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Abstract

Good alias analysis is essential in order to achieve high performance on modern processors, yet precise inter-
procedural analysis does not scale well. We present a source code annotation, #pragma independent,
which is a more flexible, intuitive and useful way for the programmer to provide pointer aliasing informa-
tion than the current C99 restrict keyword. We describe a tool which highlights the most important and
most likely correct locations at which a programmer can insert the pragmas. We analyze the effect of the
improved alias information using a range of compilers and architectures.

1 Introduction

Alias analysis, the identification of pointers which point to the same memory space, is an important part

of any optimizing compiler. While static alias analysis techniques exist (see [10] for a review), any static,

intra-procedural analysis will be limited by its lack of knowledge of whole program behavior. However, it is

possible for the programmer to provide this whole program knowledge by annotating the program suitably.

An example of such an annotation is the restrict type qualifier that was introduced in the ANSI C99

standard [2]. In this paper, we propose an alternative annotation that is simultaneously more powerful,

flexible, and intuitive than the restrict keyword. Section 3 describes the semantics of and motivation

for our new #pragma independent annotation. Section 4 compares our pragma to the ANSI C99



restrict keyword. The implementation details for including the pragma in the compiler are described in

Section 5.

In Section 6 we present a semi-automated system for assisting programmers in appropriately annotating

source code. In this system, the compiler highlights pointer pairs whose aliasing relationship cannot be stat-

ically determined by an intra-procedural analysis, but whose non-aliasing would enable other optimizations,

and instruments the executable with run-time checks for aliasing. The executable is then run on a sample

input. The pointer pairs which did not exhibit run-time aliasing are then ranked using both static, compile-

time information and dynamic, run-time information. This ranking focuses the attention of the programmer

on those pointer pairs which, with high likelihood, can be correctly labeled independent with the greatest

impact upon performance.

In order to show the efficacy of the pragma and our tool, we present performance numbers in Section 7.

We compile using a conventional compiler, gcc, targeting both a simulated in-order single issue proces-

sor and the EPIC Intel Itanium processor. We also use an experimental compiler, CASH [3], to target a

reconfigurable architecture.

The true power of the pragma is hard to judge because of a chicken-and-egg problem: in order to eval-

uate the effectiveness of alias information, optimizations which take full advantage of such information are

needed. However, such optimizations are only implemented in a compiler that already provides substantial

alias information. For example, gcc does not have very sophisticated alias analysis and consequently does

not fully implement optimizations such as register promotion which would benefit greatly from improved

alias information. Therefore, it is not too surprising that for many benchmarks gcc cannot produce a sig-

nificant performance improvement using the information provided by the annotations while a more modern

compiler can. Even given these limitations, the use of independence pragmas can result in more than 20%

improvement for some benchmarks.
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2 Related Work

Pointer analysis is an important part in any optimizing or parallelizing compiler as potentially aliasing

memory references can introduce false dependencies which inhibit optimizations and thread creation. While

much work has been done to improve the precision and efficiency of pointer analysis [10], an intra-procedural

static pointer analysis can not take advantage of whole program, dynamic information. Inter-procedural

pointer analysis performs a whole program analysis, but fails to scale well as program size increases with-

out losing precision [11, 23] and is complicated by separate compilation and the use of library functions. In

our method, the programmer provides pointer independence information which the compiler uses directly,

just as it would use the results of a complex and expensive alias analysis. The overhead in the compiler of

supporting our method is therefore virtually nonexistent.

Previous systems have used programmer annotations to provide memory aliasing information to the

compiler or to analysis tools. In these systems the annotation is a type qualifier and the purpose is to aid

in program understanding [1], program checking and verification [6, 8], or supporting type-safety [9]. In

contrast, our annotation is not a type, but a precise statement of pointer independence. The compiler has

no obligation to ensure the correctness of the annotations and the purpose of the annotations is simply to

increase optimization opportunities and application performance. The ANSI C99 restrict type qualifier

was designed to promote optimization [2], but has shortcomings which are addressed more fully in Section 4.

The SGI MipsPro compiler provided an ivdep pragma which is used to break loop-carried dependencies

between memory references in an inner loop. We describe a much more general approach. ASAP [12] is a

language for describing the aliasing properties within data structures. ASAP also relies upon the programmer

to ensure correctness, but the annotations remain bound to types, not objects.

