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int i,j,k;

short a,b,c;

Good register allocation
critical for performance



Outline

» Register Allocation Overview
 ...for Irreqular Architectures
* Previous Work

* A New Hope?
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need to assign a register to
hold the value of each variable



Register Allocation

* For fixed number of registers
* does an assignment exist?
+ if not, what should be spilled (later...)

* Find the assignment

When can we not assign two variables
to the same register?



Liveness

» A variable is live at a point if the
variable might be used later in the
program

» Variables live at the same point
* cannot be in the same register
* interfere



Interference

W o<e v o+ 3 Variables that are live
at the same point
interfere

How to represent this?



Interference

v <-
Variables that are live

at the same point
interfere

w <- Vv

X <- w v

How to represent this?




Interference Graph

Variable — Node
Interference — Edge

Register Assignment —
Graph Coloring



Graph Coloring

Given k colors, is it
possible to color the
nodes of a graph
such that a node

ey 8 ~ does not have the
TourE same color as any of
<o its neighbors?
<- W
<- t
<- u n

Register — Color



Graph Coloring

Given k colors, is it
possible to color the
nodes of a graph
such that a node

u <- v
does not have the
<- u + X
same color as any of
< X its neighbors?
<- w
<- t
<- u

Register — Color



Graph Coloring Register Allocation

« Compute liveness information
» Build interference graph

» Use heuristics to color graph
+ use local properties like node degree
* suboptimal: commit to coloring decisions

* Coloring succeeds - done

» Coloring fails - must spill
+ spilling “removes” variable from graph

10



k =
Impossible to color

Spill a variable
-allocate to memory
—pick using heuristic
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Register Allocation Summary

unallocated program » Build interference graph

Graph Coloring|Register Allocator Color using heuristics

 If not colorable, spill
* repeat process [Briggs

. 94]

. * single pass

) = all uncolored variables
spilled

= much faster compile time

allocated program .
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o ...for Irreqular Architectures
* Previous Work
* A New Hope




Irregular Architectures

* Few registers

* Register usage restrictions
* address registers, hardwired registers...

* Memory operands

* Examples:

* x86, 68k, ColdFire,
ARM Thumb, MIPS16,
V800, various DSPs...




Register Allocation for
Irregular Architectures

» Graph coloring register allocation used
+ gcc, ORC, SUIF, GHS, IMPACT, IBM

e Assertion:

* Graph coloring is the wrong
representation for performing register
allocation on irregular architectures
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Fewer Registers — More Spills

Percent of functions » Used gcc to compile
with no spills >10,000 functions
0 73 o from Mediabench,
0 Spec95, Spec2000,
£ o 54.35 and micro-
: .0 benchmarks
S I - Recorded for which
0 functions graph

PPC 68k  x86 coloring failed
(32) (16)  (8)
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PPC (32 registers)

Increase in Spills as Number of Variables in Function Grows
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68Kk (16 registers)

Increase in Spills as Number of Variables in Function Grows
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Xx86 (8 registers)

Increase in Spills as Number of Variables in Function Grows
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Number of Variables in Function
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Graph Coloring and Spills

« Graph coloring solves the register
sufficiency problem

* Even if P=NP, suboptimal if spills
necessary

* No optimization of spill code

* Many spills may slow down allocator
* has to rebuild interference graph

21



Register Usage Restrictions

o Example address register
68k data register
any register

MOVE (ptr) , tmpl
EOR #3, tmpl
MOVEQ #32,tmp2 or MOVEA #32,tmp2
ADD tmp2 ,ptr
MOVE tmpl, DO

22



Register Usage Restrictions

» Instructions may require or prefer a specific
subset of registers

+ 68k address/data registers
= MOVEA #1,A0 // 4 byte instruction
= MOVEQ #1,D0 // 2 byte instruction

+ X86 div instruction

« Graph coloring assumes all colors are
equally applicable
* no principled way to express preferences

