
1

Register Allocation for
Irregular Architectures

David Koes
CALCM

4/20/2004



2

Motivation

int i,j,k;
short a,b,c;

r0
r1
r2

…

r30
r31

Good register allocation
critical for performance



3

Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work
• A New Hope?



4

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

Example

need to assign a register to
hold the value of each variable



5

Register Allocation

• For fixed number of registers
 does an assignment exist?
 if not, what should be spilled (later...)

• Find the assignment

  When can we not assign two variables
to the same register?



6

Liveness

• A variable is live at a point if the
variable might be used later in the
program

• Variables live at the same point
 cannot be in the same register
 interfere



7

Interference

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

Variables that are live
at the same point
interfere
How to represent this?



7

Interference

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v               

w           

Variables that are live
at the same point
interfere
How to represent this?



8

Interference Graph

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v

x w

u

t

Variable → Node
Interference → Edge

Register Assignment →
Graph Coloring



9

Graph Coloring

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v

x w

u

t

Given k colors, is it
possible to color the
nodes of a graph
such that a node
does not have the
same color as any of
its neighbors?

Register → Color



9

Graph Coloring

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v

x w

u

t

Given k colors, is it
possible to color the
nodes of a graph
such that a node
does not have the
same color as any of
its neighbors?

Register → Color



10

Graph Coloring Register Allocation

• Compute liveness information
• Build interference graph
• Use heuristics to color graph

 use local properties like node degree
 suboptimal: commit to coloring decisions

• Coloring succeeds - done
• Coloring fails - must spill

 spilling “removes” variable from graph



11

Spilling

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v

x w

u

t

k = 3
Impossible to color
Spill a variable

-allocate to memory
-pick using heuristic



12

Spilled

v

x

u

t

w1 w2 w3

v <- 1

w1 <- v + 3

Mw[]<- w1
w2 <- Mw[]

x <- w2 + v

u <- v

t <- u + x

  <-   x

w3 <- Mw[]

  <- w3
  <- t

  <- u



13

Register Allocation Summary

• Build interference graph
• Color using heuristics
• If not colorable, spill

 repeat process [Briggs
94]

 single pass
 all uncolored variables

spilled
 much faster compile time

Build

Color

Spill

unallocated program

allocated program

Graph Coloring Register Allocator



14

Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work
• A New Hope



15

Irregular Architectures

• Few registers
• Register usage restrictions

 address registers, hardwired registers...
• Memory operands
• Examples:

 x86, 68k, ColdFire,
ARM Thumb, MIPS16,
V800, various DSPs...

eax
ebx
ecx
edx
esi
edi

ebp
esp



16

Register Allocation for
Irregular Architectures

• Graph coloring register allocation used
 gcc, ORC, SUIF, GHS, IMPACT, IBM

• Assertion:
 Graph coloring is the wrong

representation for performing register
allocation on irregular architectures



17

Fewer Registers → More Spills

• Used gcc to compile
>10,000 functions
from Mediabench,
Spec95, Spec2000,
and micro-
benchmarks

• Recorded for which
functions graph
coloring failed

Percent of functions 
with no spills

97.3
90

54.35

0

20

40

60

80

100

PPC
(32)

68k
(16)

x86  
(8)

P
er

ce
n

t



18

PPC (32 registers)



19

68k (16 registers)



20

x86 (8 registers)



21

Graph Coloring and Spills

• Graph coloring solves the register
sufficiency problem
 Even if P=NP, suboptimal if spills

necessary
• No optimization of spill code
• Many spills may slow down allocator

 has to rebuild interference graph



22

Register Usage Restrictions

• Example
68k
MOVE (ptr),tmp1

EOR #3,tmp1

MOVEQ #32,tmp2 or MOVEA #32,tmp2
ADD tmp2,ptr

MOVE tmp1,D0

address register
data register
any register

A0 D0
A1 D1
A2 D2
A3 D3
A4 D4
A5 D5
A6 D6
A7 D7



23

Register Usage Restrictions

• Instructions may require or prefer a specific
subset of registers
 68k address/data registers

