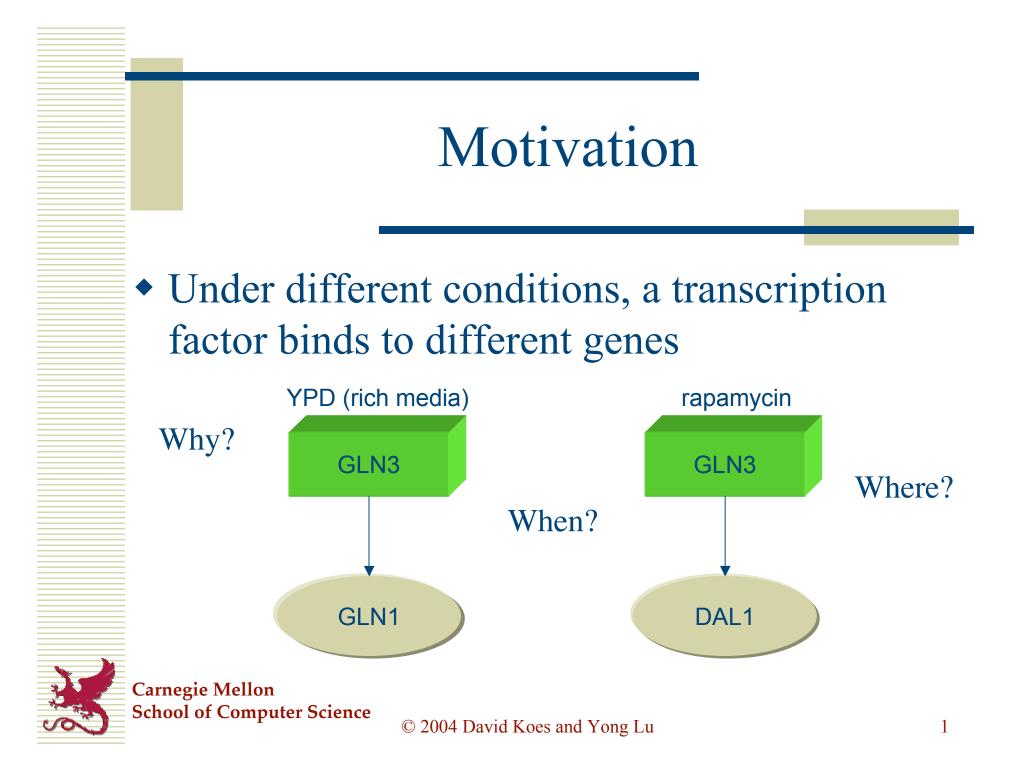
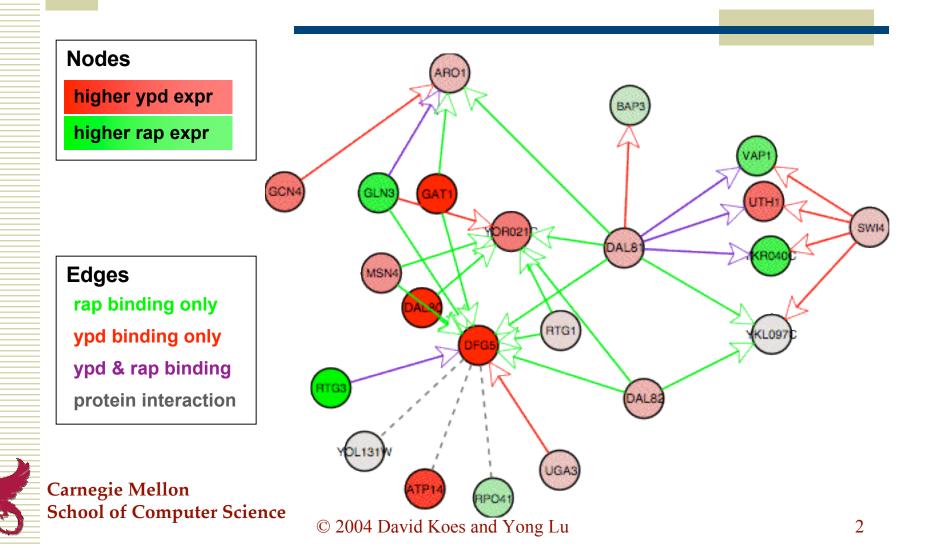
Identifying and Understanding Differential Transcriptor Binding