* requirements may be mutually exclusive
23



Memory Operands

* A variable allocated to memory may
not require load/store to access

+ depends upon instruction
+ still less efficient than register access

» Graph coloring (usually) spills
variables which make graph easier to

color
* may not be an efficient variable to spill

24



Graph Coloring Wrong Approach for
Irregular Architectures

* Solves wrong problem
* focuses attention on preventing spills
+ doesn’t optimize spill code

* No representation of irregular features

» Variables assigned single register
+ complicates meeting usage restrictions
+ live range splitting partial solution

25
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* Previous Work
¢ Graph coloring improvements
¢ Integer Programming
* Separated IP
+ PBQP
* A New Hope
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Graph Coloring Improvements

» Spill code optimization
* better heuristics [Bernstein et al 89]
+ partial spilling [Bergner et al 97]

* Register usage constraints

* modified interference graph [Briggs 92]

» weighted interference graph/modified
heuristics [Smith and Holloway 01]

21



- T e e T TP P T e e T TP e T e e T e T T T T T P e TP P e e TP P T P P s TP P T P P o T s e o T s P o s PP P o o T P P s T ot o oot

e Previous Work

¢

¢ Integer Programming
* Separated IP
+ PBQP

* A New Hope

28



Integer Programming (IP)

e Minimize/maximize linear function
» Subject to linear constraints
* Solution must be integer
 Example

Maximize z=x, + x,

subject to Solution :

2%, +3x, <12, X, =4,%, =1

x,=4,x,<3 z=95

29



Register Allocation as IP

a <- min23ma +3m, +2m,
b <- ,
c <- a + b subject to

<- a + c

- b m,+m, +m, =1

O=sm, ,m,,m, <1

m,,, is a decision variable
O means var is in register

1 means var is in memory .



IP: Good News

* [P can precisely model register
allocation [Goodwin and Wilken 96]

* including irregular architecture features
[Kong and Wilken 98]

* can exploit structure of register allocation
problem to improve compile time
[Fu and Wilken 2002]

« Can solve problem without integer
conditions in polynomial time

31



IP: Bad News

* With integer conditions problem is
NP-complete

* No polynomial guarantee

» Does not get feasible solution quickly

¢ can’t just impose time limits and get a
usable, if suboptimal, solution

32



IP: Results

* SPEC92 (integer)
» X86, models many irregular features

* 61% reduction in runtime spill code
overhead

* >15 minutes on 2.4% of SPEC92
functions

T. Kong and K. Wilken, “Precise Register Allocation for Irregular Architectures” 1998 33
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Previous Work

¢

¢

* Separated IP
* PBQP
A New Hope
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Separated IP

» Separate allocation and assignment
[Appel and George 01]

» Use IP to optimally insert spill code
+ also model some x86 features

» Result never has more than k live
variables at any point
* not necessarily k-colorable
* insert moves at every program point

35



Separated IP: Second Pass

» Second pass performs assignment and
removes moves

+ use heuristic solution [Park and Moon 98]
+ optimal solution (IP) not tractable
+ left as an open problem in paper

36



Separated IP: Results

A. W. Appel, L. George. “Optimal spilling for CISC machines with few registers.”
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Overall 9.5% improvement in execution speed 3



Separated IP: Limitations

* Can still be prone to exponential
blow-up in first pass
*+ may not provide intermediate solution
« Second pass not optimal

 Claims to be faster than full IP solution

» different compilers, benchmarks, source a -~
languages, and target architectures 5
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e Previous Work

+ PBQP
* A New Hope
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Partitioned Boolen Quadratic
Optimization Problem Formulation

» Similar to IP [Scholz and Eckstein 02]
* minimize quadratic function
* decision variables 0-1
¢ constraints incorporated into function

f= Z f?@t'jfj+ Z ;fgﬂf-:; — Imin

l<i<{j<mn 1<i<n
s.t.
#; € {0, 1}/ Vi<i<n

#IT=1

40



Partitioned Boolen Quadratic
Optimization Problem Formulation

* Advantages
* Can fully model irregular features

* Fast, polynomial approximation performs
well in practice

* Disadvantages
+ Approximation algorithm not bounded
+ No iterative way to improve upon solution

