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Abstract

Register allocation is one of the most important op-
timizations a compiler performs. Conventional graph-
coloring based register allocators are fast and do well on
regular, RISC-like, architectures, but perform poorly on ir-
regular, CISC-like, architectures with few registers and non-
orthogonal instruction sets. At the other extreme, optimal
register allocators based on integer linear programming are
capable of fully modeling and exploiting the peculiarities of
irregular architectures but do not scale well. We introduce
the idea of aprogressive allocator. A progressive allocator
finds an initial allocation of quality comparable to a con-
ventional allocator, but as more time is allowed for compu-
tation the quality of the allocation approaches optimal. This
paper presents a progressive register allocator which uses a
multi-commodity network flow model to elegantly represent
the intricacies of irregular architectures. We evaluate our
allocator as a substitute forgcc ’s local register allocation
pass.

1. Introduction

Register allocation is one of the most important opti-
mizations a compiler performs. Traditional register allo-
cators were designed for regular, RISC-like architectures
with large uniform register sets. Embedded architectures,
such as the 68k, ColdFire, x86, ARM Thumb, MIPS16, and
NEC V800 architectures, tend to be irregular, CISC archi-
tectures. These architectures may have small register sets,
restrictions on how and when registers can be used, support
for memory operands within arbitrary instructions, variable
sized instructions or other features that complicate register
allocation. The irregularities of these architectures make
the register allocation problem particularly difficult and in-
crease the effect of register allocation on quality code gen-
eration.

A register allocator typically reduces the register alloca-
tion problem to a more readily solved class of problem (for

example, graph coloring). Ideally, the reduction produces
a problem that is proper, expressive, and progressive. We
define these properties as follows - a register allocator is:

• Proper if an optimal solution to the reduced problem
is also an optimal register allocation. Since optimal
register allocation is NP-complete [25, 20], it is un-
likely that efficient algorithms will exist for solving
the reduced problem. The optimality criterion can be
any metric that can be statically evaluated at compile
time such as code size or compiler-estimated execution
time.

• Expressive if the reduced problem is capable of ex-
plicitly representing architectural irregularities and
costs. For example, such a register allocator would be
able to utilize information about the cost of assigning
a variable to different register classes.

• Progressiveif the solution procedure for solving the
reduced problem is capable of making progress as
more time is allotted for computation. Ideally, a rea-
sonable solution is found quickly and the best solution
converges to optimal as more time is allotted. Exist-
ing register allocators are not progressive; they either
quickly find a suboptimal solution using heuristics, or
after extensive computation find an optimal solution.
A progressive register allocator fills this gap.

A fully expressive, proper and progressive register al-
locator is more flexible and powerful than current register
allocators. The progressive nature of the allocator results
in comparable code quality to conventional register alloca-
tors without sacrificing compile time, yet when fast com-
piles are not necessary, it can generate substantially better
quality code. We present an expressive, proper and progres-
sive register allocator which reduces register allocation to
the problem of finding the minimum flow of multiple com-
modities through a network.

Related work is presented in Section 2. The multi-
commodity network flow (MCNF) model is described in



Section 3. Several solution procedures are discussed in Sec-
tion 4. We evaluate our allocator as a substitute forgcc ’s
local allocator. The details of thegcc implementation are
provided in Section 5. Results are given in Section 6.

2. Related Work

Traditional graph coloring [7, 8] works well in prac-
tice for regular architectures, but lacks the expressiveness
to fully model irregular architecture features. Various re-
searchers have proposed extensions to traditional graph col-
oring register allocation to improve allocation on irregular
architectures [5, 6, 26]. These approaches either modify the
heuristics used to color, modify the spilling heuristics, or
modify the interference graph to prevent illegal allocations.
There is no explicit optimization of spill code, nor do these
techniques address all the features of irregular architectures.
Spill code optimization has been addressed by modifying
the spilling heuristic [4] and by splitting the live range of
a variable so that a variable will only be partially spilled
to memory [9, 3]. Although these techniques can signifi-
cantly improve the quality of the register allocator, they are
limited in that they are based on graph coloring. They are
not proper or progressive, nor do they fully represent all the
features of irregular architecture.

