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Abstract
This paper describes aglobal progressive register allocator, a regis-
ter allocator that uses an expressive model of the register allocation
problem to quickly find a good allocation and then progressively
find better allocations until a provably optimal solution is found or a
preset time limit is reached. The key contributions of this paper are
an expressive model of global register allocation based on multi-
commodity network flows that explicitly represents spill code op-
timization, register preferences, copy insertion, and constant rema-
terialization; two fast, but effective, heuristic allocators based on
this model; and a more elaborate progressive allocator that uses
Lagrangian relaxation to compute the optimality of its allocations.

Our progressive allocator demonstrates code size improvements
as large as 16.75% compared to a traditional graph allocator. On
average, we observe an initial improvement of 3.47%, which in-
creases progressively to 6.84% as more time is permitted for com-
pilation.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers, Optimization

General Terms Algorithm, Design, Languages, Performance

Keywords Register Allocation, Progressive Solver

1. Introduction
As we reach the limits of processor performance and architectural
complexity increases, more principled approaches to compiler op-
timization are necessary to fully exploit the performance potential
of the underlying architectures. Global register allocation is an ex-
ample of a compiler optimization where a principled approach is
needed in order to to extract maximum performance from com-
plex architectures. The register allocation problem has many com-
ponents, such as spill code optimization, register preferences, co-
alescing, and rematerialization, that are not explicitly modeled or
solved by existing heuristic-driven algorithms. Optimal algorithms
for solving this NP-complete problem demonstrate the significant
gap between the performance of current heuristics and the theoret-
ical optimum, but do not exhibit practical compile times. Apro-
gressive algorithmbridges this gap by allowing a programmer to
explicitly trade extra compilation time for improved register allo-
cation.
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In order for a progressive algorithm to find an optimal solution,
anexpressive modelthatexplicitly representsall the components of
the register allocation problem is needed. Traditional graph color-
ing based heuristics [10, 12, 11] use a simplified graph model that
only explicitly represents the interference constraints. Other com-
ponents of the register allocation problem are implicitly handled
by modifying the heuristic solver [8, 9, 40, 6]. The lack of an ex-
pressive underlying model means that even if the graph coloring
heuristic in a traditional allocator is replaced with an optimal col-
oring algorithm, the result is not an optimal register allocation. In
fact, the result is significantly worse because so many components
of the register allocation problem areimplicit in the coloring heuris-
tic instead ofexplicit in the graph model [25]. If a provably optimal
register allocation is desired, the underlying model of the problem
must be expressive enough to fully represent all the components of
register allocation, not just the interference constraints.

Given an expressive model of the register allocation problem,
it may be possible to find an optimal solution. Models based
on integer linear programming (ILP) [30, 36, 2, 27, 17], parti-
tioned boolean quadratic programming (PBQP) [20], and multi-
commodity network flow (MCNF) [24] have been formulated to
represent the register allocation problem. These models are more
expressive than the graph coloring model and admit powerful solu-
tion techniques. Unfortunately, although these solution techniques
provide optimality guarantees, they can require an impractical
amount of time to find any solution, much less the optimal solution.

A natural alternative to using an optimal solver is to use a
heuristic solver based on an expressive model. This approach has
been used successfully with the PBQP and MCNF models, but
there remains a significant gap, both in terms of solution quality
and compile time, between the heuristic solvers and the optimal
solvers. A progressive solver bridges this gap by quickly finding a
good solution and then progressively finding better solutions until
an optimal solution is found or a preset time limit is reached.
The use of progressive solution techniques fundamentally changes
how compiler optimizations are enabled. Instead of selecting an
optimization level, a programmerexplicitly trades compilation time
for improved optimization.

In this paper we present aglobal progressive register alloca-
tor that combines an improved version of the MCNF model with
a progressive solution technique based on Lagrangian relaxation.
We extend the MCNF model of [24], which is only suitable for
local register allocation, to represent the global register allocation
problem. Multi-commodity network flow is a natural representa-
tion of register allocation; an allocation of a variable is represented
by a flow of a commodity through a network. The network is de-
signed so that valid allocations correspond exactly to valid flows
and the cost of a flow is precisely the cost of the allocation. In
addition to the required interference and capacity constraints, our
global MCNF model can explicitly represent the costs of spill code



insertion, register preferences, copy insertion, and constant rema-
terialization. Unlike some other models of register allocation, our
model does not require that a variable be allocated to a single reg-
ister for its entire lifetime; a variable may move between memory
and registers and between registers at any point in the program. The
global MCNF model is expressive enough to represent most of the
pertinent components of register allocation.

We have developed two heuristic solvers for our model of regis-
ter allocation. The simultaneous heuristic solver works similarly to
second-chance binpacking allocators [42]. It executes a single pass
over the control flow graph, maintaining an allocation for all live
variables at each program point and evicting variables to memory as
necessary to allocate newly defined variables. The iterative heuris-
tic solver works similarly to a single-pass graph coloring heuristic
in that it processes variables in a fixed order and does not revisit
allocation decisions, but, unlike traditional heuristics, our heuristic
solver benefits from the expressiveness of the underlying model.
These simple heuristic solvers quickly find solutions competitive
with existing heuristic allocators.

Our progressive solver uses the theory of Lagrangian relaxation
to compute a lower bound and to guide the search for an optimal so-
lution. The existence of a lower bound not only provides a termina-
tion condition, which is when the value of the best solution matches
the lower bound, but also allows us to calculate an upper bound on
the optimality of an existing solution (e.g., that the current best so-
lution is within 1% of optimal). The Lagrangian relaxation method
produces Lagrangian prices, also known as multipliers, which, as
the method converges, are used to push our solvers closer to the
optimal solution.