Another solution to the problem of overly conservative alias information is performing dynamic dis-

ambiguation at run-time. This can either be done completely in the compiler by generating instructions to

check addresses [17] or by a combination of compiler and hardware support [18, 15]. Hardware support
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allows the compiler to speculatively execute instructions under the assumption that memory references do

not alias. If the assumption proves false, potentially expensive fix-up code must be executed. A hardware

based solution has the added advantage over both traditional pointer analyses and our approach in being

able to successfully optimize cases where pointers do alias, but only infrequently. On the other hand, our

proposal requires no special hardware and the final executable contains no extra instructions to check for

aliasing.

3 #pragma independent

We propose a pragma which allows the programmer to provide the compiler with precise and useful pointer

independence information. The pragma has the syntax:

#pragma independent ptr1 ptr2

This pragma can be inserted anywhere in the program where ptr1 and ptr2 are both in scope. The pragma

guarantees to the compiler that, within the intersection of the scopes of ptr1 and ptr2, any memory object

accessed using ptr1 will be distinct from any memory object that is accessed using ptr2.

We also allow the use of the pragma with � arguments, where � � �; this implies pairwise indepen-

dence between all pointer pairs from the argument list. Since the multiple-argument form does not provide

increased expressive power (except reducing the number of annotations required), it will not be discussed

further.

As an example, consider the C code in Figure 1; pairwise independence exists between the pairs (a,b)

and (a,c) but nothing can be said about the relationship between b and c so restrict can’t be used. We

have modified a recent version of gcc targeting the Itanium architecture to understand and take advantage of

the independence pragma. The assembly code generated from this example is shown in Figure 2. Using
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void example(int *a, int *b, int *c)
{
#pragma independent a b
#pragma independent a c

(*b)++;
*a = *b;
*a = *a + *c;

}

Figure 1: An example where restrict can not be used, but code generation benefits from the use of the indepen-
dence pragma.

Without pragma With pragma

ld4 r14 = [r33] // r14 = *b; ld4 r14 = [r33] // r14 = *b;
;; ;;
adds r14 = 1, r14 // r14++; adds r14 = 1, r14 // r14++;
;; ;;
st4 [r33] = r14 // *b = r14; st4 [r33] = r14 // *b = r14;
st4 [r32] = r14 // *a = r14;
ld4 r15 = [r34] // r15 = *c; ld4 r15 = [r34] // r15 = *c;
;; ;;
add r14 = r14, r15 // r14 += r15; add r14 = r14, r15 // r14 += r15;
;; ;;
st4 [r32] = r14 // *a = r14; st4 [r32] = r14 // *a = r14;
br.ret.sptk.many b0 br.ret.sptk.many b0

Figure 2: The generated Itanium assembly code for the source in Figure 1. Using the information from the indepen-
dence pragma, the compiler can remove a store instruction. On the Itanium processor, this avoids a split issue in the
third instruction group, reducing the cycle time of the function.

the additional pointer independence information, the compiler can successfully remove an unnecessary store

to a.

The independence pragma is easy to use and reason about, since the programmer only has to take into

account the behavior of two pointers. Contrast this to the restrict keyword, which implies a relationship

between one pointer and all other pointers within the same scope (see the next section). Furthermore, this

type of information is exactly what an optimizing compiler needs when performing code motion optimiza-

tions such as partial redundancy elimination (PRE) and instruction scheduling.

5



4 Comparison to restrict

The formal definition of restrict takes up a full page of the C99 specification, not including another

page of usage examples. A simplified, but more rigorous and lengthy definition is given in [7]. Within gcc

(version 3.3 and earlier) the definition is interpreted to mean that no two restricted pointers can alias, but a

restricted pointer and an unrestricted pointer may alias. To correctly annotate a pointer declaration p with the

restrict type qualifier, it is necessary for the programmer to ensure that p does not alias with all other

restricted pointer declarations that are visible in the current scope. Unless restrict is only used sparsely,

it becomes a significant burden to the programmer to correctly reason about its correct application. Using

#pragma independent correctly, with its weaker but more precise semantics, requires the programmer

to only reason about a single pair of pointers. In addition, the pragma is capable of representing pointer

relationships that are not representable by restrict. For example, the pairwise independence of two

pairs of pointers as in Figure 1.

Besides convenience to the programmer, the independence pragma is also easier to use by the compiler.

The information provided by restrict does not directly map to the way conventional compilers use

pointer alias information. Within an optimizing compiler, pointer analysis is mostly useful to determine

that two pointers do not alias each other. While restrict can provide such pairwise information (if both

pointers are restricted) it can only be used if both pointers also exhibit the much more restrictive property

of not aliasing all restricted pointers. The independence pragma, by contrast, exactly maps to the internal

application of pointer independence information within the compiler. Indeed, the semantics of the pragma

were originally motivated by the needs of some of the optimizations in our CASH compiler.

