What’'s Wrong with Graph Coloring?

David Koes and Seth Copen Goldstein
Computer Science Department
Carnegie Mellon University
{dkoes,seth }@cs.cmu.edu

Graph coloring is the de facto standard technique for register allocation within a compiler.
In this paper we examine the intuition that a better coloring algorithm results in better register
allocation. By replacing the coloring phase of fee compiler’s register allocator with an optimal
coloring algorithm, we demonstrate both the importance of extending the graph coloring model to
better express the costs of allocation decisions and the unsuitability of a pure graph coloring model
of register allocation.

1 Introduction

Register allocation is one of the most important optimizations a compiler performs and is becoming
increasingly important as the gap between processor speed and memory access time widens. The
textbook [2, 16, 1] approach for performing register allocation begins by building an interference
graph of the program. If variables interfere, they cannot be assigned to the same register. Thus,
if there arek registers, register allocators attempt to solve the NP-complete problem of finding
a k-coloring of a graph. If not all the variables can be colored with a register assignment, some
variables are spilled to memory and the process is repeated.

An initial intuition one might have is that the quality of the register allocation found by a graph

coloring register allocator would be primarily dictated by performance of the coloring algorithm.

Coloring Heuristic

[Build]—»[SimmPotentimb[Selm Actual Spill]

—

Figure 1. The flow of a traditional graph coloring algorithm.

We debunk this intuition by comparing a simple heuristic coloring algorithm to an optimal algo-
rithm. Not only does the heuristic usually find as good a coloring as the optimal algorithm, but
we show that the quality of the register allocation is determined by factors other than the quality
of coloring, such as how spill decisions are made and extensions to the simple graph model which
more accurately model the costs of allocation. We deconstruct the performance of a graph coloring
register allocator by examining the effect on performance as these extensions to the simple graph
model are added to an optimal coloring pass.

We describe the standard algorithm for graph coloring register allocation in Section 2 and our
optimal coloring algorithm in Section 3. Our evaluation procedure is described in Section 4 with

results given in Section 5. We conclude with some discussion in Section 6.

2 Graph Coloring

2.1 Algorithm

The traditional optimistic graph coloring algorithm[6, 8, 7] consists of five main phases as shown

in Figure 1:

Build An interference graph is constructed using the results of data flow analysis. A node in the
graph represents a variable. An edge connects two nodes if the variables represented by the
nodes interfere and cannot be allocated to the same register. Restrictions on what registers a

variable may be allocated to can be implemented by adding precolored nodes to the graph.

Simplify A heuristic is used to help color the graph. Any node with degree lessithahnerek is
the number of available registers, is removed from the graph and placed on a stack. This is

repeated until all nodes are removed, in which case we skip to the Select phase, or no nodes

can be simplified.

Potential Spill If only nodes with degree greater th&arare left, we mark a node as a potential
spill node, remove it from the graph, and optimistically push it onto the stack. We repeat this
process until there exist nodes in the graph with degree less:ttenwvhich point we return

to the Simplify phase.

Select In this phase all of the nodes have been removed from the graph. We now pop the nodes
off the stack. If the node was not marked as a potential spill node then there must be a color
we can assign this node that does not conflict with any colors already assigned to this node’s
neighbors. If it is a potential spill node, then it still may be possible to assign it a color; if

it is not possible to color the potential spill node, we mark it as an actual spill and leave it

uncolored.

Actual Spill If any nodes are marked as actual spills, we generate spill code which loads and stores

the variable represented by the node into new, short lived, temporary variables everywhere

the variable is used and defined. Because new variables are created, it is necessary to rebuild

the interference graph.

Note that the Simplify, Potential Spill, and Select phases together form a heuristic for graph
coloring. If this heuristic is successful, there will be no actual spills. Otherwise, the graph is

modified so that it is easier to color by spilling variables and the entire process is repeated.

