
What’s Wrong with Graph Coloring?

David Koes and Seth Copen Goldstein
Computer Science Department

Carnegie Mellon University
{dkoes,seth }@cs.cmu.edu

Graph coloring is the de facto standard technique for register allocation within a compiler.
In this paper we examine the intuition that a better coloring algorithm results in better register
allocation. By replacing the coloring phase of thegcc compiler’s register allocator with an optimal
coloring algorithm, we demonstrate both the importance of extending the graph coloring model to
better express the costs of allocation decisions and the unsuitability of a pure graph coloring model
of register allocation.

1 Introduction

Register allocation is one of the most important optimizations a compiler performs and is becoming

increasingly important as the gap between processor speed and memory access time widens. The

textbook [2, 16, 1] approach for performing register allocation begins by building an interference

graph of the program. If variables interfere, they cannot be assigned to the same register. Thus,

if there arek registers, register allocators attempt to solve the NP-complete problem of finding

a k-coloring of a graph. If not all the variables can be colored with a register assignment, some

variables are spilled to memory and the process is repeated.

An initial intuition one might have is that the quality of the register allocation found by a graph

coloring register allocator would be primarily dictated by performance of the coloring algorithm.

1

Build Simplify Potential Spill Select Actual Spill

Coloring Heuristic

Figure 1: The flow of a traditional graph coloring algorithm.

We debunk this intuition by comparing a simple heuristic coloring algorithm to an optimal algo-

rithm. Not only does the heuristic usually find as good a coloring as the optimal algorithm, but

we show that the quality of the register allocation is determined by factors other than the quality

of coloring, such as how spill decisions are made and extensions to the simple graph model which

more accurately model the costs of allocation. We deconstruct the performance of a graph coloring

register allocator by examining the effect on performance as these extensions to the simple graph

model are added to an optimal coloring pass.

We describe the standard algorithm for graph coloring register allocation in Section 2 and our

optimal coloring algorithm in Section 3. Our evaluation procedure is described in Section 4 with

results given in Section 5. We conclude with some discussion in Section 6.

2 Graph Coloring

2.1 Algorithm

The traditional optimistic graph coloring algorithm[6, 8, 7] consists of five main phases as shown

in Figure 1:

2

Build An interference graph is constructed using the results of data flow analysis. A node in the

graph represents a variable. An edge connects two nodes if the variables represented by the

nodes interfere and cannot be allocated to the same register. Restrictions on what registers a

variable may be allocated to can be implemented by adding precolored nodes to the graph.

Simplify A heuristic is used to help color the graph. Any node with degree less thank, wherek is

the number of available registers, is removed from the graph and placed on a stack. This is

repeated until all nodes are removed, in which case we skip to the Select phase, or no nodes

can be simplified.

Potential Spill If only nodes with degree greater thank are left, we mark a node as a potential

spill node, remove it from the graph, and optimistically push it onto the stack. We repeat this

process until there exist nodes in the graph with degree less thank, at which point we return

to the Simplify phase.

Select In this phase all of the nodes have been removed from the graph. We now pop the nodes

off the stack. If the node was not marked as a potential spill node then there must be a color

we can assign this node that does not conflict with any colors already assigned to this node’s

neighbors. If it is a potential spill node, then it still may be possible to assign it a color; if

it is not possible to color the potential spill node, we mark it as an actual spill and leave it

uncolored.

Actual Spill If any nodes are marked as actual spills, we generate spill code which loads and stores

the variable represented by the node into new, short lived, temporary variables everywhere

3

the variable is used and defined. Because new variables are created, it is necessary to rebuild

the interference graph.

Note that the Simplify, Potential Spill, and Select phases together form a heuristic for graph

coloring. If this heuristic is successful, there will be no actual spills. Otherwise, the graph is

modified so that it is easier to color by spilling variables and the entire process is repeated.