Overall, the independence pragma is a more flexible, more intuitive, and more useful means of annotat-

ing source code to communicate pointer aliasing information to the compiler than restrict.
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5 Using #pragma independent in the compiler

We have added support for the independence pragma to both gcc and CASH. Within gcc, we have modified

the front-end to parse #pragma independent and, for each pointer variable declaration, maintain a

list of pointer variables which have been declared as independent of that pointer. Within the alias analysis

initialization phase of the gcc back-end, we then propagate this information to compiler temporaries. Since

independent pointers must point to completely independent memory objects, we also propagate the indepen-

dence information through address calculations. For example, p and p+3 are assumed to point within the

same “object”, and thus the independence information valid for p is assumed to be valid for p+3 as well.

Also, if p is assigned to q, we propagate whatever independence information we have from p to q as well.

Finally, when gcc’s optimization passes query for pairwise pointer independence, we use the independence

information if possible. Pointer independence information is used by gcc in the CSE/PRE and instruction

scheduling passes. Unfortunately, gcc does not have a register promotion optimization pass, which has been

shown to benefit significantly from improved pointer independence information [16, 19]. Overall, relatively

little code is needed to add full support for the independence pragma to a conventional compiler (few than

100 lines of code each for the front-end and back-end).

Within CASH, the processing of the pragma in the front-end follows the same flow as within gcc: the

SUIF [22] front-end parses #pragma independent and applies it as an annotation to the corresponding

variable declarations. We then run a dataflow analysis that propagates the independence information through

compiler temporaries and pointer expressions. In CASH, may-dependencies between memory operations

are first-class objects, represented by token edges [4]. The memory disambiguation pass removes token

edges between memory references that it can prove do not alias; the disambiguator was modified to query

independence pragma information. The compiler can then aggressively take advantage of the increased

parallelism in the dependency graph.
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void summer(int *arr1, int *arr2, int n, int *result)
{
#pragma independent arr1 result /* score: 15 */
#pragma independent arr2 result /* score: 12 */
#pragma independent arr1 arr2 /* score: 1100 */

int i, sum = 0;

for(i = 0; i < n; i++)
{

*arr1 += *arr2;
sum += *arr2;

}
*result = sum;

}

Figure 3: Sample code with pragma annotations and scores as produced by our tool-flow.

6 Automated Annotation

We have developed two systems for partially automating the annotation of source code with independence

pragmas. Both systems combine a compiler’s static analysis with runtime information to provide a ranked

list of pairs of pointers that are candidates for being marked as independent. It is then the programmer’s

responsibility to evaluate these candidates for correctness.

Figure 3 shows a code snippet which has been automatically annotated with candidate independence

pointer pairs. The scores heuristically estimate the effect that making the pair independent will have on

improving program performance. These scores, as described below, summarize both information about

the static code structure and execution frequencies. The pair (arr1,arr2) has a much higher score than

the other two pairs since these pointers are both accessed within the loop body. Knowing that they are

independent allows the compiler to load the values of *arr1 and *arr2 into registers for the whole

loop execution (perform register promotion). The pair (arr1,result) has a higher score than the pair

(arr2,result), reflecting the fact that there is an opportunity to schedule the stores to arr1 and result

in parallel after register promotion.
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Figure 4: Tool-flow for independence pragma source annotation. Notice that the programmer is in the loop,
certifying the correctness of the suggested annotations.

The code fragment in Figure 3 was automatically annotated by using the tool-flow depicted in Figure 4.

Of course, nothing prevents the function summer from being called with pointers that point to overlapping

memory regions as the arguments arg1 and arg2. Although the tool-flow checks whether this ever occurs

for the profiling input sets, this is no guarantee of the code correctness. It is the responsibility of the

programmer to verify the correctness of the annotations by inspecting all the call sites of summer. The

annotation scores serve as a heuristic to the programmer, focusing attention on the pairs which are most

likely to bring performance benefits. As we show in Section 7, the scores closely track the 90-10 rule of

program hot-spots (there are very few hot annotations) and verifying an annotation is not a time consuming

task. Programmer effort is thus minimized.