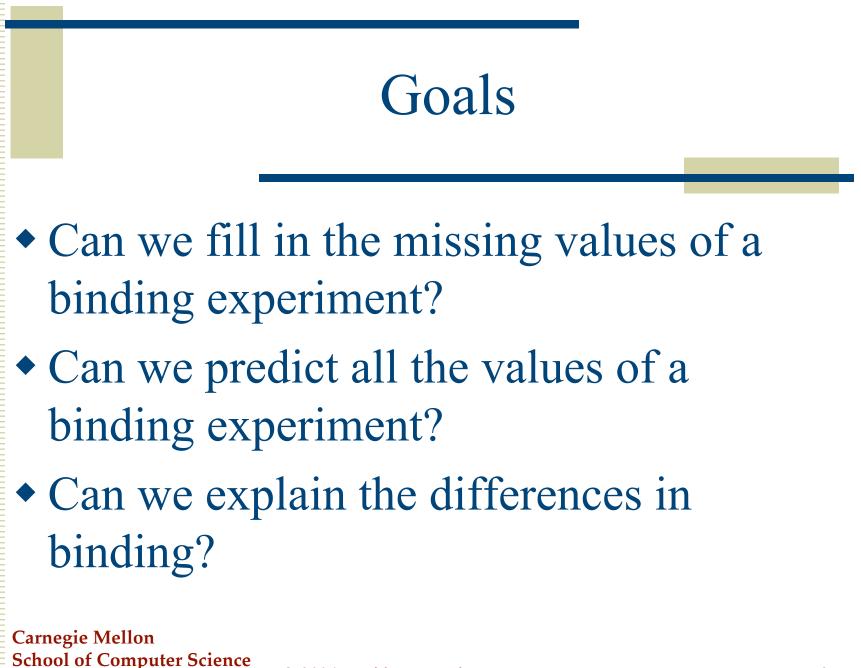
15-899: Computational Genomics

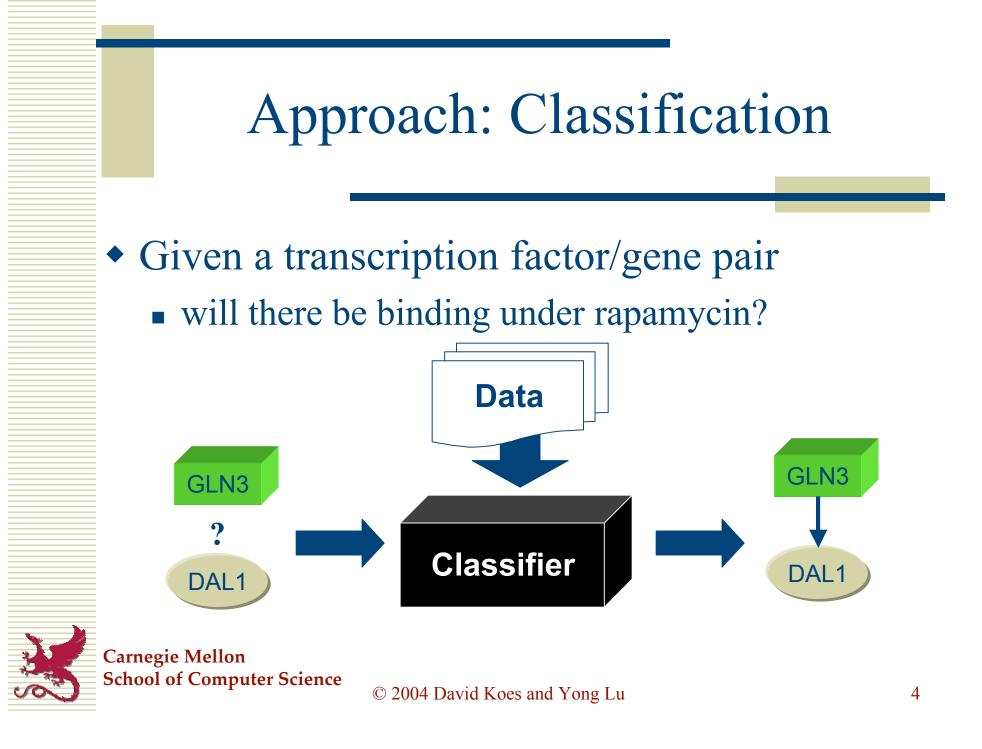
David Koes Yong Lu

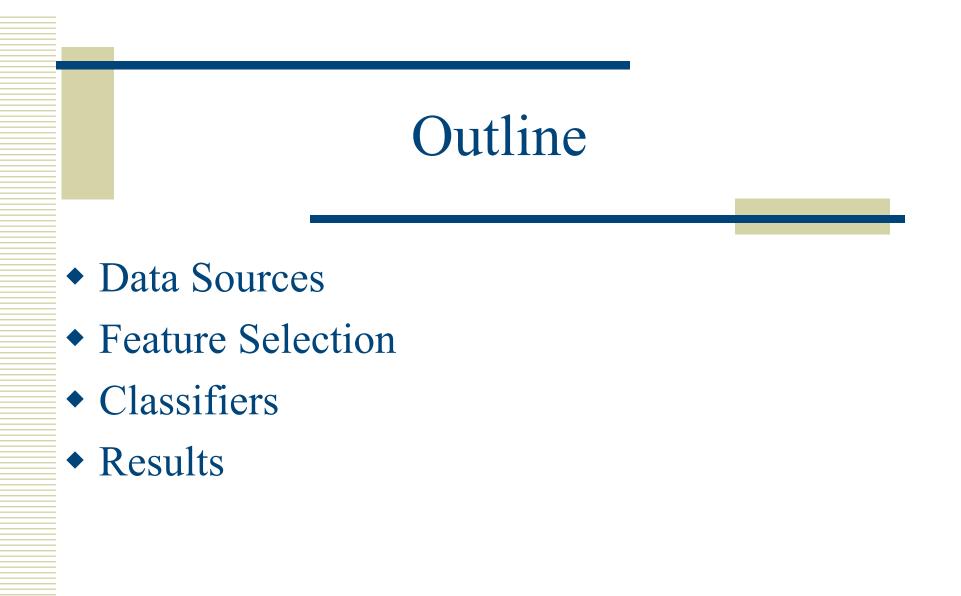


Example: Difference Graph









Carnegie Mellon School of Computer Science

Data: Saccharomyces cerevisiae

• Expression

