Register Allocation for
Irregular Architectures

David Koes
CALCM

4/20/2004

P T e T T TP P T e e TP e T T P T P e T T e T P e T TP P T P P e P P T P T T e T P P o s P o e s TP P P P o s T P o s T T T o o T s ool

int i,j,k;

short a,b,c;

Good register allocation
critical for performance

Outline

» Register Allocation Overview
 ...for Irreqular Architectures
* Previous Work

* A New Hope?

Fa T T T R e T R e T P e T P e T R e T e e T R e T e e T P e R T P R e T P e R T e e T P e T P R e T P R e T P e R T P e R T R e R T P e T

need to assign a register to
hold the value of each variable

Register Allocation

* For fixed number of registers
* does an assignment exist?
+ if not, what should be spilled (later...)

* Find the assignment

When can we not assign two variables
to the same register?

Liveness

» A variable is live at a point if the
variable might be used later in the
program

» Variables live at the same point
* cannot be in the same register
* interfere

Interference

W o<e v o+ 3 Variables that are live
at the same point
interfere

How to represent this?

Interference

v <-
Variables that are live

at the same point
interfere

w <- Vv

X <- w v

How to represent this?

Interference Graph

Variable — Node
Interference — Edge

Register Assignment —
Graph Coloring

Graph Coloring

Given k colors, is it
possible to color the
nodes of a graph
such that a node

ey 8 ~ does not have the
TourE same color as any of
<o its neighbors?
<- W
<- t
<- u n

Register — Color

Graph Coloring

Given k colors, is it
possible to color the
nodes of a graph
such that a node

u <- v
does not have the
<- u + X
same color as any of
< X its neighbors?
<- w
<- t
<- u

Register — Color

Graph Coloring Register Allocation

« Compute liveness information
» Build interference graph

» Use heuristics to color graph
+ use local properties like node degree
* suboptimal: commit to coloring decisions

* Coloring succeeds - done

» Coloring fails - must spill
+ spilling “removes” variable from graph

10

k =
Impossible to color

Spill a variable
-allocate to memory
—pick using heuristic

11

Spilled

Tt T
T T T
ot

" '
; T
T T T
; " '
; T
T T T
; " '
; L
T T T
; "
T
T T T
; " 5
; T
T T T
; " 5
; T
T T T
; " 5
; T
T T T
; " 5
; T
T T T
; "

Register Allocation Summary

unallocated program » Build interference graph

Graph Coloring|Register Allocator Color using heuristics

 If not colorable, spill
* repeat process [Briggs

. 94]

. * single pass

) = all uncolored variables
spilled

= much faster compile time

allocated program .

T e e T TP P T e e T TP e T e e T e T T T T T P e TP P e e TP P T P P s TP P T P P o T s e o T s P o s PP P o o T P P s T ot o oot

o ...for Irreqular Architectures
* Previous Work
* A New Hope

Irregular Architectures

* Few registers

* Register usage restrictions
* address registers, hardwired registers...

* Memory operands

* Examples:

* x86, 68k, ColdFire,
ARM Thumb, MIPS16,
V800, various DSPs...

Register Allocation for
Irregular Architectures

» Graph coloring register allocation used
+ gcc, ORC, SUIF, GHS, IMPACT, IBM

e Assertion:

* Graph coloring is the wrong
representation for performing register
allocation on irregular architectures

16

Fewer Registers — More Spills

Percent of functions » Used gcc to compile
with no spills >10,000 functions
0 73 o from Mediabench,
0 Spec95, Spec2000,
£ o 54.35 and micro-
: .0 benchmarks
S I - Recorded for which
0 functions graph

PPC 68k x86 coloring failed
(32) (16) (8)

14

PPC (32 registers)

Increase in Spills as Number of Variables in Function Grows

2500
F]
=
2 2000
g
-
: 1500 mNo Spills
E 1000 m Spilled
Q
i
2

ﬂ - . T - T -

212 1024

Number of Variables in Function

68Kk (16 registers)

Increase in Spills as Number of Variables in Function Grows

2500

2000
1500 mNo Spills
1000 - m Spilled
500 - I
ﬂ - T T T r r I r . r s | —=
4 8 16 32 o4 128 256

2 212 1024

Number of Functions

Number of Variables in Function

Xx86 (8 registers)

Increase in Spills as Number of Variables in Function Grows

2500
F]
=
2 2000
T
5
: 1500 mNo Spills
E 1000 - m Spilled
Q
i
2]
ﬂ - : : : : : : : . —
2 4 8 16 32 64 128 256 512 1024

Number of Variables in Function
20

Graph Coloring and Spills

« Graph coloring solves the register
sufficiency problem

* Even if P=NP, suboptimal if spills
necessary

* No optimization of spill code

* Many spills may slow down allocator
* has to rebuild interference graph

21

Register Usage Restrictions

o Example address register
68k data register
any register

MOVE (ptr) , tmpl
EOR #3, tmpl
MOVEQ #32,tmp2 or MOVEA #32,tmp2
ADD tmp2 ,ptr
MOVE tmpl, DO