In our first system, the code instrumentation is performed with our experimental CASH compiler. Within

CASH, memory dependencies are first-class objects represented by token edges [4] (see Figure 5). A mem-

ory disambiguation pass examines every token edge and, using traditional intra-procedural pointer analysis,
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Figure 5: The CASH internal representation of Figure 1 with no independence pragmas (on the left) and
with independence pragmas (on the right). Dashed lines represent tokens and cause the memory operations
to be serialized. The V node joins tokens. Note that the graph on the right has one fewer store.

eliminates edges between memory reference that can be proven not to alias. The base pointers of memory

references that the analysis determines might alias are marked as candidates for annotation. Every pair of

pointers is associated with a static score which estimates, for that pair, the benefit of declaring that pair as

independent. For example, a pair which prevents an important optimization from taking place would receive

a high score. Although there are many possible ways to compute a relevant score using only static informa-

tion for a given pointer pair, our current implementation uses the simple, but effective, heuristic of counting

the number of token edges between pointer pairs.

In our second system, the code instrumentation is performed by a modified version of gcc. Within gcc

we provide the static score for each pointer pair by using the heuristic of counting the number of times gcc’s

optimization passes query for independence information between the two pointers.

Although in many cases the two compilers find the same candidate pointer pairs, in some cases each

compiler will find a pair the other does not. The CASH compiler is better at finding pointer pairs which are
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inhibiting optimizations, especially when the pointers are separated by complicated control flow. The gcc

compiler will sometimes find pointers which CASH, with its more sophisticated alias analysis, can identify

as not aliasing or not impacting optimization (if both pointers are used only in loads, for example).

Since pairs are aggressively generated without using inter-procedural analysis, some pairs will alias at

run-time and therefore should not be annotated as independent. Thus, both CASH and gcc also instrument

the program to collect run-time information: for each pointer pair, a special check operation is inserted. This

check operation acts as both an aliasing check and a frequency counter. When the program is run, the check

records any pointer pairs that alias, and thus are not independent. The frequency counter is used to identify

frequently-executed code. With CASH, the check operation is an instruction implemented directly within

the simulator whereas with gcc it is a function call to a memory checking library.

The compile-time and run-time information are combined by a script, which weeds out the pairs which

were discovered to alias and computes an overall score using both the static score and the frequency countss

for each pair (currently by multiplying them). The script sorts the annotations by the overall score, and

can optionally annotate the original source code with the annotations whose scores are above a certain

programmer-selected threshold; this is how the code in Figure 3 was produced. The programmer’s effort

can then be focused on analyzing the source code having pairs with high overall scores. We show in Section 7

that the number of relevant annotations tends to be small even for large programs and are easily verified,

even by programmers unfamiliar with the code.

7 Results

7.1 Evaluation

We have evaluated the effectiveness of our automated annotation system and the ability of the modified

compilers to take advantage of the independence information on three very different machine models: (1)
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We used our modified version of gcc to compile to the MIPS-like SimpleScalar [5] architecture which we

then simulated running on an in-order, single issue processor. (2) We used the same gcc version to compile

for a 733Mhz EPIC Intel Itanium processor [13]. Programs were compiled using the optimization flags -O2

-funroll-loops. (3) Finally, we used our CASH compiler to target a reconfigurable fabric. Our results

are obtained from the programs in Mediabench [14], Spec95 [20], and Spec2000 [21]. When possible we

ran the annotation tool on the training sets and collected performance results from the reference sets. Both

the CASH and gcc generated annotations were used for the Itanium and reconfigurable targets while only

the gcc generated ones were used for the SimpleScalar target.

Our two simulators provide cycle-accurate measurements, but are about three orders of magnitude

slower than native execution. The measurements on the real Itanium system are plagued by variability

from low-resolution timers and system activity. We have thus used different input sets for the simulated and

real system (short ones on simulators, large ones on the real system). In addition, we do not produce results

for larger benchmarks on the simulators nor results from smaller benchmarks on the Itanium.

The source code of all benchmarks has been annotated with independence pragmas using the automated

system. Although we have inspected and verified some benchmarks, we have not manually inspected each

and every individual pragma that the system produces. All benchmarks produce the correct output when run

with the annotations.

7.2 Speed-ups

The execution speed-up for annotated code on the in-order, single issue simulated processor is shown in

Figure 6. As expected, the effect of the independence pragmas is mostly negligible. This architecture is

incapable of taking advantage of additional memory parallelism. Furthermore, the gcc SimpleScalar PISA

back-end is somewhat rudimentary. Few target specific optimizations are performed and the underlying ma-

chine model does not accurately or precisely describe the actual machine model. Even so, 124.m88ksim
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Figure 6: Speed-up using #pragma independent annotated code compiled with gcc for a simulated
in-order, single issue processor.