- ypd and rapamycin micro-array data
 - http://www-schreiber.chem.harvard.edu/home/protocols/partitioning/

Binding

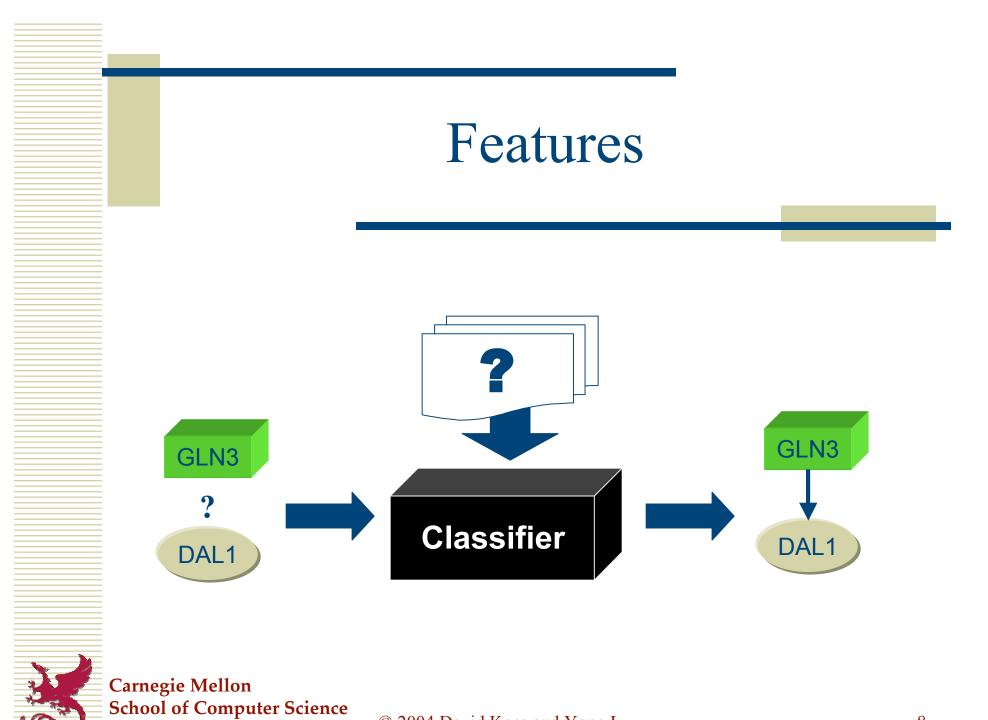
- genome wide location analysis
 - YPD: http://web.wi.mit.edu/young/regulator_network/
 - Rapamycin: http://www.psrg.lcs.mit.edu/Networks/modules.html