We have implemented our global progressive register allocator
in the GNU C compiler targeting the Intel x86 architecture. We
evaluate the our progressive allocator in terms of code size on a
large selection of benchmarks from the SPEC2000, SPEC95, Me-
diaBench, and MiBench benchmark suits. We use code size as a
metric because, in addition to being a valuable metric in the embed-
ded community, it has the advantage that it can be accurately eval-
uated at compile time. This lets us exactly match the predictions of
our global MCNF model with the actual output. Compared to a tra-
ditional graph allocator, our allocator demonstrates an average ini-
tial code size improvement of 3.47% and, with time, progressively
improves the code quality to get an average size improvement of
6.84% with six benchmarks demonstrating a code size improve-
ment of more than 10%.

The contributions of this paper are threefold:

• We describe an expressive model for global register allocation
based on multi-commodity network flow that explicitly repre-
sents important components of register allocation such as spill
code insertion, register preferences, copy insertion and constant
rematerialization.

• We present a progressive solver that quickly finds a good so-
lution and then progressively improves the solution over time.
Our solver can also accurately gauge the optimality of its solu-
tions.

• We present a comprehensive evaluation of our global progres-
sive register allocator detailing its ability to accurately model
the register allocation problem, outperform existing allocators,
and provide theoretical guarantees on the quality of the solu-
tion.

The remainder of this paper is organized as follows. Section 2
describes our model of register allocation in detail, including those
extensions necessary to model the global register allocation prob-
lem. Section 3 describes our progressive solution procedure. Sec-
tion 4 details our implementation in the GNU C compiler. Section 5
contains the experimental evaluation of our register allocator. Fi-

nally, Section 6 more fully contrasts this work with prior work and
Section 7 concludes.

2. MCNF Model of Register Allocation
In this section we describe a model of register allocation based
on multi-commodity network flow. We first describe the general
MCNF problem and show how to create an expressive model of
register allocation for straight-line code using MCNF. We then
extend the MCNF model to handle control flow. Finally, we discuss
some limitations of the model. Overall, the our global MCNF
model explicitly and exactly represents the pertinent components
of the register allocation problem.

2.1 Multi-commodity Network Flow

The multi-commodity network flow (MCNF) problem is finding the
minimum cost flow of commodities through a constrained network.
The network is defined by nodes and edges where each edge has
costs and capacities. Without loss of generality, we can also apply
costs and capacities to nodes. The costs and capacities can be
specific for each commodity, but edges also havebundle constraints
which constrain the total capacity of the edge. For example, if an
edge has a bundle constraint of 2 and commodities are restricted
to a single unit of integer flow, at most two commodities can use
that edge in any valid solution. Each commodity has a source
and sink node such that the flow from the source must equal the
flow into the sink. Although finding the minimum cost flow of a
single commodity is readily solved in polynomial time, finding a
solution to the MCNF problem where all flows are integer is NP-
complete [1].

Formally, the MCNF problem is to minimize the costs of the
flows through the network:

min
X

k

ckxk

subject to the constraints:X
k

xk
ij ≤ uij

0 ≤ xk
ij ≤ vk

ij

Nxk = bk

whereck is the cost vector containing the cost of each edge for
commodityk, xk is the flow vector for commodityk wherexk

ij is
the flow of commodityk along edge(i, j), uij is the bundle con-
straint for edge(i, j), vk

ij is an individual constraint on commod-
ity k over edge(i, j), the matrixN represents the network topol-
ogy, and the vectorbk contains the inflow and outflow constraints
(source and sink information).

2.2 Local Register Allocation Model

Multi-commodity network flow is a natural basis for an expres-
sive model of the register allocation problem. A flow in our MCNF
model corresponds to a detailed allocation of that variable. A sim-
plified example of our MCNF model of register allocation is shown
in Figure 1. Although simplified, this example demonstrates how
our MCNF model explicitly represents spill costs, constant rema-
terialization, and instruction register usage constraints and prefer-
ences.

The commodities of the MCNF model correspond to variables.
The design of the network and individual commodity constraints is
dictated by how variables are used. The bundle constraints enforce
the limited number of registers available and model instruction
usage constraints. The edge costs are used to model both the cost
of spilling and the costs of register preferences.



a b

c

a

c

b

mem

r0 r1 mem

ba: 3

ADD c,d -> c

SUB a,b -> c

crossbar

r0 r1 1 MOVE 1 -> d

d

d: -2

a
b

r0 r1 mem

r0 r1 mem

a
1

1

d

r0 r1 mem

r0 r1 mem 1

a

d

b: 1

a b

d: -2

crossbar

crossbar omitted 
for clarity

r0 r1 mem MOVE c -> r0

c: -2

d

d

b

a
b

c

c

c

crossbar omitted 
for clarity

int example(int a, int b)
{

int d = 1;
int c = a - b;
return c+d;

}

Source code of example

MOVE 1 -> d
SUB a,b -> c
ADD c,d -> c
MOVE c -> r0

Assembly before register allocation

MOVE STACK(a) -> r0
SUB r0,STACK(b) -> r0
INC r0

Resulting register allocation

Figure 1. A simplified example of the multi-commodity network flow model of register allocation. Thin edges have a capacity of 1 (as only
one variable can be allocated to a register and instructions only support a single memory operand). A thick edge indicates that the edge is
uncapacitated. For clarity, edges not used by the displayed solution are in gray and much of the capacity and cost information is omitted. The
commodity and cost along each edge used in the solution are shown if the cost is non-zero. In this example the cost of a load is 3, the cost of
using a memory operand in theSUB instruction is 1, the benefit (negative cost) of allocatingc to r0 in the finalMOVE instruction is 2 since the
move can be deleted in this case. Similarly, allocatingd to a constant when it is defined has a benefit of 2. If an operand of theADD instruction
is the constant one, then a benefit of 2 is accrued because the more efficientINC instruction can be used. The total cost of this solution is -2.