Figure 7: Speed-up using #pragma independent annotated code compiled with gcc for an Intel Ita-
nium processor.

demonstrates a 1.13 speed-up using the pragmas. Most of the remaining benchmarks either show little or no

improvement. A couple of benchmarks, mpeg2 e and gsm e exhibit a small slowdown. The reason for the

slowdown is that gcc’s scheduler uses a simplistic and inaccurate machine model.
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Figure 8: Speed-up using #pragma independent annotated code compiled with the CASH compiler
for a simulated reconfigurable fabric.

The execution speed-up for annotated code on the Itanium is shown in Figure 7. As expected, the highly

parallel Itanium processor does better than the in-order SimpleScalar processor. 124.m88ksim shows a

speed-up of 1.28, 177.mesa a speed-up of 1.09, and 132.ijpeg a speed-up of 1.02. The remaining

benchmarks (not shown) either did not show a significant speed-up, or had too short a running time to be

measured precisely. The CASH annotations prove to be no better or worse than the gcc annotations. This is

because there are only a few critical pragmas in each benchmark. For example, in 124.m88ksim there is

just one pragma that accounts for all the observed speed-up; it breaks dependencies within a memcpy-like

loop. In 177.mesa, three pragmas inside a critical function with pointer arguments are enough to account

for all of the speed-up.

The execution speed-up for annotated code compiled for a reconfigurable fabric is shown in Figure 8.

Most benchmarks demonstrate meaningful speed-ups with the most significant being speed-ups of 2.00,

1.93, 1.74, 1.35 for adpcm d, jpeg d, adpcm e, and gsm d respectively. Note to reviewers: We’ve
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Figure 9: Score histogram for 132.ijpeg.

discovered a possible inefficiency in our circuit output where increasing the number of pragmas may result

in a performance degradation leading to the fact that currently the CASH generated pragmas do not always

result in better performance than the gcc generated ones. This will be fixed for the final paper.

7.3 Scoring

One goal of our tool is to give the programmer a way to pass information to the compiler without increasing

the programming burden. To this end we evaluated the effectiveness of our tools in guiding the programmer

effort toward the most profitable code regions.

Histograms of the scores of the pragmas, like the one in Figure 9 for 132.ijpeg, look surprisingly

similar. Figure 9 shows histograms of both the static and dynamic scores. The x axis is the normalized score

of an annotation, binned in 20 equal intervals. The y axis represents the number of annotations which have

a score within 5% of the x value. For example, the 5% bar labeled “dynamic”, with a value of 3, shows that

3 annotations have a score between 5% and 10% of the maximum score found. Both distributions have a

sharp knee, which suggests a cut-off point for useful annotations. In this example, 22 pragmas account for
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Figure 10: Speed-up for ijpeg run on a simulated reconfigurable fabric as more high ranking pragmas are
added.

Bench total checked conflict useful
124.m88ksim 119 57 2 12
129.compress 3 3 0 6
130.li 56 21 3 6
132.ijpeg 490 142 8 22
134.perl 744 267 42 22
175.vpr 188 39 4 12
181.mcf 132 60 7 14
adpcm d 12 3 0 6
adpcm e 12 3 0 6
epic d 41 11 7 11
epic e 32 22 3 13
g721 d 0 0 0 0
g721 e 0 0 0 0
gsm d 36 10 1 9
gsm e 36 21 4 11
jpeg d 418 90 2 12
jpeg e 453 68 9 10

Bench total checked conflict useful
mesa 979 107 9 25
mpeg2 d 94 64 0 3
mpeg2 e 72 21 4 9
pegwit d 34 24 3 11
pegwit e 34 25 4 14
176.gcc 3470 2406 504 44
197.parser 159 144 38 12
256.bzip2 40 36 34 3
300.twolf 451 173 52 27
168.wupwise 3 3 0 3
171.swim 0 0 0 0
172.mgrid 7 7 1 5
173.applu 2 2 2 0
177.mesa 950 94 8 37
183.equake 30 13 2 6
188.ammp 252 82 11 11
301.apsi 463 362 3 14

Table 1: The columns represent: benchmark name, total pointer pairs instrumented, pointer pairs with non-
zero run-time checks, pointer pairs found to alias at run-time, number of most likely useful pointer pairs
(knee of histogram curve).

the top 96% of the scores. These are the most likely to require the attention of the programmer. And in fact,

as Figure 10 shows, the top 18 pragmas account for almost all of the improvement that can be gained.