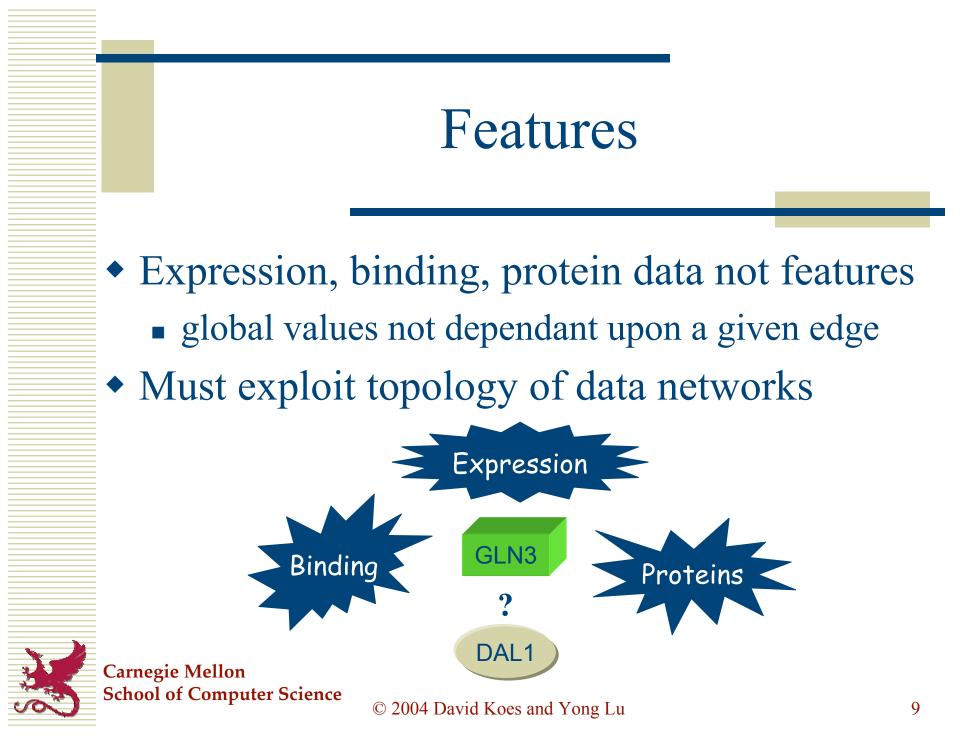
Protein Interaction

- two-hybrid method
 - http://genome.c.kanazawa-u.ac.jp/Y2H/

Carnegie Mellon School of Computer Science

- Data Sources
- Feature Selection
 - sparse and precise
 - dense and aggregate
- Classifiers
- Results





- Data Sources
- Feature Selection
 - sparse and precise
 - dense and aggregate
- Classifiers
- Results

Sparse and Precise

- Several attributes for *every* gene
 - binding pvalue for gene with factor/target
 - expression of gene if gene can bind factor/target
 - expression of gene if factor/target can bind gene
 - expression of gene if protein interaction with factor/target exists
 - expression of gene if gene is factor/target

Carnegi School o

Example

.6

.001

.001

.002

2.0

-2.0

-1.0

1.0

2.0

1.0

-2.0

2.0

-1.0

2.0

1.0

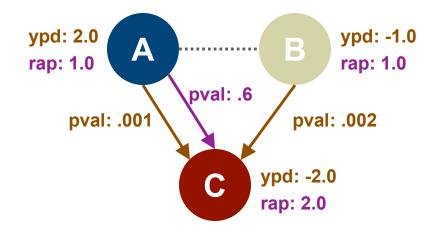
1.0

Nonzero attributes (16)

factor_binds_target_rap factor_binds_target_ypd factor_binds_C_ypd B_binds_target_ypd factor_self_A_ypd factor_ldown_C_ypd factor_1pp_B_ypd factor_self_A_rap factor_ldown_C_rap factor_lpp_B_rap target_self_C_ypd target_lup_A_ypd target_lup_B_ypd target_self_C_rap target_lup_A_rap target_lup_B_rap

Zero attributes (46)

factor_binds_A_ypd factor_binds_B_ypd target_binds_A_ypd target_binds_B_ypd <etc.>



Carnegie Mellon School of Computer Science

Pros and Cons

- Pros
 - Precisely captures all the data
 - Sparse dataset results in compact representation
 - Solvers can take advantage of sparseness
- Cons
 - Susceptible to over-fitting
 - Huge number of attributes
 - Solvers require binary attributes

- Feature Selection
 - sparse and precise
 - dense and aggregate
- Classifiers
- Results

Dense and Aggregate

- Use averages of data based on topological relationship in network
 - genes that can bind factor/target
 - genes that factor/target can bind
 - genes with protein interactions with factor/target
- YPD binding data

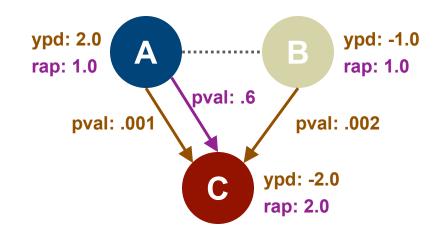
Example

Nonzero attributes (12)

rap_bind	.6
ypd_bind	0.001
factor_expr_ypd	2.0
factor_expr_rap	1.0
target_expr_ypd	-2.0
target_expr_rap	2.0
target_ave_expr_up_YPD	0.5
argen_ave_evhr_ah_rrn	0.5
target_ave_expr_up_RAP	1.0
•	
target_ave_expr_up_RAP	1.0
target_ave_expr_up_RAP factor_ave_expr_down_YPD	1.0 -2.0

Zero attributes (6)

0
0
0
0
0
0



Carnegie Mellon School of Computer Science

Pros and Cons

- Pros
 - Small, constant, number of attributes
 - Low penalty for adding additional attributes
- Cons
 - Information lost

- Data Sources
- Feature Selection
- Classifiers
 - Logistic Regression
 - K Nearest Neighbor
 - Naïve Bayes
 - Learned Bayes Net

Results

Logistic Regression

Find β such that μ best approximate the training data outputs **y** where

$$\mu_i = \frac{e^{(\beta \cdot \mathbf{x}_i)}}{1 + e^{(\beta \cdot \mathbf{x}_i)}}$$