2.2 Improvements

A number of improvements to the basic graph coloring algorithm have been proposed. Four com-

mon improvements are:

Web Building [13, 8] Instead of a node in the interference graph representing all the live ranges
of a variable, a node can just represent the connected live ranges of a variable (called webs).
For example, if a variabléis used as a loop iteration variable in several independent loops,
then each loop represents an unconnected live range. Each web can then be allocated to a

different register, even though they represent the same variable.

Coalescing [11, 8, 7]If the live ranges of two variables are joined by a move instruction and the
variables are allocated to the same register it may be possible to coalesce (eliminate) the
move instruction. Coalescing is implemented by adding move edges to the interference
graph. If two nodes are connected by a move edge, they should be assigned the same color.

Move edges can be removed to prevent unnecessary spilling.

Spill Heuristic [5] A heuristic is used when determining what node to mark in the Potential Spill
stage. An ideal node to mark is one with a low spill cost (requiring only a small number of

4

dynamic loads and stores to spill) but one whose absence will make the interference graph

easier to color and therefore reduce the number of future potential spill nodes.

Improved Spilling [4, 7, 9] If a variable is spilled, loads and stores to memory may not be needed
at every read and write of the variable. It may be cheaper to rematerialize the value of the
variable (if it is a constant, for example). Alternatively, the live range of the variable can
be partially spilled. In this case, the variable is only spilled to memory in regions of high

interference.

3 Optimal Coloring

In this paper we investigate the relationship between the quality of the coloring and the resulting
register allocation by replacing the coloring heuristic of a traditional allocator with an optimal
coloring algorithm. Our optimal coloring algorithm transforms the graph coloring problem into an
integer linear program (ILP) that we solve using a commercial optimizer.

Given a graph withV nodes andy colors, we create an ILP witlV « K binary variablesy,,
which are constrained to be one if and only if nedis assigned colok and zero otherwise. Every

noden has a sufficiency condition:

K
an =1
k=1

which states that a node must be assigned exactly one color. In addition, evefy. edgénposes

a coloring constraint for every colat.

which states that nodes connected by an edge cannot both be assigned the same color.

Although this ILP formulation exactly describes the graph coloring problem, it is not flex-
ible enough to be used inside of a register allocator since interference graphs are not always
K-colorable. Instead, we assign a cost to leaving a specific node uncolored. The optimal col-
oring minimizes this cost. We consider two different optimality metrics for graphs that are not

K-colorable:

Number of Spilled Variables In this case the optimal coloring is the coloring which leaves the

minimum number of nodes uncolored.

Spill Cost In this case each node is assigned a spill cost and the optimal coloring is the coloring
which minimizes the total spill cost of all the uncolored nodes. The spill cost is the same
spill cost used bycc ’s allocator. It is the sum of the costs of the loads and stores needed
to spill the variable weighted by the expected frequency of each memory operation (that is,

spills inside loops cost more).

Both notions of optimality are simple to add to our ILP model by introducing an additional
binary variable for each node,,;, which is one if and only if node should be left uncolored.

This variable is incorporated into the sufficiency constraints, but not the coloring constraints. In

order to minimize the cost of spilling, we introduce an objective function:

N

min Z CnNspill
n=1

where the coefficient, is one if we are minimizing the number of variables that are spilled and
the value of the spill cost if we are minimizing the total spill cost.

We can also model coalescing using our ILP. For every move edgth endpoints: andm
in the interference graph we introduce a binary variahlevhich is one if and only if the nodes

connected by the edge are both assighethen for every colok we add the constraint:

er <ni o e < my

so thate,, can only be one if both, andm, are one.

In addition, we add these variables to the objective function with some small negative coef-
ficient, c.. As long as the sum of these coefficients is less than the cost of the cheapest spill,
coalescing will never result in more spills.

Our optimal coloring algorithm is substituted for the heuristic coloring phase of a traditional
allocator. The nodes in the graph that are colored withsfhig color are spilled, the interference

graph is rebuilt, and the process repeats until a coloring is found.

