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1 Introduction

Page-oriented workloads are commonplace in many real-
world applications, ranging from virtual memory subsys-
tems to database bufferpool management. These work-
loads are characterized by small, fixed-sized, random-
access reads and writes. The layout of traditional disks
is optimized for workloads with large sequential accesses.
For these sequential workloads, cost of seeks and rota-
tional latencies are amortized over the transfer of a large
amount of data to/from the disk, and the application sees
good data transfer rates. Each access from a page-oriented
workload, however, incurs a time-consuming seek and ro-
tational latency that dominate the request response time,
resulting in very low data rates. We exploit the character-
istics of page-oriented workloads to develop a new disk
layout called a Paged Disk. We also develop a write op-
timization, called bad tenants, which improves write re-
quests for paged disks. Together, the two techniques opti-
mize disks in favor of paged-workloads, and the resulting
disk outperforms existing disk technology.

The central idea in paged disks is to replicate
application-defined pages of data on the disk. Pages are
replicated uniformly around the circumference of a track,
so that the average rotational latency decreases directly
with the replication factor. The pages are also stored such
that they never span track boundaries, so the cost of track
switching is never needed in the middle of an access. Bad
tenants exploit the replication done within a paged disk to
improve write performance. Since most pages have mul-
tiple copies on the disk, an incoming page write can over-
write whatever is currently under the disk head, regardless
of where it currently is. Of course, this can only be done
if there is another copy of the overwritten data. The disk
only needs to maintain and consult a mapping of the loca-
tions of bad tenant pages to ensure correctness.

We have modified the validated DiskSim disk simula-
tor to implement paged disks with bad tenants on an ex-
isting disk model. We find that paged disks are able to
drastically improve the performance of randomly gener-

ated workloads as well as real world TPC-C transactional
database workloads. In fact, the performance of paged
disks with one disk outperforms the performance of a mir-
rored RAID system using 4 disks.

2 Related Work

Numerous researchers have focused on the problem of re-
ducing the costs of reads and writes to the disk subsys-
tem. Typically, the techniques used involve some combi-
nation of data replication (mirroring), striping across mul-
tiple disks, dynamic data placement, and track alignment.
Our paged disk and bad tenant techniques expand upon
the ideas of data mirroring, dynamic data placement, and
track-based extents (traxtents).

2.1 Mirroring and Striping

Disk Shadowing [1] is a technique that has long been used
to improve disk performance, redundancy and availability.
Each disk serves as an identical copy of the others. Writes
are copied onto each disk, and reads can be serviced from
any of the disks. Since only the first write must make it
to stable storage to ensure consistency, the disk with the
smallest access latency cost determines the performance
of writes. Likewise, reads can also be serviced by the disk
with the smallest latency. Britton and Gray show that the
expected seek distance can drop around 43% using shad-
owing. Hou and Patt [9] and Dishon and Liu [7] demon-
strate that policies which copy data onto many disks im-
prove performance under simulation.

Ivy [10] examines the benefits of storing multiple
copies of a file throughout a file system spanning multi-
ple storage nodes. The system dynamically changes the
number of copies of files within the system according to
the data usage pattern. They demonstrate experimentally
the decrease in seek distance and performance increase
gained by increasing the number of copies of the files.

Ng [12] examines analytically the benefits of mirroring
data within a single disk. In particular, blocks are placed
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twice on the disk, 180 degrees out of phase of one an-
other, in the same track. The result is that the average
rotational delay is reduced by a factor of two, improving
read performance. SR-Array [17] extends this work, also
mirroring blocks onto different tracks to help reduce seek
latencies. SR-Array concentrates on the effectiveness of
such placement policies in disk arrays, rather than single
disks.

Mirroring can reduce the storage capacity of a system
drastically. HP AutoRAID focuses on minimizing the
storage overhead when using mirroring, while retaining
its benefits. The key idea is a storage hierarchy with dif-
ferent storage characteristics at each level. Active data
is handled by one level where it is stored in a mirrored
form for better performance.. When the data becomes in-
active and unused, it is moved to a lower level in the hier-
archy, where it is stored in a more space-efficient manner.
The system automatically determines this placement, and
strikes a good trade-off between performance and storage
cost.

2.2 Dynamic Data Placement

Dynamic data placement characterizes systems where the
mapping of logical blocks to physical blocks changes,
usually allowing the system to eagerly write data to the
closest free block when a write request is made.

