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Motivation

 Under different conditions, a transcription
factor binds to different genes

GLN3 GLN3

GLN1 DAL1

YPD (rich media) rapamycin

Why?

When?
Where?
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Example: Difference Graph

rap binding only

ypd binding only

ypd & rap binding

protein interaction

Edges

higher ypd expr

higher rap expr

Nodes
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Goals

Can we fill in the missing values of a
binding experiment?

Can we predict all the values of a
binding experiment?

Can we explain the differences in
binding?
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Approach: Classification

 Given a transcription factor/gene pair
 will there be binding under rapamycin?

GLN3

DAL1

GLN3

DAL1

?
Classifier

Data
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Outline

 Data Sources

 Feature Selection

 Classifiers

 Results
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Data: Saccharomyces cerevisiae

 Expression
 ypd and rapamycin micro-array data

 http://www-schreiber.chem.harvard.edu/home/protocols/partitioning/

 Binding
 genome wide location analysis

 YPD:  http://web.wi.mit.edu/young/regulator_network/

 Rapamycin: http://www.psrg.lcs.mit.edu/Networks/modules.html

 Protein Interaction
 two-hybrid method

 http://genome.c.kanazawa-u.ac.jp/Y2H/
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Outline

 Data Sources

 Feature Selection
 sparse and precise

 dense and aggregate

 Classifiers

 Results
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Features

GLN3

DAL1

GLN3

DAL1

?
Classifier

?
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Features

 Expression, binding, protein data not features
 global values not dependant upon a given edge

 Must exploit topology of data networks

GLN3

DAL1

?
ProteinsBinding

Expression
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Outline

 Data Sources

 Feature Selection
 sparse and precise

 dense and aggregate

 Classifiers

 Results
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Sparse and Precise

 Several attributes for every gene
 binding pvalue for gene with factor/target

 expression of gene if gene can bind factor/target

 expression of gene if factor/target can bind gene

 expression of gene if protein interaction with
factor/target exists

 expression of gene if gene is factor/target
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Example

A

C

B
ypd: -1.0

rap: 1.0

ypd: 2.0

rap: 1.0

ypd: -2.0

rap: 2.0

pval: .002pval: .001
pval: .6

Nonzero attributes (16)
factor_binds_target_rap .6
factor_binds_target_ypd .001
factor_binds_C_ypd .001
B_binds_target_ypd .002
factor_self_A_ypd 2.0
factor_1down_C_ypd -2.0
factor_1pp_B_ypd -1.0
factor_self_A_rap 1.0
factor_1down_C_rap 2.0
factor_1pp_B_rap 1.0
target_self_C_ypd -2.0
target_1up_A_ypd 2.0
target_1up_B_ypd -1.0
target_self_C_rap 2.0
target_1up_A_rap 1.0
target_1up_B_rap 1.0

Zero attributes (46)
factor_binds_A_ypd
factor_binds_B_ypd
target_binds_A_ypd
target_binds_B_ypd
<etc.>
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Pros and Cons

 Pros
 Precisely captures all the data
 Sparse dataset results in compact representation

 Solvers can take advantage of sparseness

 Cons
 Susceptible to over-fitting
 Huge number of attributes
 Solvers require binary attributes
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Outline

 Data Sources

 Feature Selection
 sparse and precise

 dense and aggregate

 Classifiers

 Results
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Dense and Aggregate

 Use averages of data based on topological
relationship in network
 genes that can bind factor/target

 genes that factor/target can bind

 genes with protein interactions with factor/target

 YPD binding data



© 2004 David Koes and Yong Lu 16

Carnegie Mellon
School of Computer Science

Example

A

C

B
ypd: -1.0

rap: 1.0

ypd: 2.0

rap: 1.0

ypd: -2.0

rap: 2.0

pval: .002pval: .001
pval: .6

Nonzero attributes (12)
rap_bind .6
ypd_bind 0.001
factor_expr_ypd 2.0
factor_expr_rap 1.0
target_expr_ypd -2.0
target_expr_rap 2.0
target_ave_expr_up_YPD 0.5
target_ave_expr_up_RAP 1.0
factor_ave_expr_down_YPD -2.0
factor_ave_expr_down_RAP 2.0
factor_ave_expr_pp_YPD -1.0
factor_ave_expr_pp_RAP 1.0