Register allocators which are proper and solve the regis-
ter allocation problem optimally have been implemented by
(1) performing a guided exhaustive search through the con-
figuration space, potentially using exponential space [15,
17], (2) formulating register allocation as an integer linear
program and then solving this formulation optimally using
powerful solution techniques [13, 21], and (3) formulating
register allocation as a partitioned boolean quadratic opti-
mization problem which can than be solved either approxi-
mately or optimally [24]. Both the integer linear program-
ming and partitioned boolean quadratic optimization ap-
proaches have been shown to be capable of precisely mod-
eling features of irregular architectures [22, 2, 18]. Unfor-
tunately, these solution techniques are not progressive; the
solvers do not quickly find feasible solutions and then im-
prove upon them. ILP solvers first must solve the linear
relaxation of the integer program, which, although polyno-
mial in time complexity, can be time-consuming and gener-
ally does not result in a feasible (all integer) solution. Once
the solution to the linear relaxation is found, an optimal
feasible solution is searched for, potentially taking expo-
nential time. Although increases in processing power and
improvements in integer linear programming solution soft-
ware have improved the performance of this approach by
orders of magnitude [11], its performance is still far from
being competitive with traditional allocators. In some cases
it takes hours to allocate a single function.

In this paper we develop a multi-commodity network
flow formulation of the register allocation problem which
is both expressive and proper while allowing the use of pro-
gressive solution algorithms. Network flows have been used
to model and solve a wide range of problems, from trans-
portation and distribution problems [1] to communications
and routing in specialized computing networks [23]. Single
commodity network flows have been used to allocate reg-
isters for improved energy efficiency [12]. A 2-commodity
network flow formulation solved using standard ILP tech-
niques has been used to solve the local register allocation
problem on a regular architecture [10].

3. Multi-commodity Network Flow

The multi-commodity network flow (MCNF) problem
is: find the minimum cost flow of commodities through a
constrained network. The network is defined by nodes and
edges where each edge has costs and a capacity. The costs
and capacities can be specific to each commodity, but edges
also have bundle constraints which constrain the total ca-
pacity of the edge. Each commodity has a source and sink
such that the flow from the source must equal the flow into
the sink. Although finding the minimum cost flow of a sin-
gle commodity is readily solved in polynomial time, finding
a solution to the MCNF problem where all flows are integer
is NP-complete [1].

Formally, the MCNF problem is to minimize the costs of
the flows through the network:

min
∑

k

ckxk

subject to the constraints:∑
k

xk
ij ≤ uij

0 ≤ xk
ij ≤ vk

ij

Nxk = bk

whereck is the cost vector containing the cost of each edge
for commodityk, xk is the flow vector for commodityk
wherexk

ij is the flow of commodityk along edge(i, j), uij

is the bundle constraint for edge(i, j), vk
ij is an individual

constraint on commodityk over edge(i, j), the matrixN
represents the network topology, and the vectorbk contains
the inflow and outflow constraints (source and sink infor-
mation).

A simplified example of our MCNF representation of
register allocation is shown in Figure 1. In this example
there are two registers,r0 and r1 , and a memory alloca-
tion class. The cost of moving between registers is two
and the cost of moving between registers and memory is
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int example(int a, int b)
{
  int c = a - b;
  return c;
}

MOVE c -> r0

SUB a,b -> c

crossbar

Figure 1. A simplified example register al-
location problem formulated as a multi-
commodity network flow problem. Thin
edges have a capacity of one (as only one
variable can be allocated to a register and
the SUB instruction supports only a single
memory operand). The thick arc indicates
that memory is uncapacitated. For clarity,
edges not used by the displayed solution are
in gray. The commodity and cost along each
edge used in the solution are shown if the
cost is non-zero. In this example the cost
of a load is four, the cost of using a memory
operand in the SUB instruction is two, and the
benefit of allocating c to r0 in the MOVE in-
struction is two since the move can be deleted
in that case. The total cost of this solution is
four.

four. The argumentsa andb are passed on the stack and
thus are initially in memory. The SUB instruction can only
support a single memory operand and the cost of using a
memory operand is two. The cost of a commodity using an
edge corresponds to the cost of the corresponding operation
(move, load, store). For simplicity and ease of evaluation,
we only consider the straightforward cost metric of program
size (although any metric that can be evaluated at compile
time could be used).

The commodities of the MCNF problem correspond to
the variables,a andb. The source node of a variable con-
nects to the network at the defining instruction and the sink
node of a variable removes the variable from the network
immediately after the last instruction to use the variable.
The design of the network and individual commodity con-
straints are dictated by how variables are used. The bundle
constraints enforce the limited number of registers avail-
able, and the edge costs are used to model both the cost
of spilling and the costs of register preferences.