4 Evaluation

We evaluate the effect of using various optimal coloring algorithms by substituting them for the
ra-colorize function of the graph coloring based allocatorgaic version 3.4.3. The graph
coloring allocator ofgcc is enabled withfnew-ra and implements all the improvements dis-
cussed in Section 2. The optimal coloring algorithms use CPLEX 9.0 [12] to solve the ILPs.

We consider two different metrics for evaluating the quality of a register allocation: execution
speed and code size. For both metrics we use the SPECint200 and SPECfp2000 (omitting the
Fortran 90 benchmarks) benchmark suites [20] with the reference input sets for evaluation. When
targeting execution speed we compile witb3 -funroll-loops and when targeting code
size we compile withOs..

We evaluate the allocators using the x86 architecture; this architecture, with its limited register
file, will likely see the biggest impact from the performance of the register allocator. We execute
the various benchmarks natively on a 2.8 Ghz Pentium IV with 1 GB of RAM running RedHat

Linux 9.0

5 Results

The efficacy of the optimal coloring allocators at eliminating spills is shown in Figure 2. Of the
functions of the SPEC benchmark suite, 52.57% can be fully allocated to registers. The heuristic
coloring algorithm fails and performs unnecessary spilling in only 6 functions (.13% of the total),

indicating that the heuristic is sufficient for determining the colorability of most typical interference

100.00%

90.00%

80.00%

70.00%

60.00%

52.57% 52.44%

Percent of Functions
w
o
o
<
>
,

30.00% -

20.00% -

10.00% -+

0.00% -

no spills <=5 spills <= 10 spills <= 15 spills

M Optimal Number of Spills M Optimal Spill Cost Optimal Spill Cost with Coalescing M gcc -fnew-ra

Figure 2: The percent of functions in the SPEC benchmark suite that spill at most a given number
of variables. The benchmarks were compiled wit3 -funroll-loops

5.00%

T 0.00% -
£
9 -5.00% |
o !
1
Q
€ -10.00%
=
?
o -15.00%
Q.
()]
Fe)
£ -20.00%
]
3]
o
Q -25.00%
-30.00%
Q| < % = X N | = o o V|l QX | R (]
'ﬁ‘ltuigégiiao_m.g':%ggxgua o
Uw>-UE>*=—°_QD-><'ﬁ§;§U‘o_°""“ Clwm ©
|V | PS8l |88 o2 FdalE|c EIQ|ZIE|E|S ol
TIN|C| o |® 2| 2 E|G|IS | |d|lglmIn|D| T8 X213 >
— NI lo|nwlalx (8 wn|9l2z|~NIRININ Yo | @ | R =
S = N I U PV BT I It BV R T B - | - Ml | o
gv—l N w © — 0|4 S
N O — ~N
— N ~ —
SPECint SPECfp

M Optimal Number of Spilled Vars M Optimal Spill Cost I Optimal Spill Cost with Coalescing

Figure 3: Performance improvement relative to code produced usirggthgraph allocator. The

average improvement is the geometric mean of the speedups expressed as percentage improvement.
The average performance improvement when optimizing the number of spilled variables, the cost
of spilling, and the cost of spilling with coalescing is -6.2%, -2.2%, and -2.4% respectively.

*Results are omitted because the baseline compiler failed to produce a correct executable

**Some results are omitted due to errors in compilation.

10

16.00%

14.00%
12.00%
o
©
o 10.00%
=)
%]
c
s
8 8.00%
n
-
g
S 6.00% A
@
o
4.00% -
2.00% -+
0.00% -+
Z|lal| §5|¥ A58 E|IBR|2 2 L1213
T 2|85 §lz|z|3/5|8|¢ s E ¢
[s] N a | = al|l @ € © | 51 %
X | In | © S|lo| 3|~ RS] =
SIN || a n|(2|2|N|QR|R W | @@
— 9 ™M NS - — — © ® 8
: g 217R
SPECint SPECfp

W Optimal Number of Spilled Vars B Optimal Spill Cost " Optimal Spill Cost with Coalescing

Figure 4: Code size increase (as determined by measuring the size.tafxthe section) relative

to code produced using tlgec graph allocator. The average code size increase when optimizing
the number of spilled variables, the cost of spilling, and the cost of spilling with coalescing is 5.9%,
2.6%, and 2.4% respectively.

