost metric in our model. This metric has the advantage that it can be
perfectly evaluated at compile time and exactly represented by our model. We assume a uniform
memory access cost model. Specifically, we assume that spilled variables will always fit in the
128 bytes below the current frame pointer unless this space is already fully reserved for stack
allocated data (such as local arrays). As a result, for some large functions that spill more than 32
values the model is inaccurate. We only model constant rematerialization for integer constants.
Although it is not required by the architecture,gcc requires 64-bit integer values to be allocated
to consecutive registers. Since our model currently does not support such constraints, we ignore
such values (resulting in all such variables being allocated to memory and fixed up by the reload
pass).

We run both the iterative and trace-based simultaneous allocators on the initial unpriced net-
work and then for each step of the iterative subgradient algorithm we apply only the trace-based
simultaneous allocator to the priced network. In addition to being faster, the trace-based simulta-
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Figure 3.10: Average code size improvement over all the benchmarks relative to the graph allocator.
The highly tuned default allocator outperforms both the graph allocator and our initial allocation, but, on
average, when a trace-based allocator is used, our progressive allocator outperforms the default allocator
after only 10 iterations.

neous allocator generally performs better than the iterative allocator once the Lagrangian prices
start to converge. However, the iterative allocator does better on the unpriced graph because it
allocates variables in order of decreasing priority. Unless otherwise specified, we use the easy-
update technique for our trace-based allocator.

After running our solver, we insert the appropriate moves, stores, and loads and setup a
mapping of variables to registers. Thegcc reload pass is then run which applies the register
map and modifies the instruction stream to contain only references to physical registers. This
pass will also fix any illegal allocations that our allocator might make if the model of register
preferences and usage constraints is not correct by generating additional fixup code (this is not
common).

3.3.2 Code Quality

We evaluate our global MCNF model and progressive allocators on a large selection of bench-
marks from the SPEC2000, SPEC95, MediaBench, and MiBench benchmark suits. Combined,
these benchmarks contain more than 10,000 functions. We evaluate the quality of our solutions
in terms of code size. Because our concern is with evaluating our model and our solver, all size
results are taken immediately after the register allocation pass (includinggcc ’s reload pass) to
avoid noise from downstream optimizations.
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We compare our allocators to the standard iterative graph coloring allocator that can be en-
abled by passing-fnew-ra to gcc . This allocator implements standard graph coloring register
allocation [23] with iterative coalescing [47] and interference region spilling [12]. The graph al-
locator generally does not perform as well as the highly-tuned default allocator. The defaultgcc
register allocator divides the register allocation process into local and global passes. In the local
pass, only variables that are used in a single basic block are allocated. After local allocation,
the remaining variables are allocated using a single-pass graph coloring algorithm. Although the
default allocator is algorithmically simple, it benefits from decades of development and improve-
ment.

As shown in Figure 3.8 and Figure 3.10, our initial heuristic allocator, which runs both the
iterative and trace-based simultaneous allocators and takes the best result, outperforms the graph
allocator on all but one benchmark with an average improvement in code size of 3.57%. As
expected, as more time is alloted for compilation, our easy-update trace-based simultaneous al-
locator does progressively better with average code size improvements of 4.17%, 6.18%, and
6.96% for ten, 100, and 1000 iterations respectively. As shown in Figure 3.9, our allocator does
not initially do as well as the default allocator; at first we outperform the default allocator on
only twelve benchmarks. However, we outperform or match even the default allocator on all 44
benchmark when we run our algorithm for 100 iterations. On average, we surpass the perfor-
mance of the default allocator with only ten iterations. Figure 3.10 shows the advantage of using
traces of blocks with our simultaneous allocator. Although the full-update trace-based allocator
outperforms the easy-update allocator on a per iteration basis, as demonstrated in Figure 3.12,
because of its worst-case quadratic complexity, it is not as beneficial on a per time unit basis.