A node in the network represents an allocation class: a
register, register class, or memory space to which a vari-
able can be allocated. Nodes are grouped into either in-
struction or crossbar groups. There is an instruction group
for every instruction in the program and a crossbar group
for every point between instructions. The nodes in an in-
struction group constrain which allocation classes are le-
gal for the variables used by that instruction. For exam-
ple, if an instruction does not support memory operands no
variables are allowed to flow through the memory alloca-
tion class node. Variables used by an instruction must flow
through the nodes of the corresponding instruction group.
Crossbar groups are inserted between every instruction and
allow variables to change allocation groups. For example,
the ability to store a variable to memory is represented by
an edge within a crossbar group from a register allocation
class node to a memory allocation class node. Variables
which are not used by an instruction bypass the correspond-
ing instruction group and flow directly between the cross-
bars surrounding the instruction.

The cost of an operation, such as a move, can usually be
represented by a cost on the edge that represents the move
between allocation classes. However, this is not the correct
model for storing to memory. If a variable has already been
stored to memory and its value has not changed it is not
necessary to pay the cost of an additional store. That is,
values in memory are persistent, unlike those in registers
which are assumed to be overwritten.

In order to model the persistence of data in memory,
we introduce the notion of anti-variables which are used as
shown in Figure 2. An anti-variable is restricted to the mem-
ory subnetwork and is constrained such that it cannot coex-
ist with its corresponding variable along any memory edge.
An anti-variable can either leave the memory sub-network
when the variable itself exits the network or the cost of a
store can be paid to leave the memory sub-network early.
There is no cost associated with edges from registers to
memory, but for these edges to be usable, the anti-variable
must be evicted. The cost of evicting the anti-variable is just
the cost of a single store. This way a variable may flow from
registers to memory multiple times and yet pay the cost of
only a single store (of course, every transition from memory
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Figure 2. An illustrative example of anti-
variables. The anti-variable of a, a′, is re-
stricted to the memory subnetwork (dashed
edges). The r edge is redundant and would
not be in the actual graph. The cost of the
second store can just as well be paid by the
first edge. If the r edge is left in the graph, it
would have to have a cost of four in this exam-
ple. Multiple anti-variable eviction edges can
also be used to model the case where stores
have different costs depending on their place-
ment in the instruction stream.

to a register pays the cost of a load). An actual store is only
generated for the first move to memory.

The MCNF formulation of register allocation is proper,
expressive, and has progressive solution procedures.

3.1. Properness

An optimal solution of the register allocation problem
finds the assignment of registers and memory to variables
at every program point for a given instruction stream that
results in the minimum cost. The cost is a function of what
the user wishes to optimize for. For example, in this paper
we measure cost strictly in terms of program size as this
metric is straightforward to define and measure. However,
program execution time or energy usage could also be opti-
mized, given some function that can statically evaluate these
metrics at compile time.

It is important to note that our definition of optimality is
restricted by the instruction stream provided to the register
allocator and the limited types of operations the allocator

is allowed to perform, such as moves, loads and stores. In
some cases it is desirable for instruction selection decisions
to be made during register allocation. It is possible to model
these decisions, but the register allocation represented by
the optimal solution to the corresponding MCNF problem
is only optimal with respect to those instruction selection
decisions we choose to model.

It is clear that if the MCNF problem is constructed prop-
erly the optimal solution will correspond to the optimal
register allocation attainable using our restricted set of op-
erations (inserting moves, loads, and stores between in-
structions and some limited local instruction selection de-
cisions), so as long as the optimal solution never allocates
the same variable to multiple registers at the same program
point. This is the case because there is a direct correspon-
dence between the flow of a variable through the MCNF
problem and a variable’s allocation at each program point.
The assumption that it will not be beneficial to allocate a
variable to multiple registers at the same program point
seems reasonable for architectures with few registers, but
can be removed by using a technique similar to the anti-
variables used to model stores.

3.2. Expressiveness

The MCNF model is capable of expressing many of the
pertinent features of irregular architectures. Since move-
ment among registers and memory is precisely and flexi-
bly modeled, spill code placement is explicitly optimized.
Requirements on what types of registers an instruction can
support and whether memory operands can be supported are
also straightforward to model. If a variable must reside in
a certain register class in an instruction, only edges to that
register class node in the instruction group have any capac-
ity for that variable. If an instruction can only support a
certain number of memory operands, then the bundle con-
straint for the edge entering the memory node of the instruc-
tion group is set to limit the number of variables that can be
in memory when the instruction is executed. In addition, if
using an operand in memory rather than a register has some
cost associated with it (for example, if it increases the size
of the instruction), this can be modeled with a cost along
this edge. For example, the SUB instruction in Figure 1 has
a cost of 2 associated with using a memory operand.