11

graphs. As expected, the optimal coloring allocator that minimizes the number of spilled variables
outperforms the other allocators in this comparison. However, as we will see, reducing the number
of spilled variables does not necessarily result in a good allocation. As seen in Figure 2, the
remaining optimal coloring allocators, which minimize estimated spill cost, are slightly better than
the heuristic allocator at reducing the number of spills.

Although an optimal coloring minimizes the number of spills, this does not directly correspond
to a better register allocation, either when optimizing for speed (Figure 3) or code size (Figure 4).
These results clearly indicate the importance of incorporating spill cost information into the graph
coloring algorithm. Interestingly, the optimal coloring algorithms, even when optimizing for the
same spill cost as the heuristic algorithm and incorporating coalescing, do not, in most cases,
perform better than the heuristic algorithm. The success of the heuristic algorithm is underscored
by the increase in code size seen with the optimal coloring algorithms since the code size metric
better reflects the compiler’s ability to optimize the whole program as opposed to just the most

frequently executed portions.

6 Discussion

The coloring heuristic used by the allocator correctly determines the colorability of typical inter-
ference graphs 99.9% of the time. There is clearly no benefit in incorporating a more sophisticated
coloring algorithm into the allocator. In fact, if the coloring algorithm is not modified to incorpo-
rate the spill costs of uncolored nodes, the result is a decidedly poor allocation.

Elements other than coloring, such as spill cost estimation, clearly play an important roll in

12

determining the quality of the register allocation. It is not clear that the existing heuristics for
determining what and where to spill have the same efficacy as the coloring heuristics. Although the
optimal spill cost coloring algorithms sometimes perform better than the heuristics, the heuristic
solution often significantly outperforms the supposedly optimal solution. This is a good indication
that there are elements of the register allocation problem that the graph coloring model does not
incorporate.

For example, the coloring model minimizes the heuristic spill cost of the uncolored nodes. This
does not directly translate into minimizing the cost of spilling in the final allocation because when
spill code is inserted, the underlying interference graph is changed. In a pathologically bad exam-
ple, as occurs in the frequently executed _swap function of thel75.vpr benchmark, at each
iteration of the allocation algorithm the coloring pass chooses to spill a single, low cost variable
which, when spilled, requires more variables be spilled. The end result is that the allocator takes
many iterations and spills many variables when spilling a few higher cost variables would have re-
sulted in a better allocation. Neither the optimal nor heuristic coloring algorithms model the effect
of spill code generation. However, in this example simply biasing the coloring towards coalescing
coincidentally removes this pathologically bad behavior. Furthermore, when choosing variables to
spill, the heuristic coloring algorithm not only considers the the spill cost of the variable, but also
prefers variables which conflict with many other variables as spilling these variables will likely
make the resulting graph easier to color.

A graph coloring allocator explicitly models the interference element of the register allocation

problem and is successful at solving this subproblem. However, graph coloring does not explicitly

13

model the additional elements of the allocation problem. Results from optimal register allocators
that more precisely model the costs of register allocation [10, 15], but do not exhibit practical
compile times, indicate there is a substantial gap between existing allocators and the theoretical
optimal. Since this disparity is not due to the inability of the coloring algorithm, it most likely is
the result of the failure of graph coloring allocators to explicitly model and optimize for additional
elements of register allocation, such as spill code generation and placement.

Extensions to the graph coloring model that increase its expressiveness have been proposed [19]
as well as other models of register allocation that are innately more expressive, such using integer
linear programming [17, 3, 10, 15], partitioned boolean quadratic programming [18], and multi-
commodity network flow [14]. Finding the right combination of model and solution technique to
effectively close the gap between existing allocators and the theoretical optimal remains an open

problem.

