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Motivation

int i,j,k;
short a,b,c;

r0
r1
r2

…

r30
r31

Good register allocation
critical for performance
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Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work
• A New Hope?
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v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

Example

need to assign a register to
hold the value of each variable
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Register Allocation

• For fixed number of registers
 does an assignment exist?
 if not, what should be spilled (later...)

• Find the assignment

  When can we not assign two variables
to the same register?
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Liveness

• A variable is live at a point if the
variable might be used later in the
program

• Variables live at the same point
 cannot be in the same register
 interfere
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Interference

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

Variables that are live
at the same point
interfere
How to represent this?
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Interference

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v               

w           

Variables that are live
at the same point
interfere
How to represent this?
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Interference Graph

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v

x w

u

t

Variable → Node
Interference → Edge

Register Assignment →
Graph Coloring
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Graph Coloring

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v

x w

u

t

Given k colors, is it
possible to color the
nodes of a graph
such that a node
does not have the
same color as any of
its neighbors?

Register → Color
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Graph Coloring

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v

x w

u

t

Given k colors, is it
possible to color the
nodes of a graph
such that a node
does not have the
same color as any of
its neighbors?

Register → Color
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Graph Coloring Register Allocation

• Compute liveness information
• Build interference graph
• Use heuristics to color graph

 use local properties like node degree
 suboptimal: commit to coloring decisions

• Coloring succeeds - done
• Coloring fails - must spill

 spilling “removes” variable from graph



11

Spilling

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

v

x w

u

t

k = 3
Impossible to color
Spill a variable

-allocate to memory
-pick using heuristic
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Spilled

v

x

u

t

w1 w2 w3

v <- 1

w1 <- v + 3

Mw[]<- w1
w2 <- Mw[]

x <- w2 + v

u <- v

t <- u + x

  <-   x

w3 <- Mw[]

  <- w3
  <- t

  <- u
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Register Allocation Summary

• Build interference graph
• Color using heuristics
• If not colorable, spill

 repeat process [Briggs
94]

 single pass
 all uncolored variables

spilled
 much faster compile time

Build

Color

Spill

unallocated program

allocated program

Graph Coloring Register Allocator
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Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work
• A New Hope
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Irregular Architectures

• Few registers
• Register usage restrictions

 address registers, hardwired registers...
• Memory operands
• Examples:

 x86, 68k, ColdFire,
ARM Thumb, MIPS16,
V800, various DSPs...

eax
ebx
ecx
edx
esi
edi

ebp
esp
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Register Allocation for
Irregular Architectures

• Graph coloring register allocation used
 gcc, ORC, SUIF, GHS, IMPACT, IBM

• Assertion:
 Graph coloring is the wrong

representation for performing register
allocation on irregular architectures
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Fewer Registers → More Spills

• Used gcc to compile
>10,000 functions
from Mediabench,
Spec95, Spec2000,
and micro-
benchmarks

• Recorded for which
functions graph
coloring failed

Percent of functions 
with no spills

97.3
90

54.35

0

20

40

60

80

100

PPC
(32)

68k
(16)

x86  
(8)

P
er

ce
n

t
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PPC (32 registers)
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68k (16 registers)
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x86 (8 registers)
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Graph Coloring and Spills

• Graph coloring solves the register
sufficiency problem
 Even if P=NP, suboptimal if spills

necessary
• No optimization of spill code
• Many spills may slow down allocator

 has to rebuild interference graph
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Register Usage Restrictions

• Example
68k
MOVE (ptr),tmp1

EOR #3,tmp1

MOVEQ #32,tmp2 or MOVEA #32,tmp2
ADD tmp2,ptr

MOVE tmp1,D0

address register
data register
any register

A0 D0
A1 D1
A2 D2
A3 D3
A4 D4
A5 D5
A6 D6
A7 D7
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Register Usage Restrictions

• Instructions may require or prefer a specific
subset of registers
 68k address/data registers