The MCNF model is also capable of modeling register
preferences. If an instruction can use any register, but some
are more expensive than others (for example, several x86
instructions are only one byte if one of the operands is in
eax ), this can be represented with costs along the edges
leading into those register nodes in the instruction group.

In some cases, instruction selection is influenced by reg-
ister allocation. For example, in the 68k architecture a move
with sign extend is implemented with two instructions if
the destination is in a data register but can be implemented



with a single move if the destination is an address register.
A MCNF allocator can represent this decision as a simple
preference for an address register where the cost of using a
data register is equal to the cost of using the larger instruc-
tion sequence.

The MCNF model is not as fully expressive as a full ILP
formulation of the problem. In particular, dependent con-
straints, where the cost of a specific variable allocation de-
pends upon the allocation of other variables, are not easily
modeled. For example, consider an add,a = b + c, on
the x86 architecture. The cost of allocatinga to the regis-
ter eax is zero if eitherb or c gets allocated toeax , but
is one otherwise since alea instruction, which is one byte
larger than an add, would be used to perform the addition
in this case. This situation cannot be modeled by a simple
edge cost since the cost depends upon which variables use
the edge in the final solution.

Contrary to good practice in graph coloring allocators,
the MCNF model does not attempt to perform copy coalesc-
ing (where the source and destination of a move instruction
can be allocated to the same register allowing for the dele-
tion of the move). Instead, the allocator is provided with
an instruction stream with all possible moves coalesced. It
will then insert splitting moves at the optimal places. That
is, because the MCNF model naturally expresses the costs
associated with inserting moves into the instruction stream,
moves can be aggressively coalesced with the expectation
that the register allocator will correctly deal with the result-
ing extended lifetimes. Load and constant propagation can
be modeled by assigning a negative cost equal in magnitude
to the cost of the memory/constant load instruction when
the variable being defined enters the memory network.

3.3. Progressiveness

To be useful, it must be possible to quickly find a fea-
sible solution to the MCNF model. Ideally, it would be
possible to steadily improve upon this solution until eventu-
ally an optimal solution is found. Such a solution procedure
would allow the user to consciously trade compile time for
code quality. Existing integer linear programming solvers
do not have this property since they do not immediately find
a feasible solution and only search for integer, as opposed
to fractional, solutions at the end of the solution procedure.

The MCNF-based solution procedures evaluated in this
paper combine the Lagrangian relaxation method of solving
MCNF problems with algorithms for finding feasible solu-
tions to our MCNF problems. These methods immediately
find a feasible solution and then attempt to improve upon it
as the Lagrangian relaxation converges to the optimal value.
Although this method is not guaranteed to find an optimal
solution, it can determine a bound on how close the solution
is to optimal.

4. Solution Procedures

The specific form of our MCNF representation allows us
to quickly find a feasible, though possibly low quality, so-
lution. We build up a solution to the multi-commodity flow
problem by solving the single commodity flow problem for
each variable. This is simply a shortest-path computation.
We will always be able to find a feasible solution because
the memory network is uncapacitated. If no path is available
for a variable (because the edges are all already allocated to
other variables), it is always possible to locally evict an-
other variable to memory (or another register) and continue
to make progress.

Alternatively, we can constrain our shortest path find-
ing algorithm to conservatively ignore paths that potentially
will make the network infeasible for the variables that still
need to be allocated. For example, if an instruction requires
its operand to be in a register and that operand has not yet
been allocated and there is only one register left that is avail-
able for allocation, all other variables would be required to
be in memory at that point.

Although we can always find a feasible solution this way,
it is unlikely that we will find a good solution. The vari-
ables we allocate first will stay in registers the longest. The
shortest path computations we perform have no way of be-
ing influenced by the costs to other variables. Ideally, we
would like to build a solution from a series of simple short-
est path computations. Each individual variable’s shortest
path would need to take into account not only the imme-
diate costs for that variable, but also the marginal cost of
that specific allocation with respect to all the other variables.
Lagrangian relaxation provides a formal way of computing
these marginal costs.