7 Conclusion

The title of this paper asks the somewhat provocative question, “What is wrong with graph color-
ing?” One answer is that there is nothing wrong with graph coloring register allocators. We have
shown they do a great job of finding a good coloring of an interference graph even while mini-

mizing spill costs. However, our investigation into the performance of register allocators has made
it quite clear that there is more to getting a good allocation than coloring an interference graph.
More expressive models than simple graph coloring, combined with natural and efficient solution

techniques, are needed to fully solve the register allocation problem.

14

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. UllmanCompilers: Princiles, Techniques, and
Tools. Addison-Wesley, 1986.

[2] Andrew W. Appel.Modern Compiler Implementation in Java: Basic Techniqu&smbridge
University Press, 1997.

[3] Andrew W. Appel and Lal George. Optimal spilling for cisc machines with few registers. In
Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and
implementationpages 243-253. ACM Press, 2001.

[4] Peter Bergner, Peter Dahl, David Engebretsen, and Matthew T. O’Keefe. Spill code min-
imization via interference region spilling. IBIGPLAN Conference on Programming Lan-
guage Design and Implementatigrages 287-295, 1997.

[5] D. Bernstein, M. Golumbic, y. Mansour, R. Pinter, D. Goldin, H. Krawczyk, and I. Nahshon.
Spill code minimization techniques for optimizing compliers. Aroceedings of the ACM
SIGPLAN 1989 Conference on Programming language design and implemenizipes
258-263. ACM Press, 1989.

[6] Preston BriggsRegister allocation via graph colorindg?hD thesis, Rice University, Houston,
TX, USA, 1992.

[7] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring register
allocation.ACM Trans. Program. Lang. Sys16(3):428-455, 1994.

[8] G. J. Chaitin. Register allocation & spilling via graph coloring.Rroceedings of the 1982
SIGPLAN symposium on Compiler constructipages 98-101. ACM Press, 1982.

[9] Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring register
allocator. InProceedings of the 1998 International Compiler Construction Converdr@@s.

[10] Changging Fu, Kent Wilken, and David Goodwin. A faster optimal register allocdtoe.
Journal of Instruction-Level Parallelispn7:1-31, January 2005.

[11] Lal George and Andrew W. Appel. Iterated register coalesoi@M Trans. Program. Lang.
Syst, 18(3):300-324, 1996.

[12] ILOG CPLEX. http://www.ilog.com/products/cplex

[13] Mark S. Johnson and Terrence C. Miller. Effectiveness of a machine-level, global optimizer.
In SIGPLAN ’'86: Proceedings of the 1986 SIGPLAN symposium on Compiler contruction
pages 99-108, New York, NY, USA, 1986. ACM Press.

15

[14] David Koes and Seth Copen Goldstein. A progressive register allocator for irregular archi-
tectures. INCGO ’'05: Proceedings of the International Symposium on Code Generation
and Optimization (CGO’05)pages 269-280, Washington, DC, USA, 2005. IEEE Computer
Society.

[15] Timothy Kong and Kent D. Wilken. Precise register allocation for irregular architectures. In
Proceedings of the 31st annual ACM/IEEE international symposium on Microarchitecture
pages 297-307. IEEE Computer Society Press, 1998.

[16] Steven S. MuchnickAdvanced Compiler Design and Implementatidforgan Kaufmann,
1997.

[17] Mayur Naik and Jens Palsberg. Compiling with code-size constrain®rokeedings of the
joint conference on Languages, compilers and tools for embedded syptmypes 120—129.
ACM Press, 2002.

[18] Bernhard Scholz and Erik Eckstein. Register allocation for irregular architecturé&odn
ceedings of the joint conference on Languages, compilers and tools for embedded,systems
pages 139-148. ACM Press, 2002.

[19] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized algorithm for graph-
coloring register allocationSIGPLAN Not.39(6):277—-288, 2004.

[20] Standard Performance Evaluation Co8REC CPU2000 Benchmark Syig®00.

16