Loge [8] improves write performance by using dynamic
data placement in a technique called eager writing. It re-
serves a small percentage of the disk for free space, and
attempts to issue writes to the closest available free block.
As the number of free blocks is kept constant by remap-
ping logical to physical block mappings, the seek and ro-
tational latencies needed to perform a write will be rela-
tively low. Loge makes no attempts to optimize read per-
formance, although it is possible that the implicit reorga-
nization of the data through the greedy write placement
policy clusters commonly accessed data close together.
The Mime [3] system improves upon Loge by adding sup-
port for transactional capabilities and crash recovery.

The Virtual Log File System (VLFS) [16] builds upon
the ideas of Loge and Mime. The system uses a non-
contiguous log file that traces through the free blocks of
the disk (similar to Trail [4] with the same device for log
and data). One enhancement of VLFS over Loge is to
“clean” the disk during idle time, moving data and free
blocks around to improve the distribution of free blocks
on the disk. As a result, unlike Loge, VLFS ensures that
writes will be cheap by preventing regions of the disk
from running out of free blocks.

Zhang et al examine the use of eager-writing techniques
in disk arrays [18], using mirroring and striping across
multiple disks to improve performance. Striping the data

increases the throughput of writes and reads by increas-
ing the available disk bandwidth. Mirroring not only im-
proves redundancy, but provides additional scheduling op-
portunities to improve seek and rotational latency for both
reads and writes. Zhang demonstrates that these benefits
can be improved upon by adding eager-writing.

The Doubly Distorted Mirror (DDM) [5] system repli-
cates data across two disks and within each disk. Each
disk is partitioned into two regions, a master and slave,
with the slave 20% larger than the master. Data is allo-
cated dynamically into the slave partition and then copied
into the master partition where it is placed statically. Since
the slave is larger, there will be a large percentage of free
blocks guaranteed to be available. Writes are serviced
synchronously by the slave partition, where they are ea-
gerly written to the nearest free block. Written blocks
are cached until the cache fills up or they can be oppor-
tunistically copied into the master partition. DDMs uses
freeblock scheduling [11] to completely hide the cost of
copies into the master partition by writing cached copies
when a read occurs to the same track.

DDMs improve performance by minimizing the seek
and rotational latencies on both reads and writes. Since
blocks are available from two separate locations on the
disk (the master and the slave partition), the expected dis-
tance the head needs to travel to access the data is smaller.
Likewise, since written blocks are placed in the free block
closest to the head in the slave partition, seek and rota-
tion costs for writes are expected to be small. The system
also ensures that sequential reads are efficient as they can
be sent to the master partition, eliminating multiple seeks
within the randomly organized slave.

2.3 Track Alignment

Trail [4] uses two disks, a logging disk and a data disk, to
improve synchronous write performance. The disk head
of the log disk is kept over a relatively free track, and
log-writes can be issued without seek and minimal ro-
tational latency. Asynchronously, the system propagates
writes from the log to the main data disk. Reads are pro-
cessed either from the Trail buffer cache, which contains
all blocks in the log that have not been written through
to the data disk, or directly from the data disk. Thus,
synchronous writes see almost no latency, and reads are
generally unaffected, but multiple disks or multiple disk
heads are required.

Track-aligned extents (traxtents) [15] are designed to
minimize disk rotational latencies and track crossing over-
heads. The approach works by encouraging applications
to make reads and writes in track-sized units. Smaller
writes can be buffered until they grow large enough, mak-
ing traxtents quite natural for pairing with log-structured
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file systems. Since an entire track is being read at a time,
the disk can begin reading as soon as it seeks to a track,
as all of the data is passed to the application. The result of
eliminating these rotational latencies can be up to 50% for
mid-sized requests, though reads and writes much smaller
than a track size do not benefit from this approach.

2.4 Our Approach

Our approach builds on most of the ideas of the systems
reported here, combining them in a novel way, combin-
ing data replication, track alignment, eager-writing, and
block cleaning. While traditional shadowing, mirroring,
and striping techniques require multiple disk drives to im-
prove performance, we improve performance of a single
disk system.

Like Ng [12], we replicate data within a single disk
track to reduce rotational latencies. While the work of
Schindler et al [15] aims to align client application ac-
cesses to track boundaries, our goal is to align track
boundaries to client application accesses by exploiting
natural page-based workloads.