3.3.3 Solver Performance

Progressiveness

The behavior of our progressive solver for a single function (quicksort ) is shown in Fig-
ure 3.11. As expected, as the Lagrangian prices converge (resulting in a better lower bound),
the quality of the allocation improves (the amount of register allocation induced overhead de-
creases). However, as the rate of convergence decreases, so does the progressive improvement
of the best allocation.

Ideally, a progressive allocator would be competitive with both existing fast heuristic alloca-
tors and existing slow optimal allocators. In Figure 3.12 we compare several of our progressive
allocators withgcc ’s two allocators and an allocator that uses CPLEX version 10 [57] to solve
our global MCNF problem. Our progressive allocators perform best in the absence of control
flow; for the squareEncrypt function, which is a single basic block, our initial allocation
is better than that ofgcc ’s heuristic allocators and we find a provably optimal allocation much
more quickly than it takes CPLEX to solve the same problem. However, in control-flow inten-
sive functions, such asquicksort , we aren’t as competitive withgcc ’s allocators initially,
and, although we get close, we do not find an optimal solution.

Although our progressive allocator may not always be strictly better than heuristic allocators
initially, or strictly better than optimal allocators eventually, our progressive allocator has the
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Figure 3.11: The behavior of our allocator on the quicksort function. Although the quality of the solution
found by our allocator oscillates, as the lower bound computed using Lagrangian relaxation converges to
the optimal value the value of the best solution progressively improves.
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Figure 3.12: The behavior of our heuristic allocators as the Lagrangian prices converge executed on
a 2.8Ghz Pentium 4 with 2GB of RAM. ThesquareEncrypt function from the pegwit benchmark
consists of a single basic block and has 378 instructions, 150 variables, and an average register pressure
of 4.99. Thequicksort function is spread across 57 blocks, has 236 instructions, 58 variables, and
an average register pressure of 3.14. Approximately a third of the final size of both functions is due to
register allocation overhead. The iterative allocator performs better initially, but as the Lagrangian prices
converge the simultaneous allocator performs better. In the case of thesquareEncrypt function, which
has no control flow, the simultaneous allocator find a better initial solution than both ofgcc ’s heuristic
allocators and finds an optimal solution in about a quarter of the time it takes the CPLEX solver. The use
of traces has no effect on the performance of the allocator in this case since there is only one basic block.
None of our allocators succeeded in finding an optimal allocation forquicksort before CPLEX found
the optimal solution at 107 seconds. The trace-based allocators clearly outperform both the block-based
allocators, although as the prices converge the advantage of using traces decreases.
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Figure 3.13: The proven optimality of solutions as the progressive allocator executes more iterations.
The found solution is provably within 5% of optimal for 45.18%, 63.21%, 91.74%, and 99.06% of the
functions after 1, 10, 100, and 1000 iterations respectively.

distinct advantage of successfully connecting these two extremes: decent solutions can be found
quickly and optimality can be approached as more time is alloted for compilation.

Optimality

Ideally, a progressive solver is guaranteed to eventually find an optimal solution. Although our
solver has no such guarantee, the Lagrangian relaxation technique lets us prove an upper bound
on the optimality of the solution. As the iterative subgradient algorithm used to solve the La-
grangian relaxation converges, both a better lower bound on the optimal value of the problem
is found and the quality of the solutions found by the Lagrangian-directed allocator improves.
Consequently, as shown in Figure 3.13, as more iterations are executed, a larger percentage of
compiled functions are proven optimal. After 1000 iterations, we have found a provably optimal
register allocation for 82.74% of the functions and 99.06% of the functions have a solution that
is provably within 5% of optimal.