 MOVEA #1,A0   // 4 byte instruction
 MOVEQ #1,D0  // 2 byte instruction

 x86 div instruction
• Graph coloring assumes all colors are

equally applicable
 no principled way to express preferences
 requirements may be mutually exclusive



24

Memory Operands

• A variable allocated to memory may
not require load/store to access
 depends upon instruction
 still less efficient than register access

• Graph coloring (usually) spills
variables which make graph easier to
color
 may not be an efficient variable to spill



25

Graph Coloring Wrong Approach for
Irregular Architectures

• Solves wrong problem
 focuses attention on preventing spills
 doesn’t optimize spill code

• No representation of irregular features
• Variables assigned single register

 complicates meeting usage restrictions
 live range splitting partial solution



26

Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope



27

Graph Coloring Improvements

• Spill code optimization
 better heuristics [Bernstein et al 89]
 partial spilling [Bergner et al 97]

• Register usage constraints
 modified interference graph [Briggs 92]
 weighted interference graph/modified

heuristics [Smith and Holloway 01]



28

Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope



29

Integer Programming (IP)

• Minimize/maximize linear function
• Subject to linear constraints
• Solution must be integer
• Example

€ 

Maximize  z = x1 + x2

subject to
2x1 + 3x2 ≤12,
x1 ≤ 4, x2 ≤ 3 5

1,4

:Solution

21

=

==

z

xx



30

Register Allocation as IP

• Simplified example

1,,0

1

subject to

233min

≤≤

≥++

++∑

cba

cba

cba

mmm

mmm

mmma <-
b <-
c <- a + b
  <- a + c
  <- b

mvar is a decision variable
0 means var is in register
1 means var is in memory



31

IP: Good News

• IP can precisely model register
allocation [Goodwin and Wilken 96]
 including irregular architecture features

[Kong and Wilken 98]
 can exploit structure of register allocation

problem to improve compile time
[Fu and Wilken 2002]

• Can solve problem without integer
conditions in polynomial time



32

IP: Bad News

• With integer conditions problem is
NP-complete

• No polynomial guarantee
• Does not get feasible solution quickly

 can’t just impose time limits and get a
usable, if suboptimal, solution



33

IP: Results

• SPEC92 (integer)
• x86, models many irregular features

• 61% reduction in runtime spill code
overhead

• >15 minutes on 2.4% of SPEC92
functions

T. Kong and K. Wilken, “Precise Register Allocation for Irregular Architectures” 1998



34

Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope



35

Separated IP

• Separate allocation and assignment
[Appel and George 01]

• Use IP to optimally insert spill code
 also model some x86 features

• Result never has more than k live
variables at any point
 not necessarily k-colorable
 insert moves at every program point



36

Separated IP: Second Pass

• Second pass performs assignment and
removes moves
 use heuristic solution [Park and Moon 98]
 optimal solution (IP) not tractable
 left as an open problem in paper



37

Separated IP: Results

Overall 9.5% improvement in execution speed

A. W. Appel, L. George.  “Optimal spilling for CISC machines with few registers.”



38

Separated IP: Limitations

• Can still be prone to exponential
blow-up in first pass
 may not provide intermediate solution

• Second pass not optimal
• Claims to be faster than full IP solution

 different compilers, benchmarks, source
languages, and target architectures



39

Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope



40

Partitioned Boolen Quadratic
Optimization Problem Formulation

• Similar to IP [Scholz and Eckstein 02]
 minimize quadratic function
 decision variables 0-1
 constraints incorporated into function