4.1. Lagrangian Relaxation

Lagrangian relaxation is a general solution technique [1].
It works by removing one or more constraints from the
problem and integrating them into the objective function us-
ing Lagrangian multipliers resulting in a more easily solved
Lagrangian subproblem. In the case of MCNF, the La-
grangian subproblem is to find a price vectorw such that
L(w) is maximal, whereL(w) is defined:

L(w) = min
∑

k

ckxk +
∑
(i,j)

wij

(∑
k

xk
ij − uij

)
(1)

L(w) = min
∑

k

∑
(i,j)

(
ck
ij + wij

)
xk

ij −
∑
(i,j)

wijuij (2)

subject to
xk

ij ≥ 0

Nxk = bk



The bundle constraints have been integrated into the objec-
tive function. If an edgexij is over-allocated then the term∑

k xk
ij − uij will increase the value of the objective func-

tion, making it less likely that an over-allocated edge will
exist in the solution that minimizes the objective function.
Thewij terms are the Lagrangian multipliers, called prices
in the context of MCNF. The prices,w, are arguments to
the subproblem and it is the flow vectors,xk, that are being
minimized over. The subproblem is still subject to the net-
work and individual flow constraints as in the MCNF prob-
lem. As can be seen in (2), the minimum solution to the
Lagrangian subproblem decomposes into the minimum so-
lutions of the individual single commodity problems.

The functionL(w) has several useful properties [1]:

• Lagrangian Bounding Principle. For any set of
pricesw, the value ofL(w) is a lower bound on the
optimal value of the objective function of the original
MCNF problem.

• Weak Duality. Let L∗ = maxwL(w). L∗ is always
a lower bound on the optimal objective function of the
original MCNF problem.

• Optimality Test . Let x∗ be a solution toL∗. If x∗ is
also a feasible solution to the original MCNF problem
(does not violate the bundle constraints) and satisfies
the conditionwij

(∑
k x∗kij − uij

)
= 0 (only fully uti-

lized edges in the solution have nonzero prices inL∗),
thenx∗ is an optimal solution to the MCNF problem.

In short, the Lagrangian relaxation provides a strong theo-
retical lower bound for the optimal solution value. Solutions
to the relaxed subproblem which are feasible in the original
MCNF problem are likely to be optimal and, under certain
conditions, can be proven optimal.

A reasonable solution procedure is to find the price vec-
tor which maximizesL(w) and then construct a feasible so-
lution that is also a solution toL∗ (or at least close to it).
First we must solve forL∗ using an iterative subgradient
optimization algorithm. At a stepq in the algorithm, we
start with a price vector,wq, and solveL(wq) for xk to get
an optimal flow vector,yk, by performing a multiple short-
est paths computation. We then updatew using the rule:

wq+1
ij = max

(
wq

ij + θq

(∑
k

yk
ij − uij

)
, 0

)

whereθq is the current step size. This algorithm is guaran-
teed to converge ifθq satisfies the conditions:

lim
q→∞

θq = 0

lim
q→∞

q∑
i=1

θi = ∞

q a b c wSUBmem
L(wq)

0 2 2 -2 0 2
1 3 3 -2 1 3
2 4 4 -2 2 4

Table 1. The price of the shortest paths for
each variable, the price of the edge enter-
ing the SUB instruction’s memory node, and
L(wq) for each iteration q of the iterative sub-
gradient optimization algorithm. For ease of
explanation, in this example the step size is
fixed to 1 and prices are all initialized to 0.

We evaluate two methods which meet these conditions
for calculating the step size:

• Ratio Method The step size at iterationq is simply
θq = 1/q. To avoid large initial step sizes, different
starting points can be considered, such asθq = 1/(q +
10).

• Newton’s Method A variation of Newton’s method is
used to chooseθ with the formula:

θq =
δq[UB − L(wq

ij)]∑
i,j

(∑
k x∗kij − uij

)2
whereUB is an upper bound on the value of the objec-
tive function. An upper bound can be calculated using
any feasible solution finder.

As an example, consider the simple network in Figure 1.
The allocator would first find a feasible solution. Assuming
we process the variables in the order(c, b, a), we first find
the shortest path forc, allocating it tor0 , then the shortest
path forb, which leavesb in memory, and then the shortest
path fora, which would require a load sinceb has saturated
the edge into the memory node of the SUB instruction (this
is the solution shown in the figure). The total cost of this
solution is 4, which is optimal in this case. However, the
algorithm has not yet proven that this result is optimal.