 MOVEA #1,A0   // 4 byte instruction
 MOVEQ #1,D0  // 2 byte instruction

 x86 div instruction
• Graph coloring assumes all colors are

equally applicable
 no principled way to express preferences
 requirements may be mutually exclusive
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Memory Operands

• A variable allocated to memory may
not require load/store to access
 depends upon instruction
 still less efficient than register access

• Graph coloring (usually) spills
variables which make graph easier to
color
 may not be an efficient variable to spill
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Graph Coloring Wrong Approach for
Irregular Architectures

• Solves wrong problem
 focuses attention on preventing spills
 doesn’t optimize spill code

• No representation of irregular features
• Variables assigned single register

 complicates meeting usage restrictions
 live range splitting partial solution
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Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope
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Graph Coloring Improvements

• Spill code optimization
 better heuristics [Bernstein et al 89]
 partial spilling [Bergner et al 97]

• Register usage constraints
 modified interference graph [Briggs 92]
 weighted interference graph/modified

heuristics [Smith and Holloway 01]
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Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope
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Integer Programming (IP)

• Minimize/maximize linear function
• Subject to linear constraints
• Solution must be integer
• Example

€ 

Maximize  z = x1 + x2

subject to
2x1 + 3x2 ≤12,
x1 ≤ 4, x2 ≤ 3 5

1,4

:Solution

21

=

==

z

xx
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Register Allocation as IP

• Simplified example

1,,0

1

subject to

233min

≤≤

≥++

++∑

cba

cba

cba

mmm

mmm

mmma <-
b <-
c <- a + b
  <- a + c
  <- b

mvar is a decision variable
0 means var is in register
1 means var is in memory
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IP: Good News

• IP can precisely model register
allocation [Goodwin and Wilken 96]
 including irregular architecture features

[Kong and Wilken 98]
 can exploit structure of register allocation

problem to improve compile time
[Fu and Wilken 2002]

• Can solve problem without integer
conditions in polynomial time
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IP: Bad News

• With integer conditions problem is
NP-complete

• No polynomial guarantee
• Does not get feasible solution quickly

 can’t just impose time limits and get a
usable, if suboptimal, solution
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IP: Results

• SPEC92 (integer)
• x86, models many irregular features

• 61% reduction in runtime spill code
overhead

• >15 minutes on 2.4% of SPEC92
functions

T. Kong and K. Wilken, “Precise Register Allocation for Irregular Architectures” 1998
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Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope
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Separated IP

• Separate allocation and assignment
[Appel and George 01]

• Use IP to optimally insert spill code
 also model some x86 features

• Result never has more than k live
variables at any point
 not necessarily k-colorable
 insert moves at every program point
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Separated IP: Second Pass

• Second pass performs assignment and
removes moves
 use heuristic solution [Park and Moon 98]
 optimal solution (IP) not tractable
 left as an open problem in paper
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Separated IP: Results

Overall 9.5% improvement in execution speed

A. W. Appel, L. George.  “Optimal spilling for CISC machines with few registers.”
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Separated IP: Limitations

• Can still be prone to exponential
blow-up in first pass
 may not provide intermediate solution

• Second pass not optimal
• Claims to be faster than full IP solution

 different compilers, benchmarks, source
languages, and target architectures
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Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope
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Partitioned Boolen Quadratic
Optimization Problem Formulation

• Similar to IP [Scholz and Eckstein 02]
 minimize quadratic function
 decision variables 0-1
 constraints incorporated into function
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Partitioned Boolen Quadratic
Optimization Problem Formulation

• Advantages
 Can fully model irregular features
 Fast, polynomial approximation performs

well in practice
• Disadvantages

 Approximation algorithm not bounded
 No iterative way to improve upon solution
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PBQP: Results

• Caramel 20xx DSP
 very irregular register requirements

• Geometric mean improvement
 Optimal: 5.85%
 Approximation: 3.93%
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Comparison