Compile Time Performance

The worst case running time ofO(nv) of our heuristic solvers combined with the early develop-
mental stage of our implementation leads us to expect that our allocator will not perform as well
as existing allocators in terms of compilation time. Indeed, as shown in Figure 3.14, allocating
with just one heuristic solver is almost ten times slower than the graph allocator, and a single iter-
ation is clearly more expensive than an entire allocation in the graph allocator. These slowdowns
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Figure 3.14: The slowdown of our register allocator relative to the graph allocator. On average, we take
about 10 times longer than the graph allocator to find a solution.

are relative to the time spent by the graph allocator which accounts for between 10.5% and 46%
of the total compile time (27.5% on average). The graph allocator is, on average, about four
times slower than the default allocator. Although it is likely that these results will improve when
we optimize our implementation, because our allocators solve a fundamentally harder problem
than existing fast heuristics, it is unlikely that it is possible to be faster than existing allocators.
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Chapter 4

Proposed Work

4.1 Model Improvements

Although the current global MCNF model successfully captures the pertinent features of register
allocation, there remains room for improvement. The current model is not always 100% accu-
rate and is needlessly expressive when modeling uninteresting program regions and representing
uniformly accessed registers.

The existing model accurately models the costs of register allocation most of the time, as
shown in Figure 4.1. We measure the accuracy of the model by comparing the predicted size
of a function after ten iterations of our progressive algorithm to the actual size of the function
immediately after register allocation. Approximately half of the compiled functions have their
size exactly predicted and more than 70% of the functions have their size predicted to within 2%
of the actual size.

I propose to improve the accuracy of the model. The biggest cause of under-prediction is the
uniform memory cost model. Most of the severely under-predicted functions spill more variables
than fit in the first 128 bytes of the frame resulting in incorrectly predicted costs in the model
for memory operations. It is possible to exactly represent such behavior by using two memory
allocation classes, one of which is capacitated, although it is not clear that the improved model
accuracy is worth the increased model complexity. The biggest cause of the most severe over-
predictions isgcc ’s instruction-sizing function inaccurately reporting the size of certain floating
point instructions prior to register allocation. This should be easily fixed by modifying the pre-
register allocation code size analysis.

The current global MCNF model is uniformly expressive. I propose to modify the current
model to be adaptively expressive; at each program point the model will be only as expressive as
it needs to be. Reducing the size of the model in this way will result in better solver performance
and memory efficiency. The most obvious cases where simplification is possible is in a local
region of no register pressure as in Figure 4.2. In this case, it may be possible to summarize
the entire region as a single meta-instruction group. This is straightforward to do in any region
where the allocation on entry can be proven to be identical to the allocation on exit and where the
constraints of the region can be represented by the normal instruction constraints. It may also be
worthwhile to summarize more complex regions using more elaborate summary representations.
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Figure 4.1: An evaluation of the accuracy of the global MCNF model that compares the predicted size
after register allocation to the actual size.

I propose to implement a separate model simplification pass that runs after the creation of the
full model. Although this approach is not as efficient as modifying the model creation routines
to directly build a simplified model, it will make it easier to investigate different simplification
techniques. In particular, it will be easier to compare safe simplification techniques, which reduce
the expressiveness of the model only if doing so is guaranteed not to change the optimal solution,
with aggressive simplification techniques, which may sacrifice some optimality for reductions in
model complexity.

Further model simplification may be possible when targeting architectures with more uniform
register files. The existing model implementation represents each register as its own allocation
class. While this is useful and necessary for the x86 architecture, for RISC architectures such as
the PowerPC, and even CISC architectures such as 68k/Coldfire (which has 8 uniformly accessed
data registers and 8 uniformly accessed address registers), assigning each register its own alloca-
tion class increases the size of the model (especially in the crossbar groups where the number of
edges is quadratic with the number of allocation classes). Unfortunately, this level of expressive-
ness is not completely unnecessary when performing global register allocation. As illustrated by
Figure 4.3, in the presence of control flow the register assignment problem cannot be decoupled
from the rest of register allocation.

I propose to investigate model simplification in the presence of uniformly accessed register
sets. Such simplification will likely be necessary in order to efficiently support RISC-like archi-
tectures. I will investigate the need for such simplification in the presence of more general model
simplifications as well as consider the impact of a less detailed model that does not directly solve
the register assignment problem.