41



PBQP: Results

« Caramel 20xx DSP

* very irregular register requirements

 Geometric mean improvement
¢ Optimal: 5.85%
¢+ Approximation: 3.93%

Execution Time Improvement %
Bench- oPBQP | hPBQP
mark oPBQP | hPBQP | GrCo - GrCo | - GrCo
biq 157808 164977 | 179309 13.6 8.7
fft 80099 83399 81147 1.3 -2.7
hdvd 23370 23370 23815 1.9 1.9
mmult 8165 8165 8985 10.0 10.0
vit 194316 195671 | 200104 3.0 2.3

42



Comparison

Method Optimize | Models Polynomial |Optimal
s spill irregular |running
code features time
Graph with some, with |yes no
Coloring heuristics | heuristics
Integer yes yes no yes
Programmin
g
Separated IP |yes yes no no
PBQP yes yes yes/no no/yes

43
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e A New Hope



New Problem Formulation

» Explicitly represent architectural
irregularities and costs

* An optimum solution results in
optimal register allocation

* Suboptimal solution algorithm scales
* more computation — better solution

wdecent feasible solution obtained quickly
* competitive with current allocators

45



One Possibility:
Multicommodity Network Flow

» Given network (directed graph) with
+ cost and capacity on each edge
* sources & sinks for multiple commodities

e Find lowest cost flow of commodities

» Many different applications

¢+ communication networks, transportation
networks, distribution networks, etc

 NP-complete for integer flows

46



MCNF: Example

Thin edges have
capacity of one

Thick edges have
infinite capacity

Cost is zero
unless labeled

47



MCNF: Example

Thin edges have

crossbar capacity of one

Thick edges have
infinite capacity

Cost is zero

unless labeled
instruction

47



Register Allocation as MCNF

* Variables - Commodities

» Variable Usage — Network Design

* Registers Limits — Bundle Constraints
* Spill Costs — Edge Costs

* Variable Definition — Source

* Variable Last Use — Sink

48



int foo(int a, int b) Y
{

ka4

qpaw«ﬁ»@nwv

int ¢ = a-b;

return c/b;

A ﬁ “»A

N A
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MCNF Representation

» Explicitly optimizes spill code,
memory operands, and register
preferences

* represented by edge costs

 Most restrictions on register usage
easily modeled

¢ capacity and bundle constraints
« Compact representation

50



MCNF as Integer Program

Minimize Eckxk * Variable for every
commodity for

. X every edge
subject to + flow of that
L commodity along
Exij < ul.j that edge
k * Flow constraints
ka _ bk * bundle
* network

k

i * capacity

k
O<x; <u

51



Solving an MCNF

e Can use standard IP solvers

» Can exploit structure of problem

+ variety of MCNF specific solvers
= empirically faster than IP solvers
= integer solution still worst case exponential

* Noninteger solutions used to get integer
solution

+ used to reduce search space
= branch and bound
= branch and cut

52



Lagrangian Relaxation

* Bring constraints into min function

L(w)= mmzc X "‘EWU(EXS—%)
L(w)= mlnEE( W )x ‘Ewl]%

k 1,j i,j

» Lagrangian multipliers: edge price
* subgradient optimization finds optimal price
« Relaxation removes bundle constraints

53



Lagrangian Relaxation

* Bring constraints into min function

L(w)= mmzc X "‘EWU(EXS—%)

R

» Lagrangian multipliers: edge price
* subgradient optimization finds optimal price
« Relaxation removes bundle constraints

53



Heuristic Solution

* |terate

+ solve independent single commodity
network flows in Lagrangian relaxation

+ update Lagrangian multipliers
» Converge (or terminate at cutoff)

* Use prices to guide greedy algorithm

* build solution from single commodity
flow subproblems

54



Summary

» Graph coloring wrong approach for
irregular architectures
* Other approaches

+ can fully model architecture
+ often optimal
* no performance guarantee

* Multicommodity network flow
* promising new formulation

55



Questions?
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k-live, but not k-colorable




k-live, but not k-colorable
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k-live, but not k-colorable




k-live, but not k-colorable




k-live, but not k-colorable