Similar to the eager-writing policies of Loge [8] and
VLFS [16], we aim to eliminate write latencies by writing
data to a location close to the head. In our case, how-
ever, we can improve upon existing eager-writing solu-
tions, eliminating all rotational and seek latencies by over-
writing data immediately underneath the disk head (pro-
viding another copy will still be available on the disk).

Under DDM writes must take the disk head into the
slave partition to issue an eager write. Since our system
does not partition the data in this way, our system does
not require this seek on a write. Additionally, DDM must
keep written blocks in memory until they are copied into
the master partition (though an alternative system which
keeps directory information and reads blocks from the
correct partition is possible). Our system can be lazy and
read bad tenants without having to hold them in mem-
ory or having to force them into their final location on the
disk. Unlike our system, however, DDM manages to keep
sequential read performance unhindered.

To our knowledge, our system is the first to use eager-
writing principles to overwrite valid replicated data, and
the first to tailor the disk track layout to page-based appli-
cation semantics.

3 Design

3.1 System Architecture

Our overall system design is depicted in Figure 1. The
core of the system is a paged disk drive. This disk drive al-
locates and manages blocks to maximize random read and

write performance of page sized blocks of data. User ap-
plications, such as databases and virtual memory subsys-
tems, interface with the paged disk drive through a paged
file system, which provides a page based, instead of file
based, view of storage. It is possible that performance
gains will be realized just by simplifying the file system,
but the focus of our investigation is the ability of a disk
drive to minimize rotational and seek latency through the
use of data replication and eager writing. The only re-
quirement we make of the file system is that it allocate
pages to aligned sequential logical block numbers. The
file system interacts with the disk drive by making read
and write requests of logical block numbers.

3.2 Paged Disks

A paged disk is designed to optimize performance of ran-
dom reads and writes of pages. The disk defines pages
to be any page-sized and page-aligned sequence of log-
ical block numbers. For example, if the page size is 8k
and blocks are 512 bytes, a page is any sequence of 16
blocks beginning at a block number that is a multiple of
16. A paged disk is optimized for paged-based random
workloads in three primary ways:

• Track-alignment: Pages do not cross track bound-
aries.

• Replication: Pages are uniformly replicated within
a track.

• bad tenants: Pages are written over whatever pages
the disk head is currently over, if possible.

First, we ensure that pages are track-aligned and do not
cross track boundaries. Since page reads and writes are
relatively small, incurring a track-switching penalty in the
middle of an access would be prohibitive. While this re-
sults in some wasted disk space, it is relatively insignifi-
cant. We find a mild performance benefit (< 1 %) realized
by track aligning pages.

Second, reads are optimized by replicating pages uni-
formly around a track. The average rotational latency
thus should decrease directly proportional with the repli-
cation factor, the number of copies of each page. On
one hand, rotational latency is minimized when only one
page is stored on each track (when the replication factor is
tracksize/pagesize). On the other hand, as the replica-
tion factor increases the distance between pages increases,
resulting in increasing seek times as well. Determining
the optimal trade-off between these two contradictory fac-
tors will be essential to get good performance from paged
disks.

Third, writes are optimized by the use of bad tenants,
and is illustrated in Figure 2. In this scheme, a page P3
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Figure 1: The overall system design.

Figure 2: The layout of pages on a track before and after a write. In this diagram, the track contains 8 pages and P1

and P2 are replicated throughout the track. When a write of P3 is made, the disk immediately writes P2 to the page
location closest to the current head location, overwriting valid, but replicated, data. Later a cleaner will move P3 to its
own track where the data will be replicated.
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being written may be written overtop another page P2, as
long as another copy of page P2 exists. This write of P3

reduces the number of copies of page P2 resulting in an
increase to P2’s expected access time. We say that page
P3 is a “bad tenant” in the home of page P2. The bad ten-
ant may be placed in a given location as long as there is
either (i) at least two copies of the page being overwritten,
or (ii) no valid data currently stored in that location of the
disk. Note that the disk may have sectors which are un-
allocated, since any replicas of a bad tenant page become
stale when the bad tenant is written. These pages can be
reused for any purpose.

In the ideal case, a write incurs nearly zero seek and
rotational latency. Bad tenants improve write performance
at the cost of decreasing the read performance of both the
page being written and the page being overwritten. Writes
will benefit even more as the replication factor increases,
since more pages will be made available for overwriting.