35



r0 r1 mem

r0 r1 mem

c

SUB a,b -> c

r0 r1ADD a,b -> b

r0 r1 mem

r0 r1 mem

r0 r1 mem

r0 r1 mem

1

a b

mem

1

a

r0 r1 mem

r0 r1 memc

r0 r1

r0 r1 mem

a b

mem

2

a

summarization

Figure 4.2: An example of model simplification. TheADDandSUBinstructions and their intervening
crossbar can be summarized as a single meta-instruction group without changing the value of the solution.

The purpose of the thesis is to investigate, develop, and evaluate new algorithms and ap-
proaches for performing register allocation and instruction selection. Code size is used as a
metric of code quality since it can be precisely evaluated at compile time and, as a result, allows
for noise-free evaluation of the register allocator and instruction selector. The techniques in this
thesis should be equally valid for any code quality metric that can be evaluated at compile time.
However, formulating other precise and accurate statically evaluatable code quality metrics, such
as for speed and energy usage, is considered beyond the scope of this thesis. As a result, I pro-
pose to investigate only a straightforward speed metric where the cost of each operation is simply
its predicted cycle time multiplied by its predicted execution frequency.

4.2 Solver Improvements

An ideal progressive register allocator would be able to quickly find an allocation that is as
good as or better than allocations found by existing heuristic allocators and then progressively
improve upon this solution until an optimal solution is found, ideally in less time than a standard
optimization package. Although in terms of local register allocation the current allocator appears
to meet or exceed this standard, it is unclear how closely this standard can be approached with
global register allocation.

I propose to further investigate improvements to the current solver that either improve the
initial solution or improve the quality of the solution as the prices converge. I do not propose
to add a guarantee that the solver will eventually find the optimal solution since, unless P = NP,
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b ← …
  ← a
c ← …
  ← b
a ← …
  ← c

b

a

c

Figure 4.3: An example where register assignment cannot be decoupled from the rest of register alloca-
tion. In this example, if there are two uniformly accessed registersr0 andr1 making up some register
classR, then while it is possible to allocate each variable toR such that at no point more than two vari-
ables are allocated toR (at most two live ranges overlap at any point), it is not possible to assignr0 and
r1 to the three variables (the interference graph is a triangle).

such a guarantee would require the implementation of a branch and bound search which I view
as an uninteresting extension of the work.

Although I do not intend to provide an optimality guarantee, it is likely that some theoretical
bound on solution quality can be obtained. The current best approximation algorithm for local
register allocation on a RISC-like machine is a 2x approximation [38]. I propose to investigate
the approximation properties of my solution technique. At a minimum, I expect to be able to
duplicate the existing 2x result within the context of the MCNF model of the problem.

4.3 Integrating Register Allocation and Instruction Selection

Instruction selection is an essential part of the compiler backend. Although optimal algorithms
exist for tiling expression trees and heuristic algorithms exist for tiling expression DAGs, these
algorithms rely on the accuracy of the assessments of the costs of each instruction pattern tile.
These tile costs are inherently inaccurate since spills, register preferences, and move coalesc-
ing may change the instructions corresponding to a tile. For example, the shorter instruction
sequence of Figure 4.4(e) may actually be worse than that of Figure 4.4(d) if the extra register
pressure it introduces results in spill code. A principled backend optimizer requires a greater
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int foo(int a, short b) { return a*4+b; }

(a)

*

+

(int)

a

b

4

eax

move a:32 -> t1:32

ashift t1:32,2 
-> t2:32

plus b:16, t2:32 
-> t3:16

sign_extend t3:16 
-> t4:32

move t4:32 -> eax

(b)

*

+

(int)

a

b

4

eax

move a:32 -> t1:32

plus 
(mult t1:32, 4), 
t2:32 

-> t3:32

sign_extend b:16 
-> t2:32

move t3:32 -> eax

(c)

size
4 movl 4(%esp), %eax
3 sall $2, %eax
4 addl 8(%esp), %eax
1 cwtl
1 ret

(d)

size
5 movswl 8(%esp),%edx
4 movl 4(%esp), %eax
3 leal (%edx,%eax,4), %eax
1 ret

(e)