Each node in the network represents an allocation class: a regis-
ter, constant class, or memory space where a variable’s value may
be stored. Although a register node represents exactly one regis-
ter, constant and memory allocation classes do not typically corre-
spond to a single constant or memory location. Instead they refer
to a class of constants or memory locations that are all accessed
similarly (e.g., constant integers versus symbolic constants).

Nodes are grouped into either instruction or crossbar groups.
There is an instruction group for every instruction in the program
and a crossbar group for every point between instructions. An
instruction group represents a specific instruction in the program
and contains a single node for each allocation class that may be
used by the instruction. The source node of a variable connects
to the network at the defining instruction and the sink node of a
variable removes the variable from the network immediately after
the last instruction to use the variable. The nodes in an instruction
group constrain which allocation classes are legal for the variables

used by that instruction. For example, if an instruction does not
support memory operands, such as the load of the integer constant
one in Figure 1, then no variables are allowed to flow through the
memory allocation class node. Similarly, if only a single memory
operand is allowed within an instruction, the bundle constraints
of the instruction’s memory edges are set to 1. This is illustrated
in Figure 1 by the thin edges connecting to the memory node of
the SUB instruction group. Variables used by an instruction must
flow through the nodes of the corresponding instruction group.
Variables not used by the instruction bypass the instruction into the
next crossbar group. This behavior can been seen in the behavior
of variablesa and b in Figure 1. The flows of these variables
bypass the first instruction but are forced to flow through theSUB
instruction.

Crossbar groups are inserted between every instruction group
and allow variables to change allocation classes. For example, the
ability to store a variable to memory is represented by an edge
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Figure 2. An example of anti-variables. The anti-variable ofa, a′,
is restricted to the memory subnetwork (dashed edges). The edge
r is redundant and need not be in the actual network. The cost of
the second store can be paid by the first edge. If ther edge is left
in the graph, it would have a cost of three, the cost of a store in this
example. Multiple anti-variable eviction edges can also be used to
model the case where stores have different costs depending on their
placement in the instruction stream.

within a crossbar group from a register node to a memory allocation
class node. In Figure 1 the variablea, which is assumed to start
as a parameter on the stack, flows from the memory node tor0,
which corresponds to a load. The crossbar groups shown in Figure 1
are full crossbars which means that for some allocations the use of
swap instructions, instead of a simple series of move instructions,
might be necessary. If swap instructions are not available or are not
efficient relative to simple moves, a more elaborate zig-zag crossbar
structure can be used.

The cost of an operation, such as a load or move, can usually be
represented by a cost on the edge that represents the move between
allocation classes. However, this does not accurately reflect the
cost of storing to memory. If a variable has already been stored to
memory and its value has not changed, it is not necessary to pay the
cost of an additional store. That is, values in memory are persistent,
unlike those in registers which are assumed to be overwritten.

In order to model the persistence of data in memory, we in-
troduce the notion of anti-variables which are used as shown in
Figure 2. An anti-variable is restricted to the memory subnetwork
and is constrained such that it cannot coexist with its correspond-
ing variable along any memory edge. An anti-variable can either
leave the memory sub-network when the variable itself exits the
network or the cost of a store can be paid to leave the memory sub-
network early. There is no cost associated with edges from registers
to memory, but for these edges to be usable, the anti-variable must
be evicted from memory. The cost of evicting the anti-variable is
exactly the cost of a single store. In this way a variable may flow
from registers to memory multiple times and yet only pay the cost
of a single store (of course, every transition from memory to a reg-
ister pays the cost of a load). An actual store is only generated for
the first move to memory.
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Figure 3. The types of nodes in a global MCNF representation of
register allocation. The merge/split nodes not only modify the tradi-
tional flow equations with a multiplier, but also require uniformity
in the distribution of inputs/outputs.

Figure 4. A MCNF based representation of global register allo-
cation with a sample allocation shown with the thicker line. Each
block can be thought of as a crossbar where the cost of each edge
is the shortest path between a given merge and split node.

2.3 Global Register Allocation Model

Although the described MCNF model is very expressive and able to
explicitly model many important components of register allocation,
it is unsuitable as a model of global register allocation since it does
not model control flow. In order to represent the global register
allocation problem, boundary constraints are added to link together
the local allocation problems. These constraints are represented by
split andmergenodes as shown in Figure 3.

Similar to normal nodes, split and merge nodes represent a
specific allocation class. Merge nodes denote the entry to a basic
block. A variable with a flow through a specific merge node is
allocated to that allocation class at the entry of the relevant block.
The merge property of the merge node, as enforced by the flow
equations in Figure 3, requires that a variable be allocated to the
same allocation class at the entry of a block as at the exit of all of
the predecessors of the block. Similarly, a split node requires that
an allocation of a variable at the exit of a block match the allocation
at the entry to each of the successors to the block.

More formally, we add the following equality constraint for
every commodityk and for every pair(split, merge) of connected
split and merge nodes to the definition of the MCNF problem given
in Section 2.1:

xk
in,split = xk

merge,out



Note that split nodes are defined to have exactly one incoming edge
and merge nodes to have exactly one outgoing edge. We refer to
these constraints as theboundary constraints. These constraints
replace the normal flow constraint between nodes for split and
merge nodes.

A simplified example of a single allocation in the global MCNF
model is shown in Figure 4. In this example, the full MCNF repre-
sentation of each basic block is reduced to a simple crossbar. Unlike
the local MCNF model, finding the optimal allocation for a single
variable is not a simple shortest path computation. In fact, for gen-
eral flow graphs the problem is NP-complete (by a reduction from
graph coloring).