As the number of bad tenants increases, the read perfor-
mance will gradually degrade to the read performance of
a traditional disk, provided the workload does not contain
sequential accesses. Clearly, a workload with sequential
requests will not perform well at all, as it may potentially
seek randomly on the disk to access bad tenants. In order
to limit degradation of performance due to bad tenants,
a cleaner process periodically cleans and returns them to
their normal replicated state.

To implement bad tenants, the disk must keep track of
the number of copies of pages on the disk, the mapping
of which page resides at a given physical location on the
disk, and finally, the location of each bad tenant.

3.3 Design Parameters

The amount of replication of a page on a track can vary
from a fixed small constant to full replication. On a mod-
ern disk drive, full replication would result in 25-50 copies
of a page on each track depending on the zone, resulting in
a corresponding 25-50 times decrease in addressable disk
capacity. Although full replication would allow reads to
incur zero rotational latencies, the corresponding increase
in seek times outweigh the benefits. Therefore, it is nec-
essary to find a “sweet spot” where the benefits of repli-
cation outweigh the negative side-effects.

There are many options for the bad tenant placement
policy. The optimal choice for a bad tenant placement
depends on a number of factors, including the seek and
rotational latencies to the bad tenant as well as the future
workload read and write requests (for instance, choosing
to overwrite a copy of a frequently read data block may
prove detrimental). Our choice is a simple policy. A
bad tenant will be only be placed somewhere on the track
which the disk head is currently over. It will choose the

closest page which is either unallocated or holding a page
which has more than one copy on the disk. Otherwise, the
system falls back on a fully replicated write.

The cleaner is the most configurable component of the
system. Various strategies can be used to determine when
to clean: only during idle time, when a “dirtiness” thresh-
old has been reached, during a write if it isn’t too expen-
sive, after a read if cleaning will improve future reads, or
even as a nightly maintenance process. It is necessary to
determine which pages will be cleaned and in what order.
The location bad tenants are cleaned to is also flexible.
Pages could always have home tracks that the cleaner will
copy and replicate them to, or the cleaner could eagerly
write to the nearest, fully available track. The current ver-
sion of our system does not implement a cleaner process.

3.4 Recovery

A paged disk must maintain a mapping between logical
and physical block locations. In order to recover from
crashes, this mapping must in some way be made per-
sistent. Although we have not implemented a recovery
mechanism, we enumerate some possible designs here.

The mapping could be kept in a NVRAM buffer. When
this NVRAM buffer gets filled, it would be written to a
specially mapping log region on the disk. This would
cause periodic interruptions in disk activity, but would al-
low very fast recovery of the mapping information. This
is the strategy used by [18].

In addition to maintaining the mapping in a volatile
memory, all pages written to the disk could include a small
amount of meta data. Writing out the meta data would in-
cur a trivial increase in transfer times and recovery would
entail a full disk scan to reconstruct the mapping.

The mapping could be maintained in a volatile memory
buffer, but this buffer could periodically be written out
to disk. Pages would have a small amount of meta data
associated with them which would include a timestamp.
During recovery, a mapping could be quickly recovered
from the mapping log region that would restore the disk
to a consistent (but not most recent) state. Such an imple-
mentation would require that invalid pages not be over-
written until their mapping state had been written to the
disk, somewhat constraining performance.

4 Implementation

We have implemented paged disks inside of DiskSim
3.0[2], a validated disk subsystem simulator. We have
modified both its layout module, to support dynamic data
placement mappings, and the disk controller to support
the disk position awareness required when servicing re-
quests on a paged disk. As a simplification, we do not
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model bad or slipped sectors. This simplification only re-
sults in a negligible (less than .1%) change in the average
behavior.

The implementation of the paged disk on the read path
is straightforward. When the disk state machine makes a
read request, it queries the layout manager for a logical-
to-physical translation to initiate the seek. Once the seek
has completed, it performs another query, this time pro-
viding the current disk head location. The layout compo-
nent returns the copy of the desired page that is closest to
the current location. If this page is currently a bad tenant,
there will only be one such copy and a normal average
rotational latency will be incurred.

The implementation of the paged disk on the write path
is a bit more complex. When the seek is initiated, a call is
made into the layout component to see if it is possible to
remap the page being written to an available page on the
current track. A page is available if there is a page on the
current track which is either replicated elsewhere or has
been overwritten by a bad tenant that is no longer valid.
If such a page exists, no seek is incurred. Otherwise, the
write does not become a bad tenant.