Figure 4.4: Two possible instruction tilings for the code snippet shown in (a). Under ideal conditions
(no register pressure), both tilings produce code of the same size, but (b) results in a longer instruction
sequence, (d). Alternatively, (c) results in code, (e), which requires an additional register. In the presence
of register pressure, it is not clear which tiling is better. The tiling (c) requires two registers, but (b) results
in larger code if theeax register is not used preventing the generation of the efficientcwtl instruction.
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(int)

x:16

y:32

(a)

sign extend x → y

x\y eax edx · · · mem
eax cwtl (1) movsx(4)
edx movsx(4) movsx(4)

...
mem movsx(5) movsx(5)

(b)

Figure 4.5: A register allocation aware tile for sign extension. The tile (b), matches the IR operation (a).
The cost of the tile (here determined by code size) depends on the eventual allocation of the input (x) and
output (y) of the operation. In some cases multiple instructions might be necessary. For example, if both
x andy are in memory, a store instruction has to be generated. However, the register allocator is assumed
capable of generating this store, and so the tile need not represent this case.

*

+

4x:32

y:32

z:32

(a)

plus (mult x,4), y → z
z :eax
x\y eax edx · · · mem
eax leal (3) sall;addl (6)
edx leal (3)

...
mem

plus (mult x,4), y → z
z :edx
x\y eax edx · · · mem
eax leal (3)
edx leal (3) sall;addl (6)

...
mem

...

(b)

Figure 4.6: A register allocation aware tile (a) for a more complicated expression tree (b). In this case
it is impossible forx andy to be allocated to the same register since their live ranges overlap, but ify is
in memory andx andz are allocated to the same register theny can be directly accessed with theaddl
instruction. Although this code sequence is no smaller than loadingy into a register and using theleal
instruction, it does require one less register. In RA2ISE, the register allocator makes the final decision as
to which sequence to generate.

39



degree of integration between the instruction selection phase and register allocation. Towards
that end I proposeRegister Allocation Aware Instruction SElection (RA2ISE).

In RA2ISE, instruction selection is not finalized until the register allocation phase. Instead of
tiling the expression trees with fixed cost (inaccurate) tiles, instruction selection uses variable-
costregister allocation aware tiles(RAATs) whose final instruction sequence and cost depends
upon the allocation of the tile’s inputs and outputs. For example, the sign extension RAAT in
Figure 4.5 explicitly encodes the benefit of both operands being ineax (a smaller instruction
can be used) and the cost of the input operand being in memory (an additional byte is necessary
to store the stack offset). Larger RAATs that potentially resolve to multiple instructions can
also be used, as shown in Figure 4.6. Instruction selection is partially performed using RAATs.
The information in these tiles is then incorporated into the expressive model used by the register
allocator. The allocation found by the register allocator is then used to finalizes the instruction
sequence.

In order to support the RA2ISE framework, the current global MCNF model of register allo-
cation needs to be extended to support inter-variable register usage preferences and constraints
so that the register allocation aware instruction tiles can be exactly expressed in the model. Cur-
rently, the model can only exactly represent tiles if the cost of an allocation decision is determined
solely by an individual variable’s allocation. For example, in the tile 4.5(b) the cost of allocating
x to memory can be represented but the cost of allocatingx to eax can not be modeled exactly
since this cost is determined by the allocation ofy.

I propose to increase the expressiveness of the current global MCNF model to exactly express
the costs and constraints represented by RAATs by adding side-constraints, which constrain the
flows of variables with respect to each other. After adding support for side-constraints to the
model, I will determine the necessary extensions to the existing solution algorithms to solve a
model with side-constraints and evaluate their effectiveness. I will first use these side-constraints
to exactly representgcc ’s existing instruction tiles and then implement a more general frame-
work for specifying and generating RAATs.