Solved with iterative re-weighted least squares

Newton-Raphson

K Nearest Neighbors

 Classify a point based on value of training points close by in attribute space

Carnegie Mellon School of Computer Science

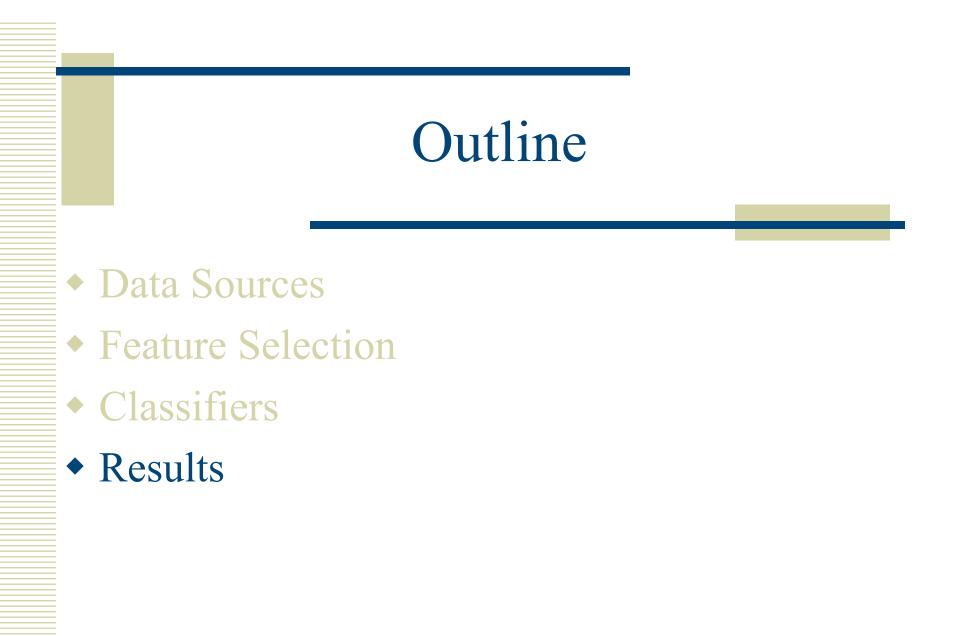
Naïve Bayes

- Makes simplifying assumption that attributes are conditional independent given class
- Uses training data to estimate conditional probabilities
- Classifies based on what class assignment maximizes joint probability

Learned Bayes Net

• Use training data to find a "good" network of conditional dependencies

Carnegie Mellon School of Computer Science

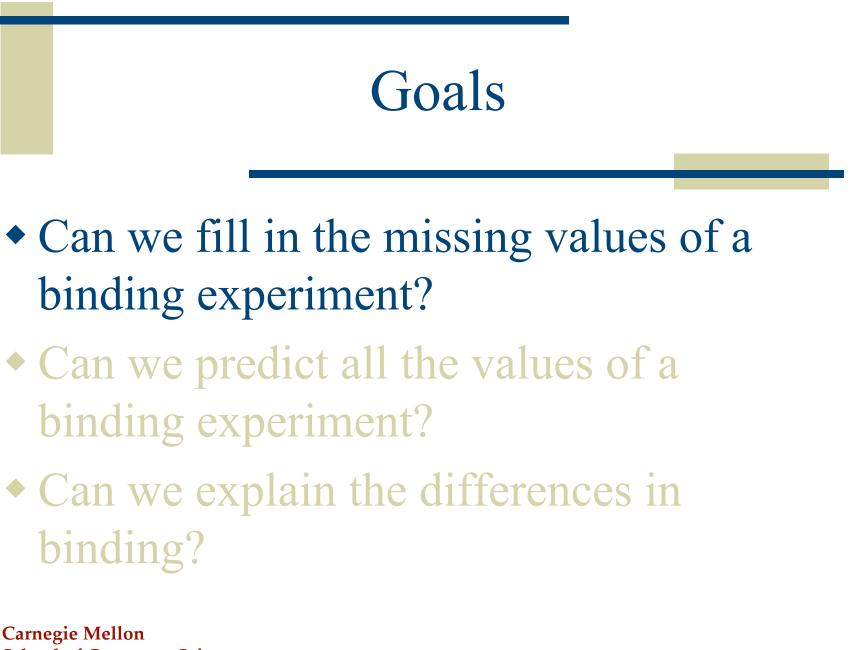


Carnegie Mellon School of Computer Science

Tools

- Auton Fast Classifiers
 - http://www.autonlab.org/
- Bayes Net Inference
 - BNT/Matlab