2.4 Limitations

Our global MCNF model can explicitly model instruction usage
constraints and preferences, spill and copy insertion, and con-
stant rematerialization. In addition, our model can model a limited
amount of register-allocation driven instruction selection. For ex-
ample, in Figure 1 the model explicitly encodes the fact that if an
operand of theADD instruction is the constant one, a more efficient
INC instruction can be used. However, the model can not currently
represent inter-variable register usage preferences or constraints.
That is, the model can not represent a statement like, “ifa is allo-
cated to X andb is allocated to Y in this instruction, then a 2 byte
smaller instruction can be used.” For example, on the x86 a sign
extension from a 16-bit variablea to a 32-bit variableb is normally
implemented with a 3-bytemovsxw instruction, but if botha and
b are allocated to the registereax then a 1-bytecwde instruction
may be used with the same effect. This saving in code size cannot
be exactly represented in our model because edge costs only apply
to the flow of a single variable. If the instruction stream was mod-
ified so that a move froma to b were performed before the sign
extension and the sign extension hadb as its only operand, then the
model would be capable of exactly representing the cost savings
of allocatingb to eax at the cost of requiring a more constrained
instruction stream as input.

Another example where inter-variable register usage prefer-
ences are useful is in the modeling of the conversion of a three
operand representation of a commutative instruction into a two
operand representation. Internally, a compiler might represent ad-
dition asc = a + b even though the target architecture requires
that one of the source operands be allocated to the same register
as the destination operand. Ideally, the model would be able to ex-
actly represent the constraint that one of the source operands,a
or b, be allocated identically withc. Converting non-commutative
instructions into two operand form does not pose a problem for our
model as these instructions can be put into standard form without
affecting the quality of register allocation.

On some architectures inter-variable register usage constraints
might exist that require a double-width value to be placed into
two consecutive registers. The SPARC architecture, for example,
requires that 64-bit floating point values be allocated to an even
numbered 32-bit floating point register and its immediate successor.
Our MCNF model currently is not capable of representing such a
constraint.

Unlike traditional allocators, our model does not represent the
benefits of move coalescing. Instead, moves are aggressively coa-
lesced before register allocation; the model explicitly represents the
benefit of inserting a move so there is no need to leave unnecessary
moves in the instruction stream. Put another way, instead of move
coalescing, our allocator implements un-coalescing.

An additional limitation of our model is that it assumes that it is
never beneficial to allocate the same variable to multiple registers at
the same program point. This arises because there is a direct corre-
spondence between the flow of a variable through the network and

the allocation of the variable at each program point. The assump-
tion that it will not be beneficial to allocate a variable to multiple
registers at the same program point seems reasonable for architec-
tures with few registers. If desired, this limitation can be removed
by using a technique similar to how anti-variables are used to model
stores.

3. Progressive Solution Procedure
In this section we first explain how we can quickly find a feasible
solution to the global MCNF problem using heuristic allocators.
We describe two such allocators: an iterative allocator which iter-
ates over all variables, allocating each in its entirety, and a simul-
taneous allocator which performs a single scan through the control
flow graph, allocating all live variables simultaneously. Next we
describe how we apply Lagrangian relaxation to the global MCNF
problem in order to compute an optimality bound and guide our
progressive solver. Finally, we describe how we combine the two
heuristic allocators with the output of Lagrangian relaxation in our
progressive solver.

3.1 Iterative Heuristic Allocator

The specific form of our global MCNF representation allows us to
quickly find a feasible, though possibly low quality, solution us-
ing an iterative heuristic allocator. The iterative algorithm allocates
variables in some heuristically determined order (such as allocating
more frequently referenced variables first). A variable is allocated
by traversing the control flow graph in depth first order and com-
puting the shortest path for the variable in each block. Because the
blocks are traversed in order, the split nodes at the exit of a pro-
cessed block will fix the starting point for the shortest path in each
successor block. Within each block we will always be able to find a
feasible solution because the memory network is uncapacitated. We
constrain our shortest-path algorithm to conservatively ignore paths
that could potentially make the network infeasible for the variables
that still need to be allocated. For example, if an instruction requires
a currently unallocated operand to be in a register and there is only
one register left that is available for allocation, all other variables
would be required to be in memory at that point.

Although we can always find a feasible solution this way, it is
unlikely that we will find a good solution since the shortest path
computations we perform are independent and are not influenced
by the effect that an allocation might have on the global cost of al-
location. We can improve upon this heuristic by allocating high pri-
ority variables first, using information from the interference graph
to prevent variables from initially being allocated to registers that
will cause conflicts elsewhere in the partially allocated network,
and always charging the cost of a store to compensate for the lack
of interference from anti-variables.

The iterative heuristic allocator performs a shortest path compu-
tation for every variablev in every block. This shortest path com-
putation is linear in the number of instructions,n, because each
block is a topologically ordered directed acyclic graph. Therefore
the worst case running time of the algorithm isO(nv).

3.2 Simultaneous Heuristic Allocator

As an alternative to the iterative allocator, we describe a simulta-
neous allocator which functions similarly to a second-chance bin-
packing allocator [42] but uses the global MCNF model to guide
eviction decisions. The algorithm traverses the control flow graph
in depth first order. For each block, it computes both a forwards
and backwards shortest-path computation for every variable. These
paths take into account that the entry and exit allocations of a vari-
able may have been fixed by an allocation of a previous block. Hav-
ing performed this computation, the cost of the best allocation for a



variable at a specific program point and allocation class in a block
can be easily determined by simply summing the cost of the short-
est paths to the corresponding node from the source and sink of the
given variable.

After computing the shortest paths, the algorithm scans through
the block, maintaining an allocation for every live variable. The
allocations of live-in variables are fixed to their allocations at the
exit of the already allocated predecessor blocks. At each level in
the network, each variable’s allocation is updated to follow the
previously computed shortest path to the sink node of the variable
(the common case is for a variable to remain in its current location).
If two variables’ allocations overlap, the conflict is resolved by
evicting one of the variables to an alternative allocation.