I propose to investigate various algorithms for generating a tiling of RAATs. I will explore
simple extensions of existing tiling algorithms that simply assign a fixed cost to each RAAT. For
example, a RAAT might optimistically be assigned its minimum possible cost, its median cost, or
a cost that is a heuristic function of the register pressure at that point. In addition, I will consider
feedback directed algorithms where instruction selection and register allocation are performed
multiple times, each time providing feedback for the next iteration.

4.3.1 Preliminary Results

In order to demonstrate the benefits of adding side constraints to our model we consider one
straightforward application of side constraints: move coalescing. The goal of the NP-hard [18]
move coalescing problem is to remove as many move instructions as possible by allocating the
source and destination of the move instruction to the same register. In our current allocator we
aggressively and greedily coalesce as many moves as possible prior to allocation. Our allocator is
then capable of reinserting moves into the instruction stream if doing so aids allocation. However,
as shown in Figure 4.7, it is not always possible to coalesce all available moves and the moves
which our aggressive coalescing algorithm chooses may not be optimal.
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a ← …

b ← a

c ← …

c ← a

b ← …

 ← b
 ← c

Figure 4.7: An example of a coalescing decision. Both the move froma to b and the move froma
to c are candidates for coalescing, but sinceb andc conflict only one of the moves can be coalesced.
Aggressive coalescing arbitrarily picks one of the moves, but the best move to coalesce depends on the
register pressure properties within the various blocks.
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Figure 4.8: Size improvement using different coalescing methods relative to no coalescing. Results are
computed using the CPLEX optimizer; results for functions where no solution could be found within 10
minutes are omitted.
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96.1%

1.8%

2.1%

3.9%

Solved by CPLEX

No coalescing not solved by CPLEX

Move coalescing not solved by CPLEX

Figure 4.9: Percent of functions for which CPLEX could find an optimal solution within a 10 minute time
limit. In some cases CPLEX found a solution for the no coalescing problem within the time limit but not
for the full coalescing problem.

The move coalescing component of register allocation is easily added to our existing model
through the use of side constraints. The allocation of the move source is simply required to
be equal to the allocation of the move destination. Put another way, the RAAT for the move
instruction would have a cost table with a diagonal of zeroes.

We have implemented move coalescing side constraints within the integer linear program-
ming representation of our model. We evaluate four methods of coalescing:
No CoalescingAbsolutely no coalescing is performed. Move instructions where both operands

have the same allocation remain in the instruction stream.

Opportunistic Coalescing Coalescing is not performed until after the register allocation prob-
lem has been solved. The register allocation problem solved does not have a move coa-
lescing component. Move instructions where both operands have the same allocation are
removed from the instruction stream.

Aggressive CoalescingAs many move instructions as possible are coalesced prior to solving
the register allocation problem, which works on this modified instruction stream. The
variables being coalesced become a single variable. This is the method currently used by
our allocator.

Full Coalescing The move coalescing component of register allocation is incorporated into our
model using side constraints. The current implementation has the side effect of forcing
both variables of the move to be in a register. This is because we assume every variable has
a unique location on the stack and memory to memory moves are not allowed by the x86
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architecture. In contrast, the aggressive coalescing technique would allocate both variables
to the same stack location allowing for the coalescing of a move when both operands are
in memory. In this uncommon case it is possible for the aggressive coalescing technique
to outperform our full coalescing technique.

We find the cost of the optimal register allocation using all four of these coalescing tech-
niques by solving each problem using version 10 of the ILOG CPLEX optimizer [57]. The
size improvement of each method relative to a baseline of no coalescing is shown in Figure 4.8.
Relative to no coalescing, opportunistic coalescing, aggressive coalescing, and full coalescing
improve code size on average by 0.10%, 0.17%, and 0.25% respectively. The addition of side
constraints made some problems harder to solve. As shown in Figure 4.9, CPLEX could find
an optimal solution to the problem without side-constraints but not with the side-constraints for
2.1% of the functions compiled. In some cases, such as thequicksort function, the addition
of side-constraints resulted a two orders of magnitude slowdown in CPLEX solution time.