If the write can not be mapped to a bad tenant, a full
replicated write to all of the available replicas takes place,
resulting in a seek and rotational latency. The disk seeks
to the home location of the page, and then attempts to
write to all the replicas of that page on the track. If a
replica has been overwritten by a bad tenant that is still
valid, it can not be overwritten by this request. We main-
tain the invariant that at least one replica in the home lo-
cation of every page is never overwritten by a bad ten-
ant. The request is considered completed after the first
replica, the replica closest to the disk head, is written.
However, additional internal writes are issued to overwrite
all available replicas resulting in additional rotational la-
tency which, although not observable by the first request,
will delay pending requests. By implementing this policy,
we avoid clustering all the bad tenants in one region of the
disk, even if the workload is characterized by long series
of writes.

If the write can be mapped to a bad tenant, the closest
available location that the disk head can service once the
data is available is chosen. Because the disk will be ready
to write the request almost immediately, it is necessary to
incur some rotational latency at this point in order to wait
for the transfer of data from the CPU to disk to finish.

5 Evaluation

It is often difficult to evaluate the performance of modi-
fications to a disk, as the results depend on many factors,
ranging from workload parameters to the design of the
disk hardware. As a result, we attempt to paint a fair pic-

ture of paged disk performance trends by examining the
behavior of a wide range of random and real-world work-
loads.

Throughout the rest of this section, we first describe
the random and real-world workloads and simulation pa-
rameters considered in our experimentation. Second, we
determine the optimal replication factor for improving
read performance. Third, we compare the performance of
paged disks to a standard disk. Fourth, we evaluate paged
disks, RAID arrays, and standard disks and examine their
performance as they evolve during their use.

5.1 Workloads

We focus on two types of workloads to evaluate our ap-
proach. First, we consider a family of randomly gen-
erated paged workloads, parameterized by the fraction
of read/write requests. Second, we consider real-world
workloads produced by the TPC-C database benchmark
[6] running on the Shore Storage Manager [13].

Random workloads are generated by the built-in
DiskSim workload generation module. The workload is
configured to generate requests scattered randomly on the
disk, each 8192 bytes, or 16 sectors long. For these ran-
dom workloads, the requests are synchronous, meaning
that the next request is generated and submitted to the
disk only after the current request completed. According
to the outcome of a Bernoulli trial with a fixed parameter-
ized probability, each request is either a read or a write.
We will refer to these workloads by the probability that a
request is a write ( for example, 10% writes). Two par-
ticular cases of importance are the read-only (0% writes)
and write-only (100% writes) cases.

The real-world workloads considered in this paper are
generated from execution traces of the TPC-C transac-
tional database workload running on the Shore Storage
Manager. For each read or write request issued by the
storage manager, the trace contains a 4-tuple, including
the time the request was issued, the offset of the volume,
the length of the request, and a boolean indicating whether
the request is a read or a write. The trace is generated
by instrumenting the Shore diskrw process to log each
read or write as they are issued. Each request generated
by diskrw is already aligned and size to the size of a
page (8k).

The TPC-C experiments presented in this paper are
generated from a single execution run of the TPC-C
benchmark. The trace is made up of 60000 read/write
transactions, and consists of approximately 490000 read
and write requests. Since the disk that the trace was col-
lected on has transfer rates approximately 5 times faster
than the simulated disk, we scale all inter-arrival times up
by a factor of 5 to compensate (without doing this, the
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DiskSim queues grow too large and the simulation halts
prematurely). Note that the storage manager does signif-
icant buffering within its bufferpool, and most blocks are
never read more than once during the trace. Writes, how-
ever, are almost always pushed down to the disk immedi-
ately to ensure ACID compliance.

Throughout our experimentation, the disk that DiskSim
simulates is the IBM 18ES. The disk is an 8.7GB hard
disk with 7200 RPMS and 5 surfaces. We make only a few
changes to the disk for our experimentation. First, we use
a “nosparing” block layout for simplicity of implementa-
tion. In addition, we disable sequential write combining
and immediate reads as these features are inappropriate
for paging workloads and nonsensical for a paged disk.