In the next step, the solution to the Lagrangian subprob-
lem is found by finding the shortest paths ignoring the bun-
dle constraints. We initialize our prices to be zero. As a
result, the paths for a and b both have a cost of 2 and the
path for c has a cost of -2. This gives us a total cost for
L(w0) of 2. The prices are then updated. Since only one
edge (the memory to memory edge into the SUB instruc-
tion) is over-constrained, this is the only edge that has its
price change. For this example we use a fixed step size of 1
resulting in a new edge price of 1 for that edge. The algo-
rithm is then repeated with the results shown in Table 1. We
stop the algorithm whenL(w3) = 4 since this proves that
the first feasible solution we found was, in fact, optimal.



Note that there are multiple solutions to the Lagrangian
subproblem which have the optimal value 4, but not all of
these solutions are feasible.

4.2. Feasible Solution Finding

The feasible solution finder constructs a feasible solution
by allocating variables individually (using a shortest paths
computation). As each variable is allocated, the shortest
paths of the remaining variables are constrained, but care
is taken to ensure there will always be some (possibly very
expensive) allocation available for the remaining variables.
The order in which variables are allocated is therefore im-
portant.

We considered several different heuristics for construct-
ing a good feasible solution:

• Greedy Shortest:The shortest path through the priced
graph is computed simultaneously for all variables.
Variables are inspected starting with the variables with
the most expensive paths. If the variable’s path would
not make further allocation infeasible and does not
overlap with an already allocated variable, then that
path is chosen. Once as many variables are allocated
as possible, the shortest paths for the remaining, unal-
located, variables are recomputed avoiding the already
allocated edges, and the procedure is repeated until all
variables are allocated. The assumption behind this
heuristic is that it is beneficial to allocate as many vari-
ables as possible to paths that are identical to the paths
in the relaxed solution. If the relaxed solution is feasi-
ble or very close to being feasible, then this heuristic
should do well.

• Iterative Shortest: This heuristic allocates the vari-
ables with the most expensive allocations first. The
order variables are allocated is fixed by a single all-
variable shortest paths computation at the onset. A
single variable shortest path computation is performed
before a variable is allocated. This finds the current
shortest feasible path, which may be different from the
path found by the initial all-variable shortest path com-
putation due to the previous allocation of other vari-
ables. This heuristic gives allocation preference to the
most expensive variables and does not require multiple
all-variable shortest path computations.

• Lowest Cost k-Choice: Similar in structure to Iter-
ative Shortest, but ak-shortest paths computation is
performed. Because the prices are only converging to
the optimum values and are not actually optimal, paths
with costs close to the shortest are likely to be good
choices. Of thek paths whose price is within a thresh-
old of the shortest path, the path with the lowest un-
priced cost is chosen.

An alternative to the heuristic based feasible solution
finders is to exhaustively search the space of allocations
with good prices. The exhaustive search procedure fixes
an order of variables (based on their unconstrained shortest
paths cost). The k-shortest priced paths are computed for
a variable, then for each of these paths the remaining vari-
ables are recursively allocated. Thus the Lagrangian prices
are used to narrow the search space of allocations of vari-
ables. Instead of considering all possible allocations of each
variable, only a maximum of k allocations are considered.
Although the search is exponential, if an upper bound is
known then it is possible to avoid visiting the entire search
tree.

5. Implementation

We have implemented our MCNF allocation framework
as a replacement for the local register allocator ingcc 3.4.
The gcc register allocator divides the register allocation
process into local and global passes. In the local pass, only
variables that are used in a single basic block are allocated.
After local allocation, the remaining variables are allocated
using a single-pass graph coloring algorithm.

Before allocation, we execute a preconditioning pass
which coalesces moves and translates instructions that are
not in an allocable form. For example, internally instruc-
tions are represented as three operand instructions even
when the architecture only supports two operand instruc-
tions. If all three operands are live out of the instruction,
it is not possible to allocate these three variables to distinct
registers and still generate an x86 two operand instruction.
The preconditioning pass will translate such instructions so
that two of the three operands are the same variable.

Then, for each basic block, we build an MCNF model
that models all the variables, both global and local, that are
used in the block. After running our solver on the model, we
insert the appropriate moves, stores, and loads and assign
registers to the local variables.

The MCNF model is simplified without loss of general-
ity by only allowing loads of a variable before instructions
that use the variable and only allowing stores after instruc-
tions that define it.

The solver first finds a feasible solution both in the un-
priced MCNF model and in an MCNF model where the first
store to memory is priced the cost of a store. For these ini-
tial solution variables are allocated in the same order used
by thegcc local allocation heuristic.