22

Register Usage Restrictions

» Instructions may require or prefer a specific
subset of registers

+ 68k address/data registers
= MOVEA #1,A0 // 4 byte instruction
= MOVEQ #1,D0 // 2 byte instruction

+ X86 div instruction

« Graph coloring assumes all colors are
equally applicable
* no principled way to express preferences

* requirements may be mutually exclusive
23

Memory Operands

* A variable allocated to memory may
not require load/store to access

+ depends upon instruction
+ still less efficient than register access

» Graph coloring (usually) spills
variables which make graph easier to

color
* may not be an efficient variable to spill

24

Graph Coloring Wrong Approach for
Irregular Architectures

* Solves wrong problem
* focuses attention on preventing spills
+ doesn’t optimize spill code

* No representation of irregular features

» Variables assigned single register
+ complicates meeting usage restrictions
+ live range splitting partial solution

25

oy T e P S e S e T S e S T P e S e e e e T

* Previous Work
¢ Graph coloring improvements
¢ Integer Programming
* Separated IP
+ PBQP
* A New Hope

26

Graph Coloring Improvements

» Spill code optimization
* better heuristics [Bernstein et al 89]
+ partial spilling [Bergner et al 97]

* Register usage constraints

* modified interference graph [Briggs 92]

» weighted interference graph/modified
heuristics [Smith and Holloway 01]

21

- T e e T TP P T e e T TP e T e e T e T T T T T P e TP P e e TP P T P P s TP P T P P o T s e o T s P o s PP P o o T P P s T ot o oot

e Previous Work

¢

¢ Integer Programming
* Separated IP
+ PBQP

* A New Hope

28

Integer Programming (IP)

e Minimize/maximize linear function
» Subject to linear constraints
* Solution must be integer
 Example

Maximize z=x, + x,

subject to Solution :

2%, +3x, <12, X, =4,%, =1

x,=4,x,<3 z=95

29

Register Allocation as IP

a <- min23ma +3m, +2m,
b <- ,
c <- a + b subject to

<- a + c

- b m,+m, +m, =1

O=sm, ,m,,m, <1

m,,, is a decision variable
O means var is in register

1 means var is in memory .

IP: Good News

* [P can precisely model register
allocation [Goodwin and Wilken 96]

* including irregular architecture features
[Kong and Wilken 98]

* can exploit structure of register allocation
problem to improve compile time
[Fu and Wilken 2002]

« Can solve problem without integer
conditions in polynomial time

31

IP: Bad News

* With integer conditions problem is
NP-complete

* No polynomial guarantee

» Does not get feasible solution quickly

¢ can’t just impose time limits and get a
usable, if suboptimal, solution

32

IP: Results

* SPEC92 (integer)
» X86, models many irregular features

* 61% reduction in runtime spill code
overhead

* >15 minutes on 2.4% of SPEC92
functions

T. Kong and K. Wilken, “Precise Register Allocation for Irregular Architectures” 1998 33

FRF T R T T T R P T R T R R T T R R T R R T R R e R R T R R T R R T R R T T R R e R R e R T e R e e R e e R e T e R T e R e e T

Previous Work

¢

¢

* Separated IP
* PBQP
A New Hope

34

Separated IP

» Separate allocation and assignment
[Appel and George 01]

» Use IP to optimally insert spill code
+ also model some x86 features

» Result never has more than k live
variables at any point
* not necessarily k-colorable
* insert moves at every program point

35

Separated IP: Second Pass

» Second pass performs assignment and
removes moves

+ use heuristic solution [Park and Moon 98]
+ optimal solution (IP) not tractable
+ left as an open problem in paper

36

Separated IP: Results

A. W. Appel, L. George. “Optimal spilling for CISC machines with few registers.”

6000
00— = Memory mstructions 1T =23 Memory insouctions

" — Reloads — Reloads

s — Spills — Spills

- | 4000 —

=

Z 400 — |]

s Q,'\‘-i? []

2 — ,

E _ =

= Q L || 2000 P

= 200 i i

B . | 3
P —— 0
% % % % . %, N . % 2,
%{Jﬂ:ﬁ; : » e, %f;:{“ * J}"f'f; y ’3&’0 ‘:?"i 4 N f:?q'«? rq?"c
r-‘ib{_ J:?qfr o f;-%

Overall 9.5% improvement in execution speed 3

Separated IP: Limitations

* Can still be prone to exponential
blow-up in first pass
*+ may not provide intermediate solution
« Second pass not optimal

 Claims to be faster than full IP solution

» different compilers, benchmarks, source a -~
languages, and target architectures 5