5.2 Replication Factor

Our thesis had been to layout pages on the disk such that
each track holds many copies of only one page. The in-
tended result was that rotational latency would be zero,
and overall response times would decrease. Unfortu-
nately, our original assumptions were fairly bonkers1. As
the replication factor increases, data is spread over a wider
area on the disk. Thus, as rotational latency is shrinking,
seek times are increasing. It is thus important to discover
the optimal replication factor to maximize performance.

Figure 3 depicts the breakdown of average transaction
access times as a function of replication factor into seek,
rotational, transfer, and replication times.

Figure 3(a) depicts the access time breakdown for the
read-only random workload (1-way replication is similar
to a standard disk, but it ensures pages never span track
boundaries). Since each request is a read, there are never
online costs for replicating data, and only seek, rotate, and
transfer costs are involved. The graph clearly shows that
as the replication factor increases, rotation decreases and
seek increases. The optimal trade-off for this read-only
workload is at 4-way replication.

Figure 3(b) depicts the access time breakdown for the
write-only random workload without bad tenants, so each
write must replicate multiple copies of the page. The
seek, rotate, and transfer times are measured for writing
the first copy of the replicated write. The replicas time is
the amount of time needed to write the extra copies of the
page onto the disk. Clearly, this is the dominating compo-
nent as replication increases. While this replication time
can be devastating for a disk-heavy application, an appli-
cation that issues infrequent synchronous write requests
never has to see the replication time, as control returns to
the user immediately after the first copy is placed. Un-
fortunately, disk-heavy applications can suffer drastically
from this extra replication cost.

1In the technical sense.

5.3 Bad Tenants
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Figure 4: Comparison of access time for a paged disk with
replication factors 1-way through 8-way as a function of
read/write ratio. The 1-way numbers are similar to that
for a standard disk.

As seen in Section 5.2, write performance, and in turn,
overall disk performance, degrades significantly if the
disk needs to maintain page replicas. The use of bad ten-
ants not only alleviates, but completely eliminates, this
problem of write performance.

Figure 4 depicts the average access times for a paged
disk with 1-way through 8-way replication as a function
of the fraction of write requests in a random workload.
1-way replication performs similarly to a standard disk.
Starting at a read-only workload, it is seen that 2- through
8-way replication provide a speedup of 1.3 times over the
baseline 1-way replication. The average access times for
replication levels above 2-way are all fairly similar. For a
write-only workload, 4-way replication with bad tenants
provides a 4.36 times speedup over the 1-way replicated
disk. For a workload with 60% of writes, which is com-
parable to the TPC-C workload which we use in Section
5.4, the improvement is a speedup of 2.1.

As expected, as the write fraction increases, and bad
tenant writes dominate the system performance. Overall
access times improve dramatically since bad tenant writes
incur almost no latency via seeks or rotates.

5.4 Real-World Comparison

One of the concerns of a paged disk is that bad tenants can
degrade performance. A bad tenant written over (a copy
of) another page will increase the access times for that
page, since there are now fewer copies of it. Likewise,
since only one copy of the bad tenant is written, future
reads of the bad tenant page will also be expected to be
slow.

At the same time, however, a replicated page has n
copies on the disk, and writing a bad tenant reduces that
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Figure 5: Average access times for a paged disk with bad tenants, 4x RAID Mirror, and a standard disk, as a function
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Figure 6: Average seek and rotational times for a paged disk compared to that of a 4x RAID Mirror and a standard
disk, as a function of the number of requests issued during a TPC-C trace.

to 1 copy. Thus, there are n−1 pages that are unallocated
by the first bad tenant write of a page. Each unallocated
page can subsequently be used for holding more bad ten-
ants, thus possibly reducing the performance degradation
caused by bad tenants.

Figure 5 compares the average access time of a paged
disk with bad tenants, a 4x RAID Mirror, and a standard
disk, as a function of the number of requests issued for
the TPC-C workload. Each sequential set of 10000 re-
quests are averaged together to produce a data point in the
figures.

Figure 5(a) shows the average access times for read
and write requests together, whereas Figure 5(b) and Fig-
ure 5(c) show the access times for just reads and writes,
respectively. The times for first 50000 requests or so are
somewhat distorted, as at this point the database buffer-
pool is still being populated with data from the disk, and
many new reads dominate the workload. After this point,
however, a steady state is reached, as the bufferpool is
filled and disk activity becomes more write-oriented. As
noted earlier, the read-to-write ratio for our trace is ap-
proximately 40% to 60%. Clearly, the performance of
the paged disk outstrips performance of both the standard
disk as well as the 4x RAID Mirror, which uses 4 times as
many disk drives as the paged disk solution.