6. Results

6.1 Example

Throughout this section, unless otherwise stated, the re-
sults are for the same small example compiled for the x86



-10

-5

0

5

10

15

20

25

0 200 400 600 800 1000

M
in

im
um

 O
ve

rh
ea

d 
of

 O
pt

im
al

 R
eg

is
te

r A
llo

ca
tio

n

Iteration

Optimal
Ratio Method

Newton’s Method

Figure 3. The convergence of the Lagrangian
subproblem to the optimal value over 1000 it-
erations using two different methods for cal-
culating the step size.

architecture. All code is compiled with the-Os option
(optimize for size). The code for this example was iso-
lated from a much larger example (thesquareEncrypt
function in thepegwit benchmark from the MediaBench
benchmark suite [19]) and provides a reasonable register us-
age pattern that is complex enough to be interesting but sim-
ple enough to understand. The example has 56 instructions
and 26 variables of which a maximum of 8 are simultane-
ously live at any program point. The minimum possible
register allocation for this example is 21 bytes and the code
size after register allocation is 248 bytes.

6.2. Convergence

For the solution procedure to be effective, the value of
the Lagrangian subproblemL(w) should converge quickly
towards the actual optimal value. The convergence proper-
ties of both the ratio method and Newton’s method of de-
termining step sizes are shown in Figure 3. Although the
ratio method begins poorly because of the large initial step
sizes, it quickly converges towards the optimal solution of
21. By iteration 466 it has found a lower bound larger than
20 which is evidence that a feasible solution of cost 21 is op-
timal. Newton’s method, by contrast, does not find a lower
bound greater than 20 until iteration 1926. In general, New-
ton’s method performed more poorly than the ratio method;
for the remainder of this section we provide results for the
ratio method only.

6.3. Heuristics

As the Lagrangian subproblem converges towards the
optimum value it is expected to provide better guidance to
the feasible solution finders. The behavior of the Iterative
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est feasible solution finder over 10000 iter-
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verges, the quality of the found solutions im-
prove.
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Figure 5. The performance of different fea-
sible solution finders as measured by how
often optimal and near optimal solutions are
found over 10000 iterations.

Shortest heuristic is shown in Figure 4. All the solution
finders have a similar pattern of behaving erratically locally,
but showing a general trend of improvement. A good solu-
tion finder will find the optimal solution and solutions close
to optimal multiple times. The various solution finders are
evaluated by this metric in Figure 5.

The Greedy Shortest and Iterative Shortest heuristics
consider only the shortest feasible path of each variable
through the priced network. The iterative solution performs
significantly better than the simple greedy solution. Thek-
Choice solution finders generally do better ask is increased,
but at the expense of increased execution time.
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Figure 6. The overall percentage improve-
ment in total size of basic blocks, grouped
based on the number of local conflicts, as the
maximum number of iterations of the solver
is increased for different solution finders.

6.4. Code Quality

The solutions found by these procedures are, at best, only
optimal in the narrowly defined context of the MCNF for-
mulation of the register allocation problem. Because not
all possible register related transformations are modeled in
the implemented MCNF formulation, the actual overhead
of register allocation might be different than the theoreti-
cal overhead. For example, in the model all accesses to the
stack are assumed to only cost one byte which is only true
if fewer than 32 variables are spilled to the stack. A more
sophisticated model might have two memory classes to ad-
dress this issue. In addition, errors in the interface between
the Lagrangian solver andgcc ’s register allocator may also
distort the results.

Despite the many sources of noise, the Lagrangian solver
generates significantly smaller code thangcc ’s default al-
locator. We evaluate the allocator using basic blocks from
MiBench [14], MediaBench [19], SpecInt 95, and SpecInt
2000 [27, 28]. The base for comparison is the default
gcc allocator operating on an uncoalesced version of the
preconditioned instruction stream used by the Lagrangian
solver (the results are similar if the unconditioned instruc-
tion stream is used for a base of comparison). All results
are based on the code size immediately after register alloca-
tion. Because we are only interested in local allocation, the
allocator is only run on the 390 blocks which contain five
or more simultaneously live local variables. The code im-
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Figure 7. The percentage of basic blocks,
grouped by the maximum number of con-
flicts between local variables, whose solu-
tion can be proven to be a certain percentage
from optimal. As more iterations are used,
the algorithm finds better solutions and bet-
ter bounds on the optimality of the solutions.
The 2-choice solution finder was used; the
results are representative of all the iterative
solution finders.

provement for blocks containing fewer simultaneously live
local variables was slight (less than 1% improvement). Fur-
thermore, more than 90% of these blocks had provably opti-
mal solutions within 10 iterations. The results using differ-
ent feasible solution finders are shown in Figure 6. Some-
what surprisingly, there is not a large difference between the
various solution finders. As expected, the code quality im-
proves as more time is allotted for execution. In addition,
as shown in Figure 7, many of these solutions can be shown
to be optimal or near-optimal.