When a variable is defined, the minimum cost allocation is com-
puted using the shortest path information and a calculation of the
cost of evicting any variable already allocated to a desired location.
The cost of evicting a variable from its current location is com-
puted by finding the shortest path in the network to a valid eviction
edge (an edge from the previous allocation to the new allocation).
In computing this shortest path we avoid already allocated nodes
in the graph. That is, we do not recursively evict other variables
in an attempt to improve the eviction cost. The shortest path is not
necessarily a simple store immediately before the eviction loca-
tion. For example, if the defining instruction of the variable being
evicted supports a memory operand, it might be cheaper to define
the variable into memory instead of defining it into a register and
performing a more costly store later. When a variable is evicted
to memory the cost of the corresponding anti-variable eviction is
also computed and added to the total eviction cost. When choosing
a variable to evict we break ties in the eviction cost by following
the standard practice and choosing the variable whose next use is
farthest away [4, 30].

Currently, only intra-block evictions are implemented; the earli-
est a variable can be evicted is at the beginning of the current block.
Because of this limitation, this allocator performs more poorly as
the amount of control flow increases since poor early allocation de-
cisions can not be undone later in the control flow graph.

The simultaneous heuristic allocator, like the iterative algo-
rithm, must compute shortest paths for every variablev in every
block. Unlike the iterative algorithm, the simultaneous allocator
does not need to compute each path successively and instead can
compute all paths in the same pass. However, although this results
in an empirical performance improvement, the worst case asymp-
totic running time remainsO(nv).

3.3 Lagrangian Relaxation

Ideally, we would like to build a solution from simple shortest path
computations. Each individual variable’s shortest path would need
to take into account not only the immediate costs for that variable,
but also the marginal cost of that allocation with respect to all
other variables. Lagrangian relaxation provides a formal way of
computing these marginal costs.

Lagrangian relaxation is a general solution technique [1, 29]
that removes one or more constraints from a problem and integrates
them into the objective function using Lagrangian multipliers re-
sulting in a more easily solved Lagrangian subproblem. In the case
of multi-commodity network flow, the Lagrangian subproblem is
to find a price vectorw such thatL(w) is maximal, whereL(w) is
defined:

L(w) = min
X

k

ckxk +
X
(i,j)

wij

 X
k

xk
ij − uij

!
(1)

which can be rewritten as:

L(w) = min
X

k

X
(i,j)

“
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”
xk
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X
(i,j)

wijuij (2)

subject to

xk
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Nxk = bkX
i

xk
i,split =

X
j

xk
merge,j

The bundle constraints have been integrated into the objective
function. If an edgexij is over-allocated then the term

P
k xk

ij−uij

will increase the value of the objective function, making it less
likely that an over-allocated edge will exist in a solution that min-
imizes the objective function. Thewij terms are the Lagrangian
multipliers, called prices in the context of MCNF. The prices,w,
are arguments to the subproblem and it is the flow vectors,xk, that
are the free variables in the minimization problem. The Lagrangian
subproblem is still subject to the same network and individual flow
constraints as in the MCNF problem. As can be seen in (2), the min-
imum solution to the Lagrangian subproblem decomposes into the
minimum solutions of the individual single commodity problems.

Unfortunately, in our global MCNF model the individual single
commodity problem remains NP-complete because of the bound-
ary constraints. Fortunately, the boundary constraints can also be
brought into the objective function using Lagrangian multipliers:

L(w) = min
X

k

X
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“
ck

ij + wij

”
xk

ij −
X
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wijuij +

X
(split,merge)
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split,merge

“
xk
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in,split

”
(3)

subject to

xk
ij ≥ 0

Nxk = bk

Since there are no normal flow constraints between split and merge
nodes, the solution to (3) is simply a set of disconnected single
commodity flow problems.

The functionL(w) has several useful properties [1]. LetL∗ =
maxwL(w), thenL∗ provides a lower bound for the optimal so-
lution value. Furthermore, a solution,x, to the relaxed subproblem
which is feasible in the original MCNF problem is likely to be opti-
mal. In fact, if the solution obeys the complementary slackness con-
dition, it is provably optimal. The complementary slackness condi-
tion simply requires that any edge with a non-zero price be used
to its full capacity in the solution. Intuitively, this means that given
the choice of two identically priced shortest paths, the path with the
lower unpriced cost results in a better solution.

We solve forL∗ using an iterative subgradient optimization
algorithm. At a stepq in the algorithm, we start with a price vector,
wq, and solveL(wq) for xk to get an optimal flow vector,yk, by
performing a multiple shortest paths computation in each block. We
then updatew using the rules:

wq+1
ij = max

 
wq

ij + θq

 X
k

yk
ij − uij

!
, 0

!

wk
split,merge

q+1
= wk

split,merge

q
+ θq

“
yk

merge,out − yk
in,split

”



whereθq is the current step size. This algorithm is guaranteed to
converge ifθq satisfies the conditions:

lim
q→∞

θq = 0

lim
q→∞

qX
i=1

θi = ∞

An example of a method for calculating a step size that satisfies
these conditions is the ratio method,θq = 1/q. More sophisticated
techniques to calculate the step size and update the prices [33, 3]
are beyond the scope of this paper.

Although the iterative subgradient algorithm is guaranteed to
converge, it is not guaranteed to do so in polynomial time. Further-
more,L∗ does not directly lead to an optimal solution of the orig-
inal, unrelaxed global MCNF problem. However, the Lagrangian
prices can be used to effectively guide the allocation algorithms
towards better solutions and to provide optimality guarantees.