• http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html

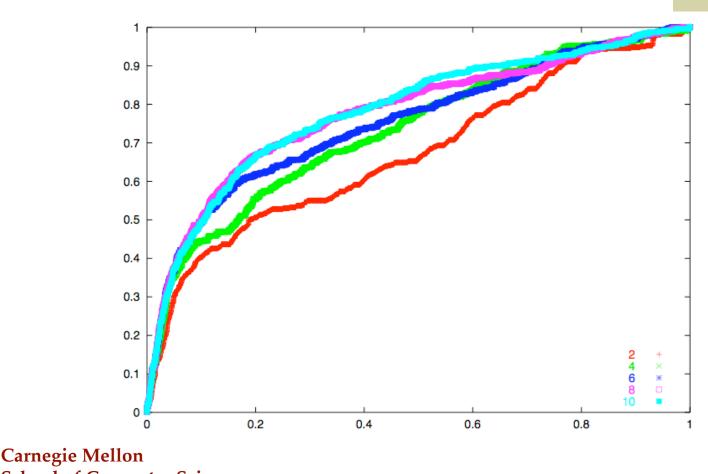


School of Computer Science

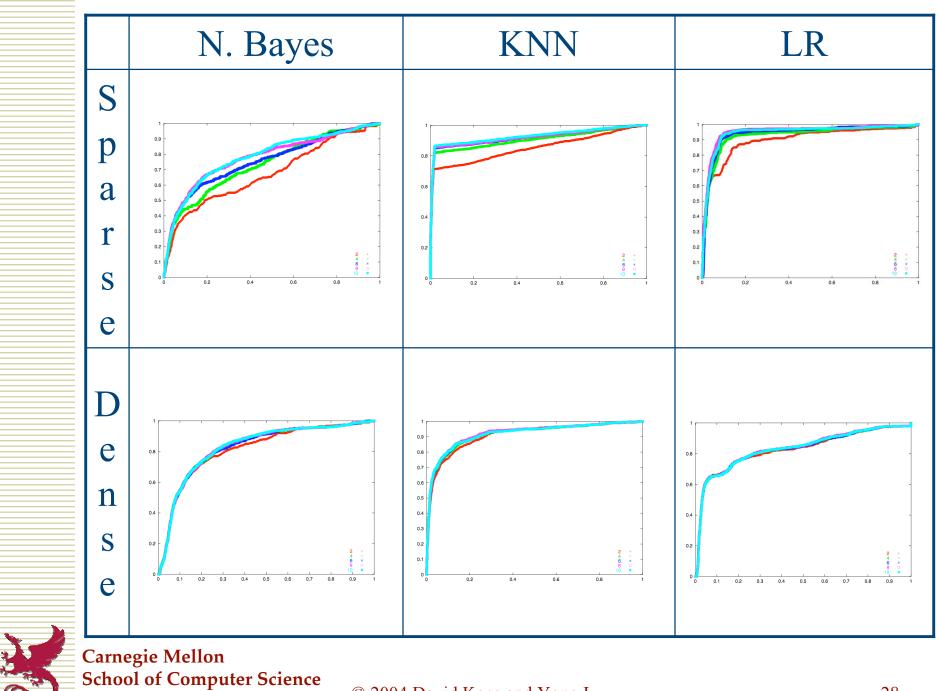
Evaluation

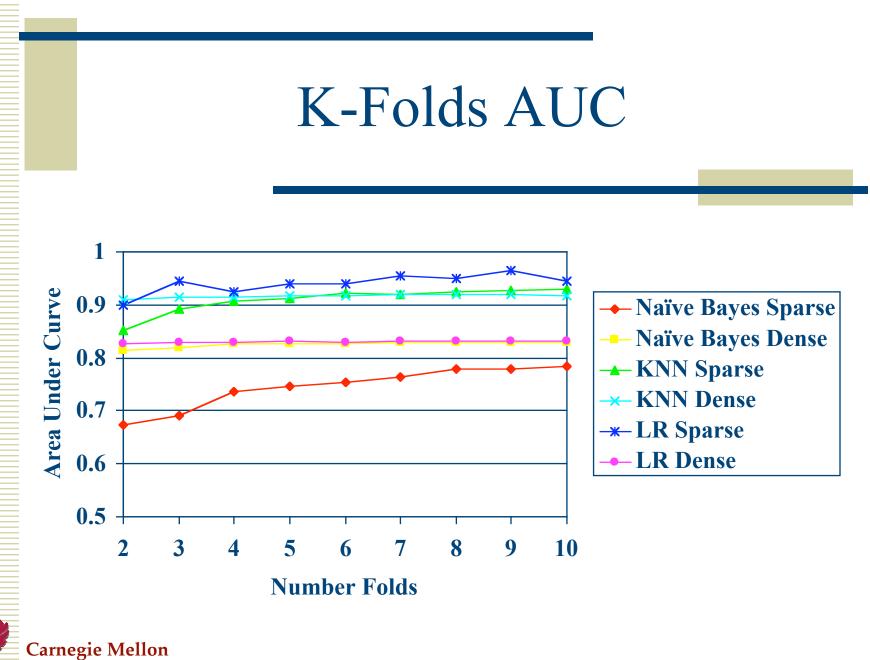
- Use data from all 12 transcription factors
 Training set
 - all edges with binding in either condition
 - randomly selected nonbinding edges
- k-fold validation
 - use 1/k'th of data as test set
 - simulates missing values

