
A Comparison of Allocators

David Koes
dkoes@cs.cmu.edu

March 11, 2006

In this document we compare the graph-
coloring based allocator and the local/global non-
iterative default allocator of version 3.4.3 of the
GNU compiler gcc.

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

1
6
4
.g
z
ip

1
7
5
.v
p
r

1
8
1
.m
c
f

1
9
7
.p
a
rs
e
r

2
5
4
.g
a
p

2
5
5
.v
o
rt
e
x

2
5
6
.b
z
ip
2

3
0
0
.t
w
o
lf

1
6
8
.w
u
p
w
is
e

1
7
1
.s
w
im

1
7
2
.m
g
ri
d

1
7
3
.a
p
p
lu

1
7
7
.m
e
s
a

1
7
9
.a
rt

1
8
3
.e
q
u
a
k
e

1
8
8
.a
m
m
p

2
0
0
.s
ix
tr
a
c
k

3
0
1
.a
p
s
i

SPECint SPECfp

P
e
r
fo

r
m

a
n

c
e
 i
m

p
r
o

v
e
m

e
n

t 
o

f 
g

r
a
p

h
 a

ll
o

c
a
to

r

Figure 1: Performance improvement of the graph al-
locator compared to the default allocator. The code
was compiled with the flags -O3 -funroll-loops
and executed on a RedHat Linux 9.1 workstation with
a 1.8Ghz Pentium 4 and 1.5GB of RAM.

The performance of selected SPEC bench-
marks compiled with the graph allocator com-
pared to code compiled with the default alloca-
tor when targeting x86 is shown in Figure 1. The
results are mixed with most benchmarks demon-
strating no significant change (as the SPEC
benchmark suite uses wall clock timing and the
benchmarks were not run multiple times in gen-
erating this data, a certain amount of measure-
ment data should be expected – sorry).

The results for code size when targeting x86,
68k, and PPC, which have 8, 16, and 32 registers
respectively, are shown in Figure 2. In this case,

-16.00%

-14.00%

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

1
8
6
.c

ra
ft

y

1
9
7
.p

a
rs

e
r

2
5
2
.e

o
n
*

2
5
3
.p

e
rl

2
5
4
.g

a
p

2
5
5
.v

o
rt

e
x

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

1
6
8
.w

u
p
w

is
e
*

1
7
1
.s

w
im

*

1
7
2
.m

g
ri
d
*

1
7
3
.a

p
p
lu

*

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
8
.a

m
m

p

2
0
0
.s

ix
tr

a
c
k
*

3
0
1
.a

p
s
i*

A
v
e
ra

g
e

SPECint SPECfp

P
e
r
c
e
n

t 
C

o
d

e
 S

iz
e
 I

m
p

r
o

v
e
m

e
n

t 
o

f 
G

r
a
p

h
 A

ll
o

c
a
to

r

x86 68k PPC *68k and PPC results omitted for C++ and Fortran benchmarks

Figure 2: Code size improvement of the graph al-
locator compared to the default allocator. The code
was compiled with the flags -Os. Only the size of the
resulting .text section is measured.

the graph-coloring based allocator does almost
uniformly worse than the default allocator sug-
gesting that it generates substantially more spill
code (although probably not within critical loops
given the performance results). As expected, the
difference in code size quality decreases as more
registers are available for allocation.

We compare the ability of both allocators to
avoid spilling by compiling over 9,000 functions
assembled from several benchmark suites (in-
clude SPEC, MediaBench, and MiBench). The
results are shown in Figure 3. The graph al-
locator is more successful than the default al-
locator at avoiding spills when the interference
graph is colorable. However, when it is neces-
sary to generate spill code, the graph coloring
allocator spills more variables on average than
the default allocator. In cases where both the

1



0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

x86 (8) 68k (16) PPC (32)

P
e
r
c
e
n

t 
F
u

n
c
ti

o
n

s
 W

it
h

 N
o

 S
p

il
ls

default graph coloring

Figure 3: The percent of functions successfully allo-
cated without generating any spill code for both the
graph allocator and default allocator. The graph al-
locator is more successful at coloring the interference
graph, especially when resources are scarce.

Register Allocation Compilation
x86 4.17x 1.31x
68k 2.5x 1.17x
PPC 4.8x 1.33x

Table 1: Total cumulative slowdown of just the regis-
ter allocation pass and total compilation as reported
by the -ftime-report flag when compiling with -O3
-funroll-loops.

graph allocator and default allocator are forced
to spill, the graph allocator spills 53.6%, 14.2%,
and 11.5% more variables than the default allo-
cator for the x86, 68k, and PPC architectures,
respectively. The distribution of the spill ratio is
shown in Figure 4. As the number of available
registers decreases and the irregularity of the ar-
chitecture increases, the distribution shifts to the
detriment of the graph allocator. These figures
should be treated with some skepticism since the
different allocators have differing notions of ex-
actly what a spilled variable is. However, the
fact that the most common case (20% to 30% of
spilling functions) is for both allocators to spill
exactly the same number of variables indicates
these numbers may not be completely irrelevant.

The graph coloring allocator is significantly

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9 2

2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

2
.9 3

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

3
.7

3
.8

3
.9 4

4
.1

4
.2

4
.3

4
.4

4
.5

4
.6

4
.7

4
.8

4
.9 5

0

50

100

150

200

250

300

350

N
u

m
b

e
r
 o

f 
F
u

n
c
ti

o
n

s

Spill Count Ratio (Graph Coloring/Default)

Spill Ratio Histogram

PPC 68k x86

Figure 4: A histogram of the spill count ratio of the
graph allocator and the default allocator. Values to
the right of 1.0 indicate functions where the graph
allocator spilled more variables than the default allo-
cator. The most common case, where both allocators
spilled the same number of variables, is omitted to
improve the readability of the graph.

slower than the default allocator as shown in Fig-
ure 1. The graph allocator is also much buggier
than the default allocator. It failed to compile
four functions in our benchmark suite when tar-
geting x86 and one function when targeting 68k
(the default allocator had no problems). When a
function fails to compile, all remaining functions
in that file are not compiled. In performing our
comparison we only present data for the func-
tions that were successfully compiled by both ar-
chitectures resulting in some inter-architectural
discrepancies.

The graph allocator was removed from gcc in
version 4.0.

2