The poor results for the 15-20 conflicts case are an ar-
tifact of the current implementation’s preconditioning pass.
We currently do not coalesce variables which have different
sizes. Although this is not a common occurrence, it is vital
for one of the blocks in this category.

6.5. Running Times

If the Lagrangian approach is to be useful for register
allocation, it must offer both competitive performance and
scale as the problem size increases. We evaluate the perfor-
mance of the various solution finders operating on both the
small example from the previous sections and the function,
squareEncrypt , from which it is derived. This large



Register Allocator Small Example Time (s) Large Example Time (s)
gcc default (local/global) < .01 .02

gcc -fnew-ra (Briggs/Chaitin) .01 .15
Lagrangian: 15% from Optimal 1.8 59.4
Lagrangian: 10% from Optimal 2.94 85.2
Lagrangian: 5% from Optimal 14.64 528.6
Lagrangian: Proven Optimal 104.6 N/A

ILP Solver, CPLEX 7.1 3.14 (5.62) 949 (1699)

Table 3. The total time, in seconds, of the register allocation pass for various allocators on a 1.8Ghz
Pentium 4 system. Times are given for both of gcc ’s allocators, for the Lagrangian based approach
using two different stopping criterion, and for the CPLEX 7.1 [16] ILP solver. The CPLEX solver was
run on a 1Ghz Pentium 3. To make a more accurate comparison, the CPLEX times were extrapolated
to the expected values on the faster system using the bogomips ratio of the two machines. The
original times are shown in parentheses.

Technique Small Large
L(w) maximization .016 .17

Greedy Shortest .05 2.6
Iterative Shortest .04 .5

2-Choice .05 .6
4-Choice .06 .7
8-Choice .07 .9
16-Choice .09 1.1

Table 2. The time, in seconds, of performing
a single iteration of Lagrangian maximization
and of each feasible solution finder for both a
small and large example on a 1.8Ghz Pentium
4 system.

example has 380 instructions and 150 variables of which
as many as 14 are simultaneously live. The value of the
optimal solution is 428. The running times of the various
techniques per an iteration are shown in Table 2.

An adequate lower bound for proving optimality of the
small example is found in iteration 466 (28 seconds) but us-
ing the 2-choice solution finder an optimal feasible solution
is not found until iteration 1744 (105 seconds). However,
a solution that is proven to be within 10% of optimal and
is actually within 5% of optimal is found within 3 seconds.
The large example does not find an optimal solution within
5000 iterations, but will be able to provide a solution that
is guaranteed to be within 15% of optimal at iteration 99
(about 60 seconds).

To put these times in perspective, the total register alloca-
tion times for both ofgcc ’s allocators are shown in Table 3.
These allocators can produce decent allocations well before
the Lagrangian approach has had a chance to ramp up, but
they can make no claims about optimality. Traditional in-
teger linear program solvers can be used to solve for the

MCNF formulation of the register allocation problem. The
solution time for the commercial CPLEX [16] solver is also
shown in Table 3. The Lagrangian approach compares fa-
vorably with the optimal solver and has the added advan-
tage of being progressive (that is, capable of producing a
suboptimal solution with guaranteed optimality bounds at
any point).

Figure 8. The progressive nature of the
Lagrangian solution approach run on the
squareEncrypt function. As the algorithm
computes, a better solution and a better op-
timality bound on the solution are found.

7. Conclusion

As shown in Figure 8, the current implementation of our
register allocator effectively bridges the gap betweengcc ,
which is fast, but neither expressive nor proper, and the
slow, but fully expressive and proper, ILP approach. The
Lagrangian approach quickly finds a solution comparable



with the gcc solution and continues to improve the result
as more time passes. The Largrangian approach is not guar-
anteed to find an optimal solution and, even when an opti-
mal solution is found, it may take longer than a commercial
ILP solver. However, unlike with the ILP solver, a valid
intermediate result is always available.

In conclusion, we have developed an approach to register
allocation which allows a user to make a conscious trade-
off between compile-time and code quality. Our allocator,
based on reducing the register allocation problem to a multi-
commodity network flow problem, is expressive, proper,
and progressive; no other allocator combines all three prop-
erties.
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