ROC Curve: Sparse Naïve Bayes



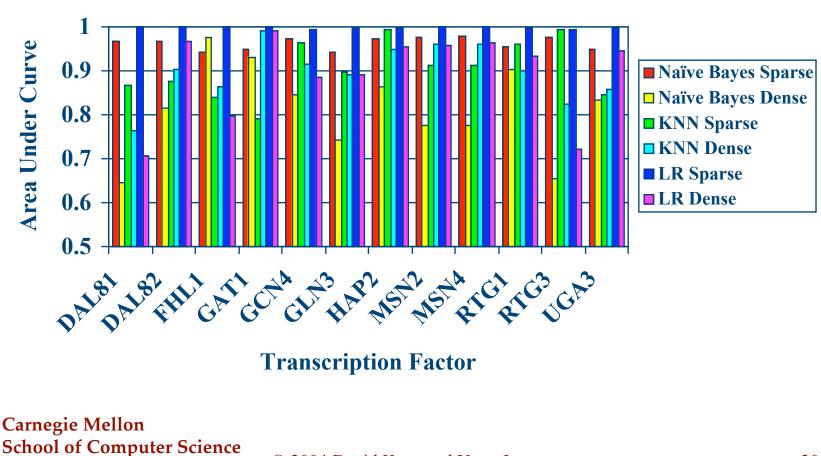
School of Computer Science





School of Computer Science

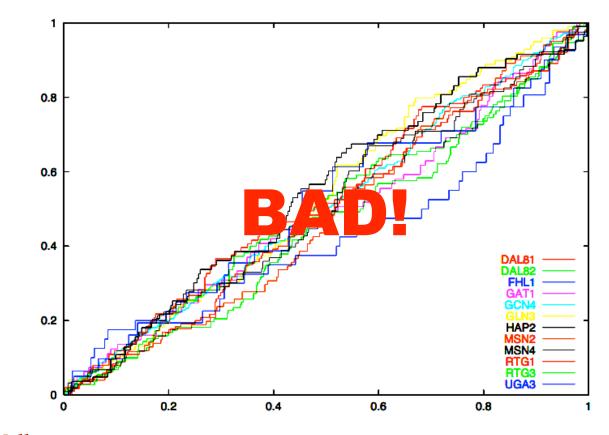
 $\ensuremath{\mathbb{C}}$ 2004 David Koes and Yong Lu



Evaluation

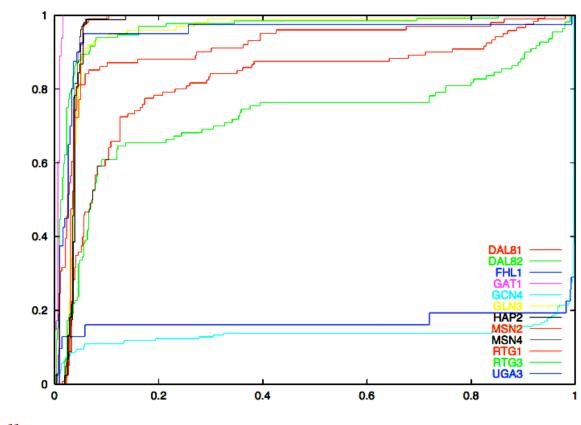
- Training set
 - full data for 11 transcription factors
- Test set
 - full data of remaining transcription factor