2.2 Improvements

A number of improvements to the basic graph coloring algorithm have been proposed. Four com-

mon improvements are:

Web Building [13, 8] Instead of a node in the interference graph representing all the live ranges

of a variable, a node can just represent the connected live ranges of a variable (called webs).

For example, if a variablei is used as a loop iteration variable in several independent loops,

then each loop represents an unconnected live range. Each web can then be allocated to a

different register, even though they represent the same variable.

Coalescing [11, 8, 7]If the live ranges of two variables are joined by a move instruction and the

variables are allocated to the same register it may be possible to coalesce (eliminate) the

move instruction. Coalescing is implemented by adding move edges to the interference

graph. If two nodes are connected by a move edge, they should be assigned the same color.

Move edges can be removed to prevent unnecessary spilling.

Spill Heuristic [5] A heuristic is used when determining what node to mark in the Potential Spill

stage. An ideal node to mark is one with a low spill cost (requiring only a small number of

4

dynamic loads and stores to spill) but one whose absence will make the interference graph

easier to color and therefore reduce the number of future potential spill nodes.

Improved Spilling [4, 7, 9] If a variable is spilled, loads and stores to memory may not be needed

at every read and write of the variable. It may be cheaper to rematerialize the value of the

variable (if it is a constant, for example). Alternatively, the live range of the variable can

be partially spilled. In this case, the variable is only spilled to memory in regions of high

interference.

3 Optimal Coloring

In this paper we investigate the relationship between the quality of the coloring and the resulting

register allocation by replacing the coloring heuristic of a traditional allocator with an optimal

coloring algorithm. Our optimal coloring algorithm transforms the graph coloring problem into an

integer linear program (ILP) that we solve using a commercial optimizer.

Given a graph withN nodes andK colors, we create an ILP withN ∗ K binary variables,nk,

which are constrained to be one if and only if noden is assigned colork and zero otherwise. Every

noden has a sufficiency condition:
K∑

k=1

nk = 1

which states that a node must be assigned exactly one color. In addition, every edge(n,m) imposes

5

a coloring constraint for every colork:

nk + mk ≤ 1

which states that nodes connected by an edge cannot both be assigned the same color.

Although this ILP formulation exactly describes the graph coloring problem, it is not flex-

ible enough to be used inside of a register allocator since interference graphs are not always

K-colorable. Instead, we assign a cost to leaving a specific node uncolored. The optimal col-

oring minimizes this cost. We consider two different optimality metrics for graphs that are not

K-colorable:

Number of Spilled Variables In this case the optimal coloring is the coloring which leaves the

minimum number of nodes uncolored.

Spill Cost In this case each node is assigned a spill cost and the optimal coloring is the coloring

which minimizes the total spill cost of all the uncolored nodes. The spill cost is the same

spill cost used bygcc ’s allocator. It is the sum of the costs of the loads and stores needed

to spill the variable weighted by the expected frequency of each memory operation (that is,

spills inside loops cost more).

Both notions of optimality are simple to add to our ILP model by introducing an additional

binary variable for each node,nspill, which is one if and only if noden should be left uncolored.

This variable is incorporated into the sufficiency constraints, but not the coloring constraints. In

6

order to minimize the cost of spilling, we introduce an objective function:

min
N∑

n=1

cnnspill

where the coefficientcn is one if we are minimizing the number of variables that are spilled and

the value of the spill cost if we are minimizing the total spill cost.

We can also model coalescing using our ILP. For every move edgee with endpointsn andm

in the interference graph we introduce a binary variableek which is one if and only if the nodes

connected by the edge are both assignedk. Then for every colork we add the constraint:

ek ≤ nk ek ≤ mk

so thatek can only be one if bothnk andmk are one.

In addition, we add these variables to the objective function with some small negative coef-

ficient, ce. As long as the sum of these coefficients is less than the cost of the cheapest spill,

coalescing will never result in more spills.