Zero attributes (6)
target_ave_expr_down_YPD 0
target_ave_expr_down_RAP 0
target_ave_expr_pp_YPD 0
target_ave_expr_pp_RAP 0
factor_ave_expr_up_YPD 0
factor_ave_expr_up_RAP 0
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Pros and Cons

 Pros
 Small, constant, number of attributes

 Low penalty for adding additional attributes

 Cons
 Information lost
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Outline

 Data Sources

 Feature Selection

 Classifiers
 Logistic Regression

 K Nearest Neighbor

 Naïve Bayes

 Learned Bayes Net

 Results
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Logistic Regression

 Find β such that µ best approximate the training
data outputs y where

 Solved with iterative re-weighted least squares
 Newton-Raphson

€ 

µi =
e β •x i( )

1+ e β •x i( )
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K Nearest Neighbors

 Classify a point based on value of training
points close by in attribute space
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Naïve Bayes

 Makes simplifying assumption that attributes
are conditional independent given class

 Uses training data to estimate conditional
probabilities

 Classifies based on what class assignment
maximizes joint probability
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Learned Bayes Net

 Use training data to find a “good” network of
conditional dependencies
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Outline

 Data Sources

 Feature Selection

 Classifiers

 Results
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Tools

 Auton Fast Classifiers
 http://www.autonlab.org/

 Bayes Net Inference
 BNT/Matlab

 http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html
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Goals

Can we fill in the missing values of a
binding experiment?

Can we predict all the values of a
binding experiment?

Can we explain the differences in
binding?
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Evaluation

 Use data from all 12 transcription factors

 Training set
 all edges with binding in either condition

 randomly selected nonbinding edges

 k-fold validation
 use 1/k’th of data as test set

 simulates missing values
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ROC Curve: Sparse Naïve Bayes
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K-Folds AUC
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8-Fold, Single Factor
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Goals

Can we fill in the missing values of a
binding experiment?

Can we predict all the values of a
binding experiment?

Can we explain the differences in
binding?
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Evaluation

 Training set
 full data for 11 transcription factors

 Test set
 full data of remaining transcription factor
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ROC Curves: Sparse N. Bayes

BAD!
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ROC Curves: Dense LR
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AUC: Leave One Out
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Unknown Transcription Factors

 Rapamycin data for only 12 factors

 YPD data for 106 factors

 What is predicted for additional factors?
 Use sparse LR

 Only consider already binding YPD edges
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Top 20 Most Differing Factors

64%CIN5

67%HAP2

79%ABF1

82%MSN2

82%MSN4

88%RAP1

90%UGA3

91%DAL82

93%GAT1

94%FHL1

41%FZF1

43%RTG3

44%SWI4

46%RCS1

47%FKH1

48%MCM1

59%REB1

60%RTG1

61%GLN3

62%DAL81

4

1

1

PubMed Hits
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Goals

Can we fill in the missing values of a
binding experiment?

Can we predict all the values of a
binding experiment?

Can we explain the differences in
binding?



© 2004 David Koes and Yong Lu 40

Carnegie Mellon
School of Computer Science

Learned Bayes Network

 Simple classifiers may be successful
 but don’t generate intuitive models

 Bayesian network might infer causality

 Find network that explains (dense) data well
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Learned Baysian Network
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Conclusion

 Classifiers very good at filling in missing values

 Classifiers can sometimes predict results of an
experiment
 but sometimes way off

 Results may be used as guide to experimentation

 There may be some biological meaning within the
classifier’s model