3.4 Progressive Solver

We combine our allocation heuristics with the Lagrangian relax-
ation technique to create a progressive solver. The solver first finds
an initial solution in the unpriced network. Then, in each iteration
of the iterative subgradient algorithm, the current set of prices are
used to find another feasible solution. When finding solutions in
the priced network, the allocation heuristics compute shortest paths
using edge and boundary prices in addition to edge costs. Global
information, such as the interference graph, is not used except to
break ties between identically priced paths. Instead, the allocators
rely exclusively on the influence of the prices in the network to
account for the global effect of allocation decisions.

Both allocators attempt to build a feasible solution to the global
MCNF problem whose cost in the priced network is as close as pos-
sible to the cost of the unconstrained solution found during the up-
date step of the subgradient algorithm. If the algorithm is successful
and the found solution obeys the complementary slackness condi-
tion, then the solution is provably optimal. When selecting among
similarly priced allocation decisions, we can increase the likelihood
that the solution will satisfy the complementary slackness condition
by favoring allocations with the lowest unpriced cost.

There are several factors that prevent the allocation algorithms
from finding the optimal solution given a priced network. Until the
iterative subgradient method has fully converged, the prices in the
network are only approximations. As a result, we may compute a
shortest path for a variable that would not be a shortest path in a
network with fully converged prices. The simultaneous allocator is
less sensitive to this effect since it can undo bad allocation deci-
sions. However, the values of the boundary prices are critical to the
performance of the simultaneous allocator as allocation decisions
get fixed at block boundaries.

A potentially more significant impediment to finding an optimal
solution is that the lower bound computed using Lagrangian relax-
ation converges to the value of the optimal solution of the global
MCNF problem without integer constraints. If the gap between the
value of the solution to the integer problem and the linear problem
is nonzero, we will not be able to prove the optimality of a solution.
Fortunately, as we show in Section 5.2, this gap is rarely nonzero.

Even given perfectly converged prices and ana priori knowl-
edge that the integrality gap is zero, the allocation problem remains
difficult. Both allocators must choose among identically priced al-
locations, not all of which may be valid allocations in an optimal
solution. Again, the simultaneous allocator is somewhat insulated
from this difficulty since it can undo bad decisions within a block,
but it still must rely upon the value of the boundary prices to avoid
locally good, globally poor, allocation decisions.

The challenges faced by the allocators in converting a priced
network into an optimal register allocation are not unexpected
given the NP-completeness of the problem. However, as we shall
see, as the iterative subgradient algorithm converges, the quality of
solutions found by the allocation heuristics improve and the lower
bound on the optimal solution value increases resulting in provably
optimal or near-optimal solutions.

4. Implementation
We have implemented our global MCNF allocation framework as
a replacement for the register allocator ingcc 3.4.3 when target-
ing the Intel x86 architecture. Before allocation, we execute a pre-
conditioning pass which aggressively coalesces moves and trans-
lates instructions that are not in an allocable form. For example, the
compiler represents instructions as three operand instructions even
though the architecture only supports two operand instructions. If
all three operands are live out of the instruction, it is not possi-
ble to allocate these three variables to distinct registers and still
generate an x86 two operand instruction. The preconditioning pass
translates such instructions so that two of the three operands are the
same variable.

We next build a global MCNF model for the procedure as
described in Section 2. In our model, crossbars are represented as
zig-zags sincegcc does not support the generation of the x86 swap
instruction. We simplify the network by only permitting loads and
stores of a variable to occur at block boundaries and after a write
to the variable (for a store) or before a read of the variable (for a
load). This simplification does not change the value of the optimal
solution.

We use code size as the cost metric in our model. This metric
has the advantage that it can be perfectly evaluated at compile time
and exactly represented by our model. We assume a uniform mem-
ory cost model. Specifically, we assume that spilled variables will
always fit in the 128 bytes below the current frame pointer unless
this space is already fully reserved for stack allocated data (such as
arrays). As a result, for some large functions that spill more than
32 values the model is inaccurate. We only model constant remate-
rialization for integer constants. Although it is not required by the
architecture,gcc requires 64-bit integer values to be allocated to
consecutive registers. Since our model currently does not support
such constraints, we ignore such values (resulting in all such vari-
ables being allocated to memory and fixed up by the reload pass).

We run both the iterative and simultaneous allocators on the
initial unpriced network and then for each step of the iterative
subgradient algorithm we apply only the simultaneous allocator to
the priced network. In addition to being faster, the simultaneous
allocator generally performs better than the iterative allocator once
the Lagrangian prices start to converge. However, the iterative
allocator does better on the unpriced graph because it allocates
variables in order of decreasing priority. A sample of the behavior
of both allocators is shown in Figure 5.

After running our solver, we insert the appropriate moves,
stores, and loads and setup a mapping of variables to registers.
Thegcc reload pass is then run which applies the register map and
modifies the instruction stream to contain only references to physi-
cal registers. This pass will also fix any illegal allocations that our
allocator might make if the model of register preferences and usage
constraints is not correct by generating additional fixup code (this
is not common).