Most interestingly, Figure 5(a) shows that access times
for the paged disk are relatively constant, and in partic-
ular, Figure 5(c) shows that the performance degradation
for paged disk writes is essentially negligible. Overall,
access time has a speedup of about 1.35 times relative to
standard, mostly due to the improvement in write perfor-
mance. Read performance, on the other hand, depicted
in Figure 5(b) is not as stellar. After around 200000 re-
quests, the performance of paged disk reads is similar to

that of the 4x RAID mirror, and after 300000 requests, it
converges to the standard disk.

As a result, a bad tenant cleaner process may be needed
to ensure that read-performance is improved. The cleaner
would have to find enough idle time every 100000 re-
quests to clean a significant portion of the 40000 pages
during that interval. Since the total amount of work
needed to clean a page for a given replication factor is
similar to the write performance as seen in Figure 3(b),
the idle time of the disk may have to be significant. In
fact, it may need to be idle 70% of the time if the repli-
cation factor is 4 (If the disk is at 30% utilization, 15%
utilization is writes, and 4 times the 15% is used to issue
the replicas). It is not yet clear whether implementation
of a cleaner will buy significant performance gains, since
read performance was only a 1.33 times speedup to begin
with.

Figure 6 depicts the average seek and rotational times
for TPC-C disk requests as a function of the number of
requests issued. As above, a paged disk with bad tenants
(4 replicas) is compared with a 4x RAID Mirror and a
standard disk. Figure 6(a) shows that the seek time for
the paged disk decreases as a function of the number of
requests, which suggests that the data is being clustered
closer together on the disk due to bad tenants. The result
is faster read seeks. The fact that the seek times are so
much lower than that for the standard disk is due to the
fact that write seeks on the paged disk are almost always
zero. Figure 6(b) shows that rotational latency increases
as time passes on the paged disk, which is expected, as the
disk has to pass over more and more bad tenants on each
track.
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6 Future Work

Future work includes implementing a cleaner and explor-
ing the trade-offs involved in its design and implementa-
tion. In particular, different workloads may show substan-
tially different benefits from different cleaning strategies
and the best strategy will vary from system to system.

In order for paged disks to become a reality, it is likely
that the implementation will have to be removed from the
disk controller and transferred to the file system. This way
a single partition (such as the swap partition) of the disk
could be used for paged accesses. In order for the file
system to implement a paged disk, it would have to de-
rive the disk properties[14], essentially reconstructing the
physical layout of the disk.

An additional possible research direction would be to
look at incorporating paged disks into a disk array. As
it stands now, a paged disk should fit seamlessly into a
traditional disk array. A more interesting system would
be one in which the mapping is maintained by the disk
array controller.

7 Summary

We have described our implementation of a paged disk,
a single disk drive optimized for workloads characterized
by random small accesses. Our page disk:

• prevents pages from spanning track boundaries to
eliminate intra-transfer seeks

• replicates pages within a track to reduce the rota-
tional latency incurred by reads

• eagerly writes pages to eliminate seek and rotational
latency on writes

When compared against a traditional disk and a 4-disk
array our paged disk outperforms a standard disk by a fac-
tor of about 4.5, and outperforms a 4x RAID Mirror (with
4 sets of disk hardware) by a factor of 2. Although read
performance gradually decays with time, performance is
still quite good for writes even after long sequences of
operations, and we appear to do strictly better than a stan-
dard disk under all workloads.

8 Concluding Remarks (For
Ganger’s Eyes Only)

We’re pretty darn pleased with the results we got, even
though we never got around to implementing the cleaner.
We are quite interested in advancing this work to a pub-
lishable state, as the results look particularly promising.

The most essential failure, we believe, is that we fail to
compare against an existing “Eager Writing” disk, which
may perform nearly as well as bad tenants.

One of us (David) would like to profusely apologize for
confusing your youngest offspring with the kid from the
Life cereal commercials.
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Figure 7: You might think that layout is completely meaningless, but we have conclusively shown that layout is one of
the most important factors in disk performance. Through our channeling of the ancient, but cool, daddios of systems
research, we have managed to squeeze the extra 1 unit block out of paged disk performance.
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