4.4 Evaluation

In order to determine the benefit of using an expressive model and progressive solver it is nec-
essary to perform a comprehensive evaluation. I propose to evaluate the allocator for both code
size and speed on a wide variety of benchmarks. In order to evaluate the value of progressive
optimization in normal use, I will modify the compiler driver to accept a time limit for opti-
mization (as opposed to the current iteration count limit). In addition, in order to demonstrate
the generality and applicability of the allocator, I propose to evaluate it on multiple architectures:
x86, which is a highly irregular architecture with only eight registers; 68k/ColdFire which has 16
registers divided equally between differently accessed address and data registers; and PowerPC
which has 32 uniform registers.
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Chapter 5

Contributions and Timeline

5.1 Expected Contributions

The expected contributions of the final thesis are:

• Register Allocation Aware Instruction Selection (RA2ISE) which consists of

register allocation aware tiles (RAATs) which explicitly encode the effect of register
allocation on an instruction sequence,

algorithms for performing instruction selection using RAATs,

an expressive model for global register allocation that operates on RAATs and ex-
plicitly represents important components of register allocation such as spill code in-
sertion, register preferences, copy insertion, and constant rematerialization,

a progressive solver for this model that quickly finds solutions comparable to existing
approaches and approaches optimality as more time is allowed for compilation,

algorithms for encorporating feedback from register allocation into instruction selec-
tion to more fully exploit the expressiveness of RAATs.

• A comprehensive evaluation of RA2ISE

implemented in a production quality compiler (gcc),

targeting different architectures (x86, 68k/ColdFire, PowerPC), and

compiling for both the code size and code performance optimization metrics.

Overall, the thesis aims to improve the state of the art in backend compiler optimization by
creating a new, principled, optimization framework that replaces the existingad hocheuristic
approaches with expressive and explicit models coupled with progressive solution techniques.
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5.2 Timeline

Fall 2006

• add simple speed metric option to model
• begin model simplification work
• improve model accuracy and solver performance

Winter 2006

• finish model simplification work
• add side-constraints to model
• implement existinggcc tiles as RAATs
• improve model accuracy and solver performance

Spring 2007

• finish implementation of side-constraints andgcc RAATs
• begin work on RA2ISE infrastructure
• creategcc -independent set of RAATs for x86
• improve model accuracy and solver performance

Summer 2007

• finish work on RA2ISE
• investigate and develop tiling algorithms
• improve model accuracy and solver performance

Fall 2007

• add 68k/ColdFire and PowerPC targets
• investigate uniform register set simplifications
• improve model accuracy and solver performance

Winter 2007
• begin writing thesis
• work on improving compile time performance

Spring 2008 • finish writing thesis
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[14] M. Biró, M. Hujter, and Zs. Tuza. Precoloring extension. i: Interval graphs.Discrete Math., 100
(1-3):267–279, 1992. ISSN 0012-365X. 1.2.1

[15] Hans Bodlaender, Jens Gustedt, and Jan Arne Telle. Linear-time register allocation for a fixed
number of registers. InProceedings of the ninth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 574–583. Society for Industrial and Applied Mathematics, 1998. ISBN 0-89871-
410-9. 1.2.1, 2.3

[16] Hans L. Bodlaender. A tourist guide through treewidth.Acta Cybernetica, 11:1–21, 1993. URL
citeseer.nj.nec.com/bodlaender93tourist.html . 1.2.1

[17] Pradip Bose. Optimal code generation for expressions on super scalar machines. InACM ’86:
Proceedings of 1986 ACM Fall joint computer conference, pages 372–379, Los Alamitos, CA,
USA, 1986. IEEE Computer Society Press. ISBN 0-8186-4743-4. 2.4

[18] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of register coalescing.
Technical Report RR2006-15, LIP, ENS-Lyon, France, April 2006. 1.2.1, 4.3.1

[19] Florent Bouchez, Alain Darte, and Fabrice Rastello. Register allocation: What does the np-
completeness proof of chaitin et al. really prove. InWorkshop on Duplicating, Deconstructing,
and Debunking, 2006. 1.2.1