Our optimal coloring algorithm is substituted for the heuristic coloring phase of a traditional

allocator. The nodes in the graph that are colored with thespill color are spilled, the interference

graph is rebuilt, and the process repeats until a coloring is found.

7

4 Evaluation

We evaluate the effect of using various optimal coloring algorithms by substituting them for the

ra-colorize function of the graph coloring based allocator ofgcc version 3.4.3. The graph

coloring allocator ofgcc is enabled with-fnew-ra and implements all the improvements dis-

cussed in Section 2. The optimal coloring algorithms use CPLEX 9.0 [12] to solve the ILPs.

We consider two different metrics for evaluating the quality of a register allocation: execution

speed and code size. For both metrics we use the SPECint200 and SPECfp2000 (omitting the

Fortran 90 benchmarks) benchmark suites [20] with the reference input sets for evaluation. When

targeting execution speed we compile with-O3 -funroll-loops and when targeting code

size we compile with-Os .

We evaluate the allocators using the x86 architecture; this architecture, with its limited register

file, will likely see the biggest impact from the performance of the register allocator. We execute

the various benchmarks natively on a 2.8 Ghz Pentium IV with 1 GB of RAM running RedHat

Linux 9.0

5 Results

The efficacy of the optimal coloring allocators at eliminating spills is shown in Figure 2. Of the

functions of the SPEC benchmark suite, 52.57% can be fully allocated to registers. The heuristic

coloring algorithm fails and performs unnecessary spilling in only 6 functions (.13% of the total),

indicating that the heuristic is sufficient for determining the colorability of most typical interference

8

52.57% 52.44%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

no spills <=5 spills <= 10 spills <= 15 spills

P
e
r
c
e
n

t
 o

f
 F

u
n

c
t
io

n
s

Optimal Number of Spills Optimal Spill Cost Optimal Spill Cost with Coalescing gcc -fnew-ra

Figure 2: The percent of functions in the SPEC benchmark suite that spill at most a given number
of variables. The benchmarks were compiled with-O3 -funroll-loops .

9

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
7
6
.g

c
c
*

1
8
1
.m

c
f

1
8
6
.c

ra
ft

y
*
*

1
9
7
.p

a
rs

e
r

2
5
2
.e

o
n
*

2
5
3
.p

e
rl
b
m

k

2
5
4
.g

a
p
*
*

2
5
5
.v

o
rt

e
x
*
*

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

1
6
8
.w

u
p
w

is
e

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
3
.a

p
p
lu

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
8
.a

m
m

p

2
0
0
.s

ix
tr

a
c
k

3
0
1
.a

p
s
i

A
v
e
ra

g
e

SPECint SPECfp

P
e
r
c
e
n

t
S

p
e
e
d

 I
m

p
r
o

v
e
m

e
n

t

Optimal Number of Spilled Vars Optimal Spill Cost Optimal Spill Cost with Coalescing

Figure 3: Performance improvement relative to code produced using thegcc graph allocator. The
average improvement is the geometric mean of the speedups expressed as percentage improvement.
The average performance improvement when optimizing the number of spilled variables, the cost
of spilling, and the cost of spilling with coalescing is -6.2%, -2.2%, and -2.4% respectively.
*Results are omitted because the baseline compiler failed to produce a correct executable

**Some results are omitted due to errors in compilation.

10

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
7
6
.g

c
c

1
8
1
.m

c
f

1
8
6
.c

ra
ft

y

1
9
7
.p

a
rs

e
r

2
5
2
.e

o
n

2
5
3
.p

e
rl
b
m

k

2
5
4
.g

a
p

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

1
6
8
.w

u
p
w

is
e

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
3
.a

p
p
lu

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
8
.a

m
m

p

2
0
0
.s

ix
tr

a
c
k

3
0
1
.a

p
s
i

A
v
e
ra

g
e

SPECint SPECfp

P
e
r
c
e
n

t
 S

iz
e
 I

n
c
r
e
a
s
e

Optimal Number of Spilled Vars Optimal Spill Cost Optimal Spill Cost with Coalescing

Figure 4: Code size increase (as determined by measuring the size of the.text section) relative
to code produced using thegcc graph allocator. The average code size increase when optimizing
the number of spilled variables, the cost of spilling, and the cost of spilling with coalescing is 5.9%,
2.6%, and 2.4% respectively.