ROC Curves: Sparse N. Bayes

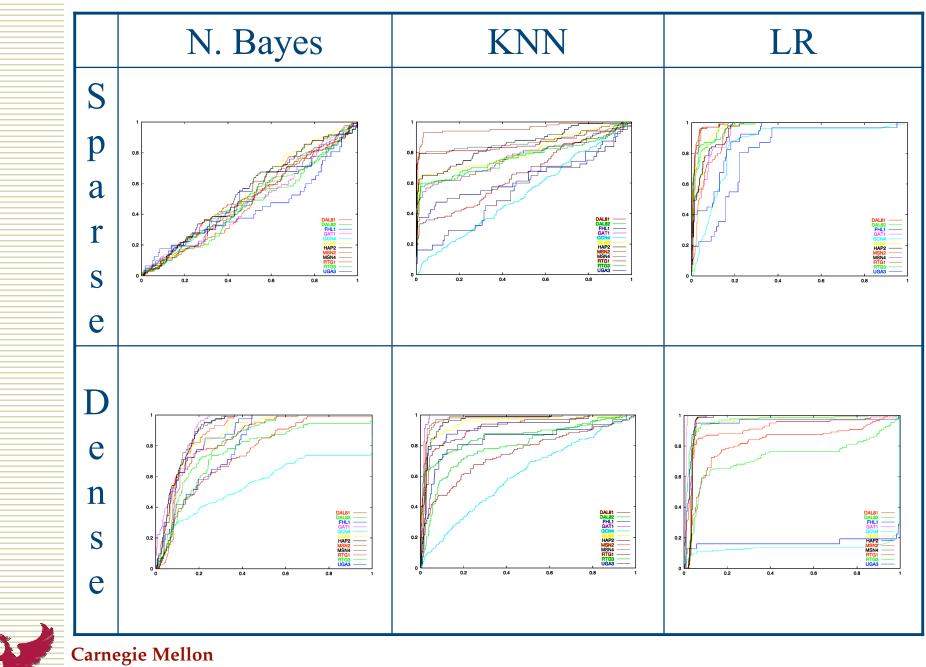


Carnegie Mellon School of Computer Science

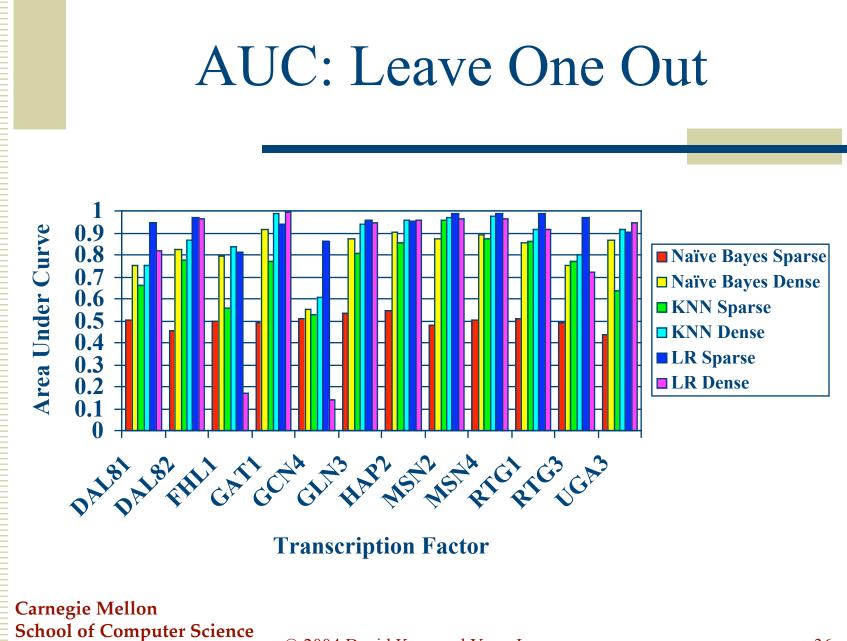
ROC Curves: Dense LR



Carnegie Mellon School of Computer Science



School of Computer Science



 $\ensuremath{\mathbb{C}}$ 2004 David Koes and Yong Lu

Unknown Transcription Factors

- Rapamycin data for only 12 factors
- YPD data for 106 factors
- What is predicted for additional factors?
 - Use sparse LR
 - Only consider already binding YPD edges

Top 20 Most Differing Factors

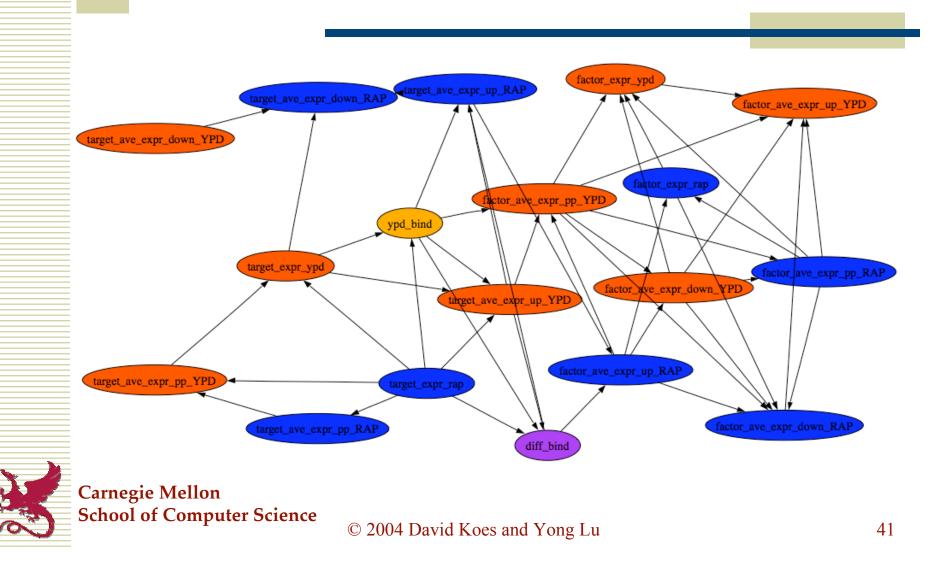
FHL1	94%		DAL81	62%
GAT1	93%		GLN3	61%
DAL82	91%		RTG1	60%
UGA3	90%		REB1	59%
4 RAP1	88%		MCM1	48%
MSN4	82%		₹FKH1	47%
MSN2	82%		RCS1	46%
1 ABF1	79%		SWI4	44%
HAP2	67%		RTG3	43%
CIN5	64%		TZF1	41%
Carnegie Mellon School of Computer Scie	nce	bMed F		

Learned Bayes Network

- Simple classifiers may be successful
 but don't generate intuitive models
- Bayesian network might infer causality
- Find network that explains (dense) data well

Carnegie Mellon School of Computer Science

Learned Baysian Network



Conclusion

- Classifiers very good at filling in missing values
- Classifiers can sometimes predict results of an experiment
 - but sometimes way off
- Results may be used as guide to experimentation
- There may be some biological meaning within the classifier's model