OptimalPolynomial
running
time

Models
irregular
features

Optimize
s spill
code

Method

no/yesyes/noyesyesPBQP

nonoyesyesSeparated IP

yesnoyesyesInteger
Programmin
g

noyessome, with
heuristics

with
heuristics

Graph
Coloring
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Outline

• Register Allocation Overview
• ...for Irregular Architectures
• Previous Work

 Graph coloring improvements
 Integer Programming
 Separated IP
 PBQP

• A New Hope
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New Problem Formulation
Goals

• Explicitly represent architectural
irregularities and costs

• An optimum solution results in
optimal register allocation

• Suboptimal solution algorithm scales
 more computation → better solution
ωdecent feasible solution obtained quickly
 competitive with current allocators
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One Possibility:
Multicommodity Network Flow

• Given network (directed graph) with
 cost and capacity on each edge
 sources & sinks for multiple commodities

• Find lowest cost flow of commodities
• Many different applications

 communication networks, transportation
networks, distribution networks, etc

• NP-complete for integer flows
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MCNF: Example

a b

a b

2

2
2 4

444

Thin edges have
capacity of one
Thick edges have
infinite capacity
Cost is zero
unless labeled
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MCNF: Example

a b

a b

2

2
2 4

444

instruction

crossbar
A D M

A D M

A D M

Thin edges have
capacity of one
Thick edges have
infinite capacity
Cost is zero
unless labeled
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Register Allocation as MCNF

• Variables → Commodities
• Variable Usage → Network Design
• Registers Limits → Bundle Constraints
• Spill Costs → Edge Costs
• Variable Definition → Source
• Variable Last Use → Sink
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Example

int foo(int a, int b)

{

  int c = a-b;

  return c/b;

}
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MCNF Representation

• Explicitly optimizes spill code,
memory operands, and register
preferences
 represented by edge costs

• Most restrictions on register usage
easily modeled
 capacity and bundle constraints

• Compact representation
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MCNF as Integer Program

• Variable for every
commodity for
every edge
 flow of that

commodity along
that edge

• Flow constraints
 bundle
 network
 capacity

€ 

Minimize ckxk
k
∑

subject to

xij
k

k
∑ ≤ uij

Nxk = bk

0 ≤ xij
k ≤ uij

k
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Solving an MCNF

• Can use standard IP solvers
• Can exploit structure of problem

 variety of MCNF specific solvers
 empirically faster than IP solvers
 integer solution still worst case exponential

• Noninteger solutions used to get integer
solution
 used to reduce search space

 branch and bound
 branch and cut
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Lagrangian Relaxation

• Bring constraints into min function

• Lagrangian multipliers: edge price
 subgradient optimization finds optimal price

• Relaxation removes bundle constraints€ 

L(w) =min ckxk + wij xij
k −uij

k
∑
 

 
 

 

 
 

i, j
∑

k
∑

L(w) =min cij
k +wij( )xijk

i, j
∑

k
∑ − wijuij

i, j
∑
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Lagrangian Relaxation

• Bring constraints into min function

• Lagrangian multipliers: edge price
 subgradient optimization finds optimal price

• Relaxation removes bundle constraints€ 

L(w) =min ckxk + wij xij
k −uij

k
∑
 

 
 

 

 
 

i, j
∑

k
∑

L(w) =min cij
k +wij( )xijk

i, j
∑

k
∑ − wijuij

i, j
∑
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Heuristic Solution

• Iterate
 solve independent single commodity

network flows in Lagrangian relaxation
 update Lagrangian multipliers

• Converge (or terminate at cutoff)
• Use prices to guide greedy algorithm

 build solution from single commodity
flow subproblems
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Summary

• Graph coloring wrong approach for
irregular architectures

• Other approaches
 can fully model architecture
 often optimal
 no performance guarantee

• Multicommodity network flow
 promising new formulation
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Questions?
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k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

c b
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k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

a

c b
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k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

a

c b
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k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

a

c b
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k-live, but not k-colorable

 a <-

 b <-
   <- a
   <- b
 c <-
 a <-
   <- c

a

c b