Outline

ST T T T P e T T P R e T T e e T e e T e e T T e e T e e T e e T e e T e e T R e T R e T R e T e e T R e R T R R e T e R e R T R e T R e T P R e R T e R e T P R e R T P e T R e R T R e T P R e T R R e R T P R e T

e Previous Work

+ PBQP
* A New Hope

39

Partitioned Boolen Quadratic
Optimization Problem Formulation

» Similar to IP [Scholz and Eckstein 02]
* minimize quadratic function
* decision variables 0-1
¢ constraints incorporated into function

f= Z f?@t'jfj+ Z ;fgﬂf-:; — Imin

l<i<{j<mn 1<i<n
s.t.
#; € {0, 1}/ Vi<i<n

#IT=1

40

Partitioned Boolen Quadratic
Optimization Problem Formulation

* Advantages
* Can fully model irregular features

* Fast, polynomial approximation performs
well in practice

* Disadvantages
+ Approximation algorithm not bounded
+ No iterative way to improve upon solution

41

PBQP: Results

« Caramel 20xx DSP

* very irregular register requirements

 Geometric mean improvement
¢ Optimal: 5.85%
¢+ Approximation: 3.93%

Execution Time Improvement %
Bench- oPBQP | hPBQP
mark oPBQP | hPBQP | GrCo - GrCo | - GrCo
biq 157808 164977 | 179309 13.6 8.7
fft 80099 83399 81147 1.3 -2.7
hdvd 23370 23370 23815 1.9 1.9
mmult 8165 8165 8985 10.0 10.0
vit 194316 195671 | 200104 3.0 2.3

42

Comparison

Method Optimize | Models Polynomial |Optimal
s spill irregular |running
code features time
Graph with some, with |yes no
Coloring heuristics | heuristics
Integer yes yes no yes
Programmin
g
Separated IP |yes yes no no
PBQP yes yes yes/no no/yes

43

Outline

T o o

e A New Hope

New Problem Formulation

» Explicitly represent architectural
irregularities and costs

* An optimum solution results in
optimal register allocation

* Suboptimal solution algorithm scales
* more computation — better solution

wdecent feasible solution obtained quickly
* competitive with current allocators

45

One Possibility:
Multicommodity Network Flow

» Given network (directed graph) with
+ cost and capacity on each edge
* sources & sinks for multiple commodities

e Find lowest cost flow of commodities

» Many different applications

¢+ communication networks, transportation
networks, distribution networks, etc

 NP-complete for integer flows

46

MCNF: Example

Thin edges have
capacity of one

Thick edges have
infinite capacity

Cost is zero
unless labeled

47

MCNF: Example

Thin edges have

crossbar capacity of one

Thick edges have
infinite capacity

Cost is zero

unless labeled
instruction

47

Register Allocation as MCNF

* Variables - Commodities

» Variable Usage — Network Design

* Registers Limits — Bundle Constraints
* Spill Costs — Edge Costs

* Variable Definition — Source

* Variable Last Use — Sink

48

int foo(int a, int b) Y
{

ka4

qpaw«ﬁ»@nwv

int ¢ = a-b;

return c/b;

A ﬁ “»A

N A
49

MCNF Representation

» Explicitly optimizes spill code,
memory operands, and register
preferences

* represented by edge costs

 Most restrictions on register usage
easily modeled

¢ capacity and bundle constraints
« Compact representation

50

MCNF as Integer Program

Minimize Eckxk * Variable for every
commodity for

. X every edge
subject to + flow of that
L commodity along
Exij < ul.j that edge
k * Flow constraints
ka _ bk * bundle
* network

k

i * capacity

k
O<x; <u

51

Solving an MCNF

e Can use standard IP solvers

» Can exploit structure of problem

+ variety of MCNF specific solvers
= empirically faster than IP solvers
= integer solution still worst case exponential

* Noninteger solutions used to get integer
solution

+ used to reduce search space
= branch and bound
= branch and cut

52

Lagrangian Relaxation

* Bring constraints into min function

L(w)= mmzc X "‘EWU(EXS—%)
L(w)= mlnEE(W)x ‘Ewl]%

k 1,j i,j

» Lagrangian multipliers: edge price
* subgradient optimization finds optimal price
« Relaxation removes bundle constraints

53

Lagrangian Relaxation

* Bring constraints into min function

L(w)= mmzc X "‘EWU(EXS—%)

R

» Lagrangian multipliers: edge price
* subgradient optimization finds optimal price
« Relaxation removes bundle constraints

53

Heuristic Solution

* |terate

+ solve independent single commodity
network flows in Lagrangian relaxation

+ update Lagrangian multipliers
» Converge (or terminate at cutoff)

* Use prices to guide greedy algorithm

* build solution from single commodity
flow subproblems

54

Summary

» Graph coloring wrong approach for
irregular architectures
* Other approaches

+ can fully model architecture
+ often optimal
* no performance guarantee

* Multicommodity network flow
* promising new formulation

55

Questions?

T o o

k-live, but not k-colorable

k-live, but not k-colorable

51

k-live, but not k-colorable

k-live, but not k-colorable

k-live, but not k-colorable