11

graphs. As expected, the optimal coloring allocator that minimizes the number of spilled variables

outperforms the other allocators in this comparison. However, as we will see, reducing the number

of spilled variables does not necessarily result in a good allocation. As seen in Figure 2, the

remaining optimal coloring allocators, which minimize estimated spill cost, are slightly better than

the heuristic allocator at reducing the number of spills.

Although an optimal coloring minimizes the number of spills, this does not directly correspond

to a better register allocation, either when optimizing for speed (Figure 3) or code size (Figure 4).

These results clearly indicate the importance of incorporating spill cost information into the graph

coloring algorithm. Interestingly, the optimal coloring algorithms, even when optimizing for the

same spill cost as the heuristic algorithm and incorporating coalescing, do not, in most cases,

perform better than the heuristic algorithm. The success of the heuristic algorithm is underscored

by the increase in code size seen with the optimal coloring algorithms since the code size metric

better reflects the compiler’s ability to optimize the whole program as opposed to just the most

frequently executed portions.

6 Discussion

The coloring heuristic used by the allocator correctly determines the colorability of typical inter-

ference graphs 99.9% of the time. There is clearly no benefit in incorporating a more sophisticated

coloring algorithm into the allocator. In fact, if the coloring algorithm is not modified to incorpo-

rate the spill costs of uncolored nodes, the result is a decidedly poor allocation.

Elements other than coloring, such as spill cost estimation, clearly play an important roll in

12

determining the quality of the register allocation. It is not clear that the existing heuristics for

determining what and where to spill have the same efficacy as the coloring heuristics. Although the

optimal spill cost coloring algorithms sometimes perform better than the heuristics, the heuristic

solution often significantly outperforms the supposedly optimal solution. This is a good indication

that there are elements of the register allocation problem that the graph coloring model does not

incorporate.

For example, the coloring model minimizes the heuristic spill cost of the uncolored nodes. This

does not directly translate into minimizing the cost of spilling in the final allocation because when

spill code is inserted, the underlying interference graph is changed. In a pathologically bad exam-

ple, as occurs in the frequently executedtry swap function of the175.vpr benchmark, at each

iteration of the allocation algorithm the coloring pass chooses to spill a single, low cost variable

which, when spilled, requires more variables be spilled. The end result is that the allocator takes

many iterations and spills many variables when spilling a few higher cost variables would have re-

sulted in a better allocation. Neither the optimal nor heuristic coloring algorithms model the effect

of spill code generation. However, in this example simply biasing the coloring towards coalescing

coincidentally removes this pathologically bad behavior. Furthermore, when choosing variables to

spill, the heuristic coloring algorithm not only considers the the spill cost of the variable, but also

prefers variables which conflict with many other variables as spilling these variables will likely

make the resulting graph easier to color.

A graph coloring allocator explicitly models the interference element of the register allocation

problem and is successful at solving this subproblem. However, graph coloring does not explicitly

13

model the additional elements of the allocation problem. Results from optimal register allocators

that more precisely model the costs of register allocation [10, 15], but do not exhibit practical

compile times, indicate there is a substantial gap between existing allocators and the theoretical

optimal. Since this disparity is not due to the inability of the coloring algorithm, it most likely is

the result of the failure of graph coloring allocators to explicitly model and optimize for additional

elements of register allocation, such as spill code generation and placement.

Extensions to the graph coloring model that increase its expressiveness have been proposed [19]

as well as other models of register allocation that are innately more expressive, such using integer

linear programming [17, 3, 10, 15], partitioned boolean quadratic programming [18], and multi-

commodity network flow [14]. Finding the right combination of model and solution technique to

effectively close the gap between existing allocators and the theoretical optimal remains an open

problem.