5. Results
In this section we evaluate our global MCNF model and progressive
allocator on a large selection of benchmarks from the SPEC2000,
SPEC95, MediaBench, and MiBench benchmark suits. Combined,
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Figure 5. The behavior of the two heuristic allocators as the Lagrangian prices converge executed on a 2.8Ghz Pentium 4 with 1GB of RAM.
ThesquareEncrypt function from the pegwit benchmark consists of a single basic block and has 378 instructions, 150 variables, and an
average register pressure of 4.99. Thequicksort function is spread across 57 blocks, has 236 instructions, 58 variables, and an average
register pressure of 3.14. Approximately a third of the final size of both functions is due to register allocation overhead. The iterative allocator
performs better initially, but as the Lagrangian prices converge the simultaneous allocator performs better. In the case of thesquareEncrypt
function, which has no control flow, the simultaneous allocator finds an optimal solution in less than a quarter of the time it takes the CPLEX
solver. Neither allocator succeeded in finding an optimal allocation forquicksort before CPLEX found the optimal solution at 112 seconds.
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Figure 6. An evaluation of the accuracy of the global MCNF
model that compares the predicted size after register allocation to
the actual size.

these benchmarks contain more than 10,000 functions. First we val-
idate the accuracy of our model since an accurate model is vital to
the performance of our allocator. We then analyze the complexity
and difficulty of our global MCNF representation using standard
integer linear programming solution techniques. Next we evaluate
the quality of our solutions in terms of code size. Because our con-
cern is with evaluating our model and our solver, all size results
are taken immediately after the register allocation pass (including
gcc’s reload pass) to avoid noise from downstream optimizations.
Although we explicitly optimize for size, not speed, we also evalu-
ate the performance of code compiled with our progressive register
allocator. Finally, we analyze the progressiveness and optimality of
our solver as well as its runtime performance.

5.1 Accuracy of the Model

We evaluate the accuracy of the model by comparing the predicted
size of a function after ten iterations of our progressive algorithm
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CPLEX Solution Time

Figure 7. The percentage of functions for which CPLEX could
find an optimal solution to the global MCNF representation of
register allocation within in a given time limit. A small number of
functions (0.72% of the total) could not be solved within 12 hours.

to the actual size of the function immediately after register allo-
cation. As shown in Figure 6, approximately half of the compiled
functions have their size exactly predicted and more than 70% of
the functions have their size predicted to within 2% of the actual
size. Although these results validate the model to some extent, they
also show that the model needs further refinement.

The biggest cause of under-prediction is the uniform memory
cost model. Most of the severely under-predicted functions spill
more variables than fit in the first 128 bytes of the frame resulting
in incorrectly predicted costs in the model for memory operations.
The biggest cause of the most severe over-predictions isgcc’s
instruction sizing function inaccurately reporting the size of certain
floating point instructions prior to register allocation.
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Figure 8. Code size improvement with our allocator compared to a standard iterative graph coloring allocator. All benchmarks were compiled
using the-Os optimization flag. Note the improvement over time with our allocator. The benchmarkqsort had the largest improvement with
a size improvement of 16.75% after 1000 iterations.
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Figure 9. Average code size improvement over all the benchmarks
relative to the graph allocator. The highly tuned default allocator
outperforms both the graph allocator and our initial allocation.

5.2 Global MCNF Problem Complexity

In order to ascertain the complexity and difficulty of solving our
global MCNF problems, we solved the problems corresponding to
all the functions in our benchmark suite using version 9.0 of the
ILOG CPLEX solver [22]. A text representation of the problem was

generated by the compiler and then solved by CPLEX on a 2.8Ghz
Pentium 4 with 1GB of RAM. Although 98% of the functions
could be solved to optimality in less than ten minutes, it took more
than two weeks to process all of the functions. Furthermore, for a
handful of functions (0.7%) CPLEX either ran out of memory or
failed to find a solution in less than 12 hours. It’s worth noting
that CPLEX’s performance at solving our representation of the
register allocation problem roughly corresponds to the performance
of CPLEX solving an ILP representation of the register allocation
problem [17]. However, it is hard to make a direct comparison since
different benchmarks, target architectures, and hardware are used.

The CPLEX solver first solves the linear relaxation of the global
MCNF problem and then performs a sophisticated search for an in-
teger solution to the problem during which it may find suboptimal
integer solutions. On average, more than half the solve time (54%)
is spent solving the linear relaxation. This implies that CPLEX is
not appropriate for a progressive solution technique since a signif-
icant time commitment is required before any feasible solution is
obtained. The dominance of the linear relaxation solver indicates
that the resulting bound is likely very useful in pruning the search
space during the search for integer solutions. In fact, for more than
99% of the functions for which CPLEX could find a solution, the
value of the linear relaxation exactly equalled the value of the in-
teger solution. That is, the integrality gap is zero. This means that
for these functions the Lagrangian relaxation converges to an exact
lower bound.
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Figure 10. Performance improvement of the graph allocator and
our progressive allocator relative to the default allocator. The
benchmarks were compiled with the-Os optimization flag and ex-
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tran 90 and C++ SPEC benchmarks are omitted due to lack of lan-
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176.gcc, 186.crafty, or 253.perlbmk.
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5.3 Solution Quality

The defaultgcc register allocator divides the register allocation
process into local and global passes. In the local pass, only vari-
ables that are used in a single basic block are allocated. After local
allocation, the remaining variables are allocated using a single-pass
graph coloring algorithm. We compare our allocator to the standard
iterative graph coloring allocator that can be enabled by passing
-fnew-ra to gcc. This allocator implements standard graph color-
ing register allocation [10] with iterative coalescing [19] and inter-
ference region spilling [5]. The graph allocator generally does not
perform as well as the highly-tuned default allocator. Although the
default allocator is algorithmically simple, it benefits from decades
of development and improvement.

5.3.1 Code Size

As shown in Figure 8 and Figure 9, our heuristic allocator, which
runs both the iterative and simultaneous allocators and takes the
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Figure 13. The slowdown of our register allocator relative to the
graph allocator. On average, we take about 10 times longer than the
graph allocator to find a solution.

best result, outperforms the graph allocator on all but one bench-
mark with an average improvement in code size of 3.47%. As
expected, as more time is alloted for compilation, our allocator
does progressively better with average code size improvements of
3.66%, 4.01%, 5.72%, and 6.84% for one, ten, 100, and 1000 it-
erations respectively. Our allocator does not initially do as well as
the default allocator; at first we outperform the default allocator on
only six benchmarks. However, we outperform even the default al-
locator on every benchmark when we run our algorithm for 1000 it-
erations. On average, we outperform the default allocator with only
100 iterations, as shown in Figure 9.