In Table 1 we give the pragma counts found by our gcc-based automatic instrumentation system. The

first three columns show the total number of pragmas inserted, the number of pointer pairs which were

executed at least once for the given input set, and the number of pairs which were found to alias, thus whose

annotations are incorrect. The fourth column shows how many of the correct annotations are below the

“knee” of the curve (these were manually estimated by looking at the score distribution).
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Figure 11: Speed-up using all, potentially unsafe, pragmas and only the highest-ranking pragmas which
were verified to be safe.

Figure 12: Speed-up for mpeg2 e run on a simulated reconfigurable fabric as more high ranking pragmas
are added.

In order to verify that the high scoring annotations are indeed the most important we have carried out

two experiments. We annotate each program with only a small number of annotations, the ones with the

highest scores. Figure 11 presents results for all benchmarks for which we manually inspected only the

highest ranking annotations (see below).
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Bench lines total inspected verified time spent ave time per pragma
adpcm d 307 8 8 8 5 �1
adpcm e 307 8 8 8 2 �1
gsm e 5841 33 9 9 25 2.8
gsm d 5841 36 5 5 9 1.8
epic d 2528 9 9 9 33 3.7
epic e 2830 21 21 20 11 �1
mpeg d 10596 73 58 34 113 1.9
mpeg e 7791 63 10 10 8 �1
jpeg e 27496 264 32 31 90 2.8
jpeg d 27496 248 13 13 10 �1
pegwit e 6944 99 26 26 24 �1
pegwit d 6944 98 26 26 2 �1
mesa 67081 361 30 27 16 �1

Table 2: For each benchmark we list the number of lines of code in the benchmark, the total number of
automatically generated pragmas, the number of pragmas inspected (if there were many generated pragmas,
only the highest ranking were inspected), the number which were readily verified to be correct, and the total
time spent on that benchmark.

Figure 12 shows how performance of mpeg2 e improves as we add more pairs, in order of decreasing

score. Although 64 pairs were flagged as candidates by the tool, only 4 of the highest ranking pointer pairs

are necessary to achieve nearly the same speed-up as using all the pairs.

7.4 Validation

We tested our claim that manually validating an automatically generated pragma is not an onerous task (even

if the programmer is unfamiliar with the code) by having several programmers verify some of the annotated

source. The programmers were instructed to verify only the highest scoring annotations.

Even though they had little experience with the code, it took an average of less than 2 minutes per pragma

to validate its correctness. Most of the time was spent exploring the call tree to determine the origins of

pointer arguments to functions. In addition, as the programmer became more acquainted with the structure

and conventions of a benchmark, validation took less time. Some program constructs made validation

difficult or impossible. In this case the annotation was marked as incorrect. We expect that a programmer

with a deeper understanding of the code would be able to verify annotations almost instantaneously.
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local argument global
local 30 51 24
argument 92 29
global 9

Table 3: The types of pointer pairs verified. Of the 235 pairs that were manually inspected, we classified
each verfied pair by the defining scope of its members. A local pointer variable was always counted as a
local reference, even if it could be proved to always equal a pointer argument.

Table 3 shows the counts for the different relationships between the verified pointers. Not surprisingly,

few pointer pairs were between global references as the compiler can almost always differentiate the pointers

in this case. Without inter-procedural analysis, function arguments, and local variables whose values come

from function arguments, are the most likely candidates for programmer specified pointer analysis.

8 Conclusion

Uncertainty about pointer relationships and the inability to perform whole program analysis frequently hand-

icaps compiler optimizations, particularly for languages like C. However, it is frequently the case that the

programmer has knowledge about pointers which could help the optimizer, but the language provides no

mechanism for expressing this type of information. In this paper we have presented a mechanism which

enables the programmer to specify to the compiler that certain pointers access disjoint memory regions and

quantified the benefits that can be derived from exploiting this mechanism. We have also presented a tool-

chain which uses the compiler optimizer and run-time information to suggest to the programmer a small

number of pointer pairs whose known non-aliasing could have a big impact on the program performance.

Allowing programmers to provide pointer independence information can result in meaningful increases in

performance. Of course, the programmer must verify that such annotations are safe. In fact, doing so is

easy and using our tool can often significantly increase performance after an investment of only 10 minutes.

We conclude that programmer specified pointer independence is a scalable, effective alternative to inter-
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procedural pointer analysis. Our modified version of gcc, scripts to annotate source code, and the diffs for

our annotated benchmarks can be found at http://www.cs.cmu.edu/˜phoenix/independence.
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