[20] Preston Briggs.Register allocation via graph coloring. PhD thesis, Rice University, Houston, TX,
USA, 1992. 2.1.1

[21] Preston Briggs, Keith D. Cooper, and Linda Torczon. Coloring register pairs.ACM Lett. Program.
Lang. Syst., 1(1):3–13, 1992. ISSN 1057-4514. 2.1.3

[22] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. InPLDI ’92: Proceedings
of the ACM SIGPLAN 1992 conference on Programming language design and implementation,
pages 311–321, New York, NY, USA, 1992. ACM Press. ISBN 0-89791-475-9. 2.1.2

[23] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring register
allocation. ACM Trans. Program. Lang. Syst., 16(3):428–455, 1994. ISSN 0164-0925. 2.1.1,
2.1.2, 2.1.3, 3.3.2

[24] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh. Polynomial time graph coloring
register allocation. In14th International Workshop on Logic and Synthesis, June 2005. 1.2.1

[25] John Bruno and Ravi Sethi. Code generation for a one-register machine.J. ACM, 23(3):502–510,
1976. ISSN 0004-5411. 1.2.2

[26] David Callahan and Brian Koblenz. Register allocation via hierarchical graph coloring. InProceed-
ings of the ACM SIGPLAN 1991 conference on Programming language design and implementation,
pages 192–203. ACM Press, 1991. ISBN 0-89791-428-7. 2.2

[27] R. G. Cattell. Automatic derivation of code generators from machine descriptions.ACM Trans.
Program. Lang. Syst., 2(2):173–190, 1980. ISSN 0164-0925. 2.4

[28] G. J. Chaitin. Register allocation & spilling via graph coloring. InProceedings of the 1982 SIG-
PLAN symposium on Compiler construction, pages 98–101. ACM Press, 1982. ISBN 0-89791-
074-5. 2.1.1, 2.1.2

47

citeseer.nj.nec.com/bodlaender93tourist.html


[29] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and
Peter W. Markstein. Register allocation via coloring.Computer Languages, 6(1):47–57, 1981.
ISSN 0096-0551. 1.2.1

[30] Fred C. Chow and John L. Hennessy. The priority-based coloring approach to register allocation.
ACM Trans. Program. Lang. Syst., 12(4):501–536, 1990. ISSN 0164-0925. 2.1.1

[31] Frederick Chow and John Hennessy. Register allocation by priority-based coloring. InSIGPLAN
’84: Proceedings of the 1984 SIGPLAN symposium on Compiler construction, pages 222–232,
New York, NY, USA, 1984. ACM Press. ISBN 0-89791-139-3. 2.1.1

[32] Keith Cooper, Anshuman Dasgupta, and Jason Eckhardt. Revisiting graph coloring register alloca-
tion: A study of the Chaitin-Briggs and Callahan-Koblenz algorithms. InProc. of the Workshop on
Languages and Compilers for Parallel Computing (LCPC’05), October 2005. 2.2

[33] Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring register allocator.
In CC ’98: Proceedings of the 7th International Conference on Compiler Construction, pages 174–
187, London, UK, 1998. Springer-Verlag. ISBN 3-540-64304-4. 2.1.2

[34] Keith D. Cooper and Linda Torczon.Engineering a Compiler. Morgan Kaufmann Publishers,
2004. 2, 2.1.1, 2.4

[35] Jack W. Davidson and Christopher W. Fraser. Automatic generation of peephole optimizations.
In SIGPLAN ’84: Proceedings of the 1984 SIGPLAN symposium on Compiler construction, pages
111–116, New York, NY, USA, 1984. ACM Press. ISBN 0-89791-139-3. 2.4

[36] Jack W. Davidson and Christopher W. Fraser. Code selection through object code optimization.
ACM Trans. Program. Lang. Syst., 6(4):505–526, 1984. ISSN 0164-0925. 2.4
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