5.3.2 Code Performance

We have also evaluated the execution speed of benchmarks from the
SPEC2000 benchmark suite when compiled with our allocator and
optimized for code size. We compare both our progressive allocator
run with a single iteration and with 100 iterations and the graph
allocator to the default allocator in Figure 10. Not surprisingly
given that we are optimizing for code size, the results are mixed.
However, it is important to note that the graph allocator does not
do significantly better than our allocator (in fact, in many cases
it does worse). This implies that the larger code generated by the
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number of variables and instructions in a function. The asymptotic
standard error of the fit of the slope is .262%.

graph allocator is not due to the graph allocator optimizing for
performance at the expense of code size.

5.4 Progressiveness of Solver

The progressive improvement in quality demonstrated by our al-
locator can be seen in Figures 8 and 9. After 1000 iterations, our
solver improves upon our initial solution by as much as 9.6% (3.5%
on average). A more detailed look at the behavior of the solver is
shown in Figure 11 which compares the optimality of solutions
found by our allocator,gcc’s graph and default allocators, and
by solving the global MCNF problem using CPLEX. As expected
from the benchmark data, our initial heuristic finds a better solu-
tion than the graph allocator, but not as good a solution as the de-
fault allocator. With time, however, our allocator finds a better solu-
tion than the default allocator. CPLEX finds an optimal solution in
112 seconds, at which point our solver has found a solution that is
5.12% from optimal. A key advantage of our solver over CPLEX is
that if compilation were limited to 100 seconds, then CPLEX would
have no solution while our solver would have a solution that, while
not optimal, is better than any initial heuristic solution.

5.5 Optimality of Solutions

Ideally, a progressive solver is guaranteed to eventually find an op-
timal solution. Although our solver has no such guarantee, the La-
grangian relaxation technique lets us prove an upper bound on the
optimality of the solution. As the iterative subgradient algorithm
used to solve the Lagrangian relaxation converges, both a better
lower bound on the optimal value of the problem is found and
the quality of the solutions found by the heuristic solver improves.
Consequently, as shown in Figure 12, as more iterations are exe-
cuted, a larger percentage of compiled function are proven optimal.
After 1000 iterations, we have found a provably optimal register
allocation for 83.47% of the functions and 99.35% of the functions
have a solution that is provably within 5% of optimal.

5.6 Solver Performance

The worst case running time ofO(nv) of our heuristic solvers com-
bined with the early developmental stage of our implementation
leads us to expect that our allocator will not perform as well as ex-
isting allocators in terms of compilation time. Indeed, as shown
in Figure 13, allocating with just one heuristic solver is almost
ten times slower than the graph allocator, and a single iteration is
clearly more expensive than an entire allocation in the graph allo-

cator. These slowdowns are relative to the time spent by the graph
allocator which accounts for between 10.5% and 46% of the total
compile time (27.5% on average). The graph allocator is, on aver-
age, about four times slower than the default allocator. Although it
is likely that these results will improve when we optimize our im-
plementation, theO(nv) running time of a single iteration seems to
be an accurate characterization of the running time of the algorithm
as shown by the log-log plot in Figure 14.

6. Related Work
Traditional graph coloring register allocation was first comprehen-
sively described by Chaitin [12]. Many improvements have been
made to the basic Chaitin allocator to improve spill code genera-
tion [10, 15, 5, 6], better address features of irregular architectures
[8, 9, 40], represent register preferences [13, 28], and exploit pro-
gram structure [11, 14, 32].

Linear scan register allocation was originally used to solve the
local register allocation problem [4, 23, 31, 21, 30]. More recently,
variants of linear scan have been used as fast alternatives to graph
coloring for dynamic compilation [38, 42, 43].

None of the graph-coloring or linear-scan based algorithms
support progressive compilation nor do they compute any sort of
optimality bounds. Furthermore, they contain no explicit expressive
model of the register allocation problem.

Register allocators that solve the register allocation problem (or
some simplification) optimally have been implemented by

• performing a guided exhaustive search through the configura-
tion space, potentially using exponential space [21, 26, 34],

• exploiting the bounded treewidth property of most programs to
solve the register sufficiency problem optimally [7, 41, 37]

• formulating register allocation as an integer linear program and
then solving this formulation optimally using powerful solution
techniques [30, 17, 36, 2], and

• formulating register allocation as a partitioned boolean quadratic
optimization problem which can than be solved either approxi-
mately or optimally [20].

None of these optimal algorithms support progressive compila-
tion; in some cases the algorithms do not scale beyond unrealis-
tically small programs. However, the techniques based on integer
linear programming are more expressive than our global MCNF
model and have been extended to additionally model elements of
code generation and instruction scheduling [36, 35, 39].

Network flows have been used to model and solve a wide range
of problems [1]. Single commodity network flows have been used
to allocate registers for improved energy efficiency [18]. A 2-
commodity network flow formulation solved using standard ILP
techniques has been used to solve the local register allocation
problem on a regular architecture [16].

7. Conclusion
This paper describes aglobal progressive register allocator, a reg-
ister allocator that uses an expressive model of the register alloca-
tion problem to quickly find a good allocation and then progres-
sively find better allocations until a provably optimal solution is
found or a preset time limit is reached. Our global MCNF model
effectively captures the important components of register alloca-
tion and our progressive solution technique successfully improves
allocation quality as more time is permitted for compilation. The
progressive nature of our allocator bridges the gap between fast,
but suboptimal, heuristic allocators and optimal, but slow, ILP allo-
cators allowing a programmer to explicitly trade compilation time
for improved optimization.
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