7 Conclusion

The title of this paper asks the somewhat provocative question, “What is wrong with graph color-

ing?” One answer is that there is nothing wrong with graph coloring register allocators. We have

shown they do a great job of finding a good coloring of an interference graph even while mini-

mizing spill costs. However, our investigation into the performance of register allocators has made

it quite clear that there is more to getting a good allocation than coloring an interference graph.

More expressive models than simple graph coloring, combined with natural and efficient solution

techniques, are needed to fully solve the register allocation problem.

14

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Princiles, Techniques, and
Tools.Addison-Wesley, 1986.

[2] Andrew W. Appel.Modern Compiler Implementation in Java: Basic Techniques. Cambridge
University Press, 1997.

[3] Andrew W. Appel and Lal George. Optimal spilling for cisc machines with few registers. In
Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and
implementation, pages 243–253. ACM Press, 2001.

[4] Peter Bergner, Peter Dahl, David Engebretsen, and Matthew T. O’Keefe. Spill code min-
imization via interference region spilling. InSIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 287–295, 1997.

[5] D. Bernstein, M. Golumbic, y. Mansour, R. Pinter, D. Goldin, H. Krawczyk, and I. Nahshon.
Spill code minimization techniques for optimizing compliers. InProceedings of the ACM
SIGPLAN 1989 Conference on Programming language design and implementation, pages
258–263. ACM Press, 1989.

[6] Preston Briggs.Register allocation via graph coloring. PhD thesis, Rice University, Houston,
TX, USA, 1992.

[7] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring register
allocation.ACM Trans. Program. Lang. Syst., 16(3):428–455, 1994.

[8] G. J. Chaitin. Register allocation & spilling via graph coloring. InProceedings of the 1982
SIGPLAN symposium on Compiler construction, pages 98–101. ACM Press, 1982.

[9] Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring register
allocator. InProceedings of the 1998 International Compiler Construction Converence, 1998.

[10] Changqing Fu, Kent Wilken, and David Goodwin. A faster optimal register allocator.The
Journal of Instruction-Level Parallelism, 7:1–31, January 2005.

[11] Lal George and Andrew W. Appel. Iterated register coalescing.ACM Trans. Program. Lang.
Syst., 18(3):300–324, 1996.

[12] ILOG CPLEX. http://www.ilog.com/products/cplex .

[13] Mark S. Johnson and Terrence C. Miller. Effectiveness of a machine-level, global optimizer.
In SIGPLAN ’86: Proceedings of the 1986 SIGPLAN symposium on Compiler contruction,
pages 99–108, New York, NY, USA, 1986. ACM Press.

15

[14] David Koes and Seth Copen Goldstein. A progressive register allocator for irregular archi-
tectures. InCGO ’05: Proceedings of the International Symposium on Code Generation
and Optimization (CGO’05), pages 269–280, Washington, DC, USA, 2005. IEEE Computer
Society.

[15] Timothy Kong and Kent D. Wilken. Precise register allocation for irregular architectures. In
Proceedings of the 31st annual ACM/IEEE international symposium on Microarchitecture,
pages 297–307. IEEE Computer Society Press, 1998.

[16] Steven S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[17] Mayur Naik and Jens Palsberg. Compiling with code-size constraints. InProceedings of the
joint conference on Languages, compilers and tools for embedded systems, pages 120–129.
ACM Press, 2002.

[18] Bernhard Scholz and Erik Eckstein. Register allocation for irregular architectures. InPro-
ceedings of the joint conference on Languages, compilers and tools for embedded systems,
pages 139–148. ACM Press, 2002.

[19] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized algorithm for graph-
coloring register allocation.SIGPLAN Not., 39(6):277–288, 2004.

[20] Standard Performance Evaluation Corp.SPEC CPU2000 Benchmark Suite, 2000.

16