41

Partitioned Boolen Quadratic
Optimization Problem Formulation

• Advantages
 Can fully model irregular features
 Fast, polynomial approximation performs

well in practice
• Disadvantages

 Approximation algorithm not bounded
 No iterative way to improve upon solution



42

PBQP: Results

• Caramel 20xx DSP
 very irregular register requirements

• Geometric mean improvement
 Optimal: 5.85%
 Approximation: 3.93%



43

Comparison

OptimalPolynomial
running
time

Models
irregular
features

Optimize
s spill
code

Method

no/yesyes/noyesyesPBQP

nonoyesyesSeparated IP

yesnoyesyesInteger
Programmin
g

noyessome, with
heuristics

with
heuristics

Graph
Coloring



44

Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope



45

New Problem Formulation
Goals

• Explicitly represent architectural
irregularities and costs

• An optimum solution results in
optimal register allocation

• Suboptimal solution algorithm scales
 more computation → better solution
ωdecent feasible solution obtained quickly
 competitive with current allocators



46

One Possibility:
Multicommodity Network Flow

• Given network (directed graph) with
 cost and capacity on each edge
 sources & sinks for multiple commodities

• Find lowest cost flow of commodities
• Many different applications

 communication networks, transportation
networks, distribution networks, etc

• NP-complete for integer flows



47

MCNF: Example

a b

a b

2

2
2 4

444

Thin edges have
capacity of one
Thick edges have
infinite capacity
Cost is zero
unless labeled



47

MCNF: Example

a b

a b

2

2
2 4

444

instruction

crossbar
A D M

A D M

A D M

Thin edges have
capacity of one
Thick edges have
infinite capacity
Cost is zero
unless labeled



48

Register Allocation as MCNF

• Variables → Commodities
• Variable Usage → Network Design
• Registers Limits → Bundle Constraints
• Spill Costs → Edge Costs
• Variable Definition → Source
• Variable Last Use → Sink



49

Example

int foo(int a, int b)

{

  int c = a-b;

  return c/b;

}



50

MCNF Representation

• Explicitly optimizes spill code,
memory operands, and register
preferences
 represented by edge costs

• Most restrictions on register usage
easily modeled
 capacity and bundle constraints

• Compact representation



51

MCNF as Integer Program

• Variable for every
commodity for
every edge
 flow of that

commodity along
that edge

• Flow constraints
 bundle
 network
 capacity

€ 

Minimize ckxk
k
∑

subject to

xij
k

k
∑ ≤ uij

Nxk = bk

0 ≤ xij
k ≤ uij

k



52

Solving an MCNF

• Can use standard IP solvers
• Can exploit structure of problem

 variety of MCNF specific solvers
 empirically faster than IP solvers
 integer solution still worst case exponential

• Noninteger solutions used to get integer
solution
 used to reduce search space

 branch and bound
 branch and cut



53

Lagrangian Relaxation

• Bring constraints into min function

• Lagrangian multipliers: edge price
 subgradient optimization finds optimal price

• Relaxation removes bundle constraints€ 

L(w) =min ckxk + wij xij
k −uij

k
∑
 

 
 

 

 
 

i, j
∑

k
∑

L(w) =min cij
k +wij( )xijk

i, j
∑

k
∑ − wijuij

i, j
∑



53

Lagrangian Relaxation

• Bring constraints into min function

• Lagrangian multipliers: edge price
 subgradient optimization finds optimal price

• Relaxation removes bundle constraints€ 

L(w) =min ckxk + wij xij
k −uij

k
∑
 

 
 

 

 
 

i, j
∑

k
∑

L(w) =min cij
k +wij( )xijk

i, j
∑

k
∑ − wijuij

i, j
∑



54

Heuristic Solution

• Iterate
 solve independent single commodity

network flows in Lagrangian relaxation
 update Lagrangian multipliers

• Converge (or terminate at cutoff)
• Use prices to guide greedy algorithm

 build solution from single commodity
flow subproblems



55

Summary

• Graph coloring wrong approach for
irregular architectures

• Other approaches
 can fully model architecture
 often optimal
 no performance guarantee

• Multicommodity network flow
 promising new formulation



56

Questions?



57

k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

c b



57

k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

a

c b



57

k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

a

c b



57

k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

a

c b



57

k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

a

c b


