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Motivation

 Under different conditions, a transcription
factor binds to different genes

GLN3 GLN3

GLN1 DAL1

YPD (rich media) rapamycin

Why?

When?
Where?
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Example: Difference Graph

rap binding only

ypd binding only

ypd & rap binding

protein interaction

Edges

higher ypd expr

higher rap expr

Nodes
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Goals

Can we fill in the missing values of a
binding experiment?

Can we predict all the values of a
binding experiment?

Can we explain the differences in
binding?
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Approach: Classification

 Given a transcription factor/gene pair
 will there be binding under rapamycin?

GLN3

DAL1

GLN3

DAL1

?
Classifier

Data
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Outline

 Data Sources

 Feature Selection

 Classifiers

 Results
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Data: Saccharomyces cerevisiae

 Expression
 ypd and rapamycin micro-array data

 http://www-schreiber.chem.harvard.edu/home/protocols/partitioning/

 Binding
 genome wide location analysis

 YPD:  http://web.wi.mit.edu/young/regulator_network/

 Rapamycin: http://www.psrg.lcs.mit.edu/Networks/modules.html

 Protein Interaction
 two-hybrid method

 http://genome.c.kanazawa-u.ac.jp/Y2H/
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Features

GLN3

DAL1

GLN3

DAL1

?
Classifier

?
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Features

 Expression, binding, protein data not features
 global values not dependant upon a given edge

 Must exploit topology of data networks

GLN3

DAL1

?
ProteinsBinding

Expression
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Sparse and Precise

 Several attributes for every gene
 binding pvalue for gene with factor/target

 expression of gene if gene can bind factor/target

 expression of gene if factor/target can bind gene

 expression of gene if protein interaction with
factor/target exists

 expression of gene if gene is factor/target
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Example

A

C

B
ypd: -1.0

rap: 1.0

ypd: 2.0

rap: 1.0

ypd: -2.0

rap: 2.0

pval: .002pval: .001
pval: .6

Nonzero attributes (16)
factor_binds_target_rap .6
factor_binds_target_ypd .001
factor_binds_C_ypd .001
B_binds_target_ypd .002
factor_self_A_ypd 2.0
factor_1down_C_ypd -2.0
factor_1pp_B_ypd -1.0
factor_self_A_rap 1.0
factor_1down_C_rap 2.0
factor_1pp_B_rap 1.0
target_self_C_ypd -2.0
target_1up_A_ypd 2.0
target_1up_B_ypd -1.0
target_self_C_rap 2.0
target_1up_A_rap 1.0
target_1up_B_rap 1.0

Zero attributes (46)
factor_binds_A_ypd
factor_binds_B_ypd
target_binds_A_ypd
target_binds_B_ypd
<etc.>
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Pros and Cons

 Pros
 Precisely captures all the data
 Sparse dataset results in compact representation

 Solvers can take advantage of sparseness

 Cons
 Susceptible to over-fitting
 Huge number of attributes
 Solvers require binary attributes
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Dense and Aggregate

 Use averages of data based on topological
relationship in network
 genes that can bind factor/target

 genes that factor/target can bind

 genes with protein interactions with factor/target

 YPD binding data
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Example

A

C

B
ypd: -1.0

rap: 1.0

ypd: 2.0

rap: 1.0

ypd: -2.0

rap: 2.0

pval: .002pval: .001
pval: .6

Nonzero attributes (12)
rap_bind .6
ypd_bind 0.001
factor_expr_ypd 2.0
factor_expr_rap 1.0
target_expr_ypd -2.0
target_expr_rap 2.0
target_ave_expr_up_YPD 0.5
target_ave_expr_up_RAP 1.0
factor_ave_expr_down_YPD -2.0
factor_ave_expr_down_RAP 2.0
factor_ave_expr_pp_YPD -1.0
factor_ave_expr_pp_RAP 1.0

Zero attributes (6)
target_ave_expr_down_YPD 0
target_ave_expr_down_RAP 0
target_ave_expr_pp_YPD 0
target_ave_expr_pp_RAP 0
factor_ave_expr_up_YPD 0
factor_ave_expr_up_RAP 0
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Pros and Cons

 Pros
 Small, constant, number of attributes

 Low penalty for adding additional attributes

 Cons
 Information lost
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Logistic Regression

 Find β such that µ best approximate the training
data outputs y where

 Solved with iterative re-weighted least squares
 Newton-Raphson

€ 

µi =
e β •x i( )

1+ e β •x i( )
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K Nearest Neighbors

 Classify a point based on value of training
points close by in attribute space
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Naïve Bayes

 Makes simplifying assumption that attributes
are conditional independent given class

 Uses training data to estimate conditional
probabilities

 Classifies based on what class assignment
maximizes joint probability
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Learned Bayes Net

 Use training data to find a “good” network of
conditional dependencies
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Tools

 Auton Fast Classifiers
 http://www.autonlab.org/

 Bayes Net Inference
 BNT/Matlab

 http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html
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Goals

Can we fill in the missing values of a
binding experiment?

Can we predict all the values of a
binding experiment?

Can we explain the differences in
binding?
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Evaluation

 Use data from all 12 transcription factors

 Training set
 all edges with binding in either condition

 randomly selected nonbinding edges

 k-fold validation
 use 1/k’th of data as test set

 simulates missing values
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ROC Curve: Sparse Naïve Bayes
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K-Folds AUC
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8-Fold, Single Factor
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Goals

Can we fill in the missing values of a
binding experiment?

Can we predict all the values of a
binding experiment?

Can we explain the differences in
binding?



© 2004 David Koes and Yong Lu 32

Carnegie Mellon
School of Computer Science

Evaluation

 Training set
 full data for 11 transcription factors

 Test set
 full data of remaining transcription factor
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ROC Curves: Sparse N. Bayes

BAD!
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ROC Curves: Dense LR
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AUC: Leave One Out
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Unknown Transcription Factors

 Rapamycin data for only 12 factors

 YPD data for 106 factors

 What is predicted for additional factors?
 Use sparse LR

 Only consider already binding YPD edges
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Top 20 Most Differing Factors

64%CIN5

67%HAP2

79%ABF1

82%MSN2

82%MSN4

88%RAP1

90%UGA3

91%DAL82

93%GAT1

94%FHL1

41%FZF1

43%RTG3

44%SWI4

46%RCS1

47%FKH1

48%MCM1

59%REB1

60%RTG1

61%GLN3

62%DAL81
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1

PubMed Hits
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Goals

Can we fill in the missing values of a
binding experiment?

Can we predict all the values of a
binding experiment?

Can we explain the differences in
binding?
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Learned Bayes Network

 Simple classifiers may be successful
 but don’t generate intuitive models

 Bayesian network might infer causality

 Find network that explains (dense) data well
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Learned Baysian Network
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Conclusion

 Classifiers very good at filling in missing values

 Classifiers can sometimes predict results of an
experiment
 but sometimes way off

 Results may be used as guide to experimentation

 There may be some biological meaning within the
classifier’s model


