
Performance Metrics for Optimal Register Allocation
David Koes

Advisor: Seth Copen Goldstein

Problem Methodology
Compiler optimizers that use an explicit model, such as an integer linear program, to !nd optimal solutions to classical optimization problems have become
a feasible alternative to traditional, suboptimal heuristic optimizers. However, the actual optimality of these techniques depends on the accuracy of the
model. Existing model"based optimizers that target processor performance do not attempt to accurately represent all the features of a modern desktop
processor. Instead, simple metrics such as minimizing the dynamic total instruction count or memory instruction count are used. The goal of this work is to
answer three questions in the context of optimal register allocation:

A large space of simple performance metrics for an ILP"based optimal register allocator is explored using the Intel x86 architecture #1.8GHz Pentium 4 and
2GHz Core Duo$ and gcc compiler #version 3.4.4, compiling with "O3$.

Evaluation:
Use pro!le data for exact execution frequencies
No optimization after register allocation
Measurements use hardware performance counters
Only fully optimal benchmarks evaluated

Performance Metric Framework:
Three separate costs:

moves, loads, and stores
Costs multiplied by execution frequency
Optimal allocation minimizes total cost

Expectation:
Meaningful and understandable correlations
between various cost ratios and performance
will be observed #e.g., a metric where moves
cost more than loads will be slower$.

1. How effective are simple performance metrics?

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0
9
9
.g

o

12
4
.m

8
8
ks

im

12
9
.c

o
m

p
re

ss

13
0
.l
i

16
4
.g

zi
p

a
d
p
cm

_
d

a
d
p
cm

_
e

b
a
si

cm
a
th

b
itc

o
un

t

b
lo

w
fis

h_
d

b
lo

w
fis

h_
e

cr
c

d
ijk

st
ra

g
7
21

_
d

g
7
21

_
e

p
a
tr

ic
ia

g
e
o
.
m

e
a
n

Pe
rf

o
rm

a
nc

e
 I
m

p
ro

ve
m

e
nt

 O
ve

r
D

e
fa

ul
t
A

llo
ca

to
r

worst uniform best

Pentium 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0
9
9
.g

o

12
4
.m

8
8
ks

im

12
9
.c

o
m

p
re

ss

13
0
.l
i

16
4
.g

zi
p

a
d
p
cm

_
d

a
d
p
cm

_
e

b
a
si

cm
a
th

b
itc

o
un

t

b
lo

w
fis

h_
d

b
lo

w
fis

h_
e

cr
c

d
ijk

st
ra

g
7
21

_
d

g
7
21

_
e

p
a
tr

ic
ia

g
e
o
.
m

e
a
n

Pe
rf

o
rm

a
nc

e
 I
m

p
ro

ve
m

e
nt

 O
ve

r
D

e
fa

ul
t
A

llo
ca

to
r

worst uniform best

Core Duo

 0.717

 0.718

 0.719

 0.72

 0.721

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 0.717

 0.718

 0.719

 0.72

 0.721

Geo. Mean
Dynamic Load
Count Ratio

Load Cost
Store Cost

Geo. Mean
Dynamic Load
Count Ratio

 0.777

 0.778

 0.779

 0.78

 0.781

 0.782

 0.783

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 0.777
 0.778
 0.779

 0.78
 0.781
 0.782
 0.783

Geo. Mean
Dynamic Store

Count Ratio

Load Cost
Store Cost

Geo. Mean
Dynamic Store

Count Ratio

More than 100 performance metrics were evaluated with load and store costs ranging between 1 and 1024 and move costs ranging between 1 and 8. The
performance of the best and worse performing metric for each benchmark, as well as the performance of a uniform cost metric #which minimizes the
dynamic instruction count$ is shown below. Overall, an average performance improvement of about 20% is achieved with some benchmarks demonstrating a
50% or better performance improvement. Although for many benchmarks the performance di&erence between the best and worst metric is small, for
several the di&erence is larger than 5%.

2. How important is the choice of metric?

1

1.05

1.1

1.15

1.2

1.25

1
/8

1
/4

1
/2 1 2 4 8 16 3
2

Ratio of Mem Op Cost to Move Cost

Pe
rf

o
rm

a
nc

e
 I
m

p
ro

ve
m

e
nt

Pentium 4 Core 2 Duo

 1.32

 1.34

 1.36

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 1.32
 1.34
 1.36
 1.38

 1.4
 1.42
 1.44
 1.46
 1.48

 1.5

Performance
Improvement

Load CostsStore Costs

Performance
Improvement

124.m88ksim (Pentium 4)

The impor tance o f mo ve cos t s in a s imple
performance metric is evaluated by !xing the costs
of loads and stores while varying the cost of a move
instruction. Although increasing the cost of a move
does result in more memory operations being
performed #see graph at immediate right$, this does
not discernibly e&ect the performance #see graph at
far right$.

0.737

0.738

0.739

0.74

0.741

0.742

0.743

0.744

0.745

0.746

0.747

1
/8

1
/4

1
/2 1 2 4 8 16 3
2

Ratio of Mem Op Cost to Move Cost

G
e
o
.
M

e
a
n

M
e
m

 O
p
 R

a
tio

 1.205

 1.21

 1.215

 1.22

 1.225

 1.23

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 1.205

 1.21

 1.215

 1.22

 1.225

 1.23

Geo. Mean
Performance
Improvement

 1.225 1.22 1.215 1.21

Load Cost
Store Cost

Geo. Mean
Performance
Improvement

Core Duo

 1.195

 1.2

 1.205

 1.21

 1.215

 1.22

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 1.195

 1.2

 1.205

 1.21

 1.215

 1.22

Geo. Mean
Performance
Improvement

 1.215 1.21 1.205 1.2

Load Cost
Store Cost

Geo. Mean
Performance
Improvement

Pentium 4

Conclusion: Simple performance metrics can be very e&ective at improving performance. In addition, the performance di&erence between the best and
worst metrics implies that the choice of metric may sometimes play a meaningful role.

The importance of load and store costs is evaluated
by varying these costs with respect to a unit move
cost. The average performance improvement across
this space for both architectures is shown at right.
Although the metrics have the expected e&ect on
the number of dynamic loads and stores #see graphs
in title$, neither result displays a discernible pattern.
For example, g721_d displays no obvious correlation
between performance and metric #below left$
despite the strong, expected, correlation between
dynamic memory operation count and metric
#below left , second row $. In fact , only two
benchmarks exhibit a de!nite relationship between
metr ic s , dynamic memor y operat ions , and
performance. 124.m88ksim on the Pentium 4 #below
center$ and blow!sh_e on the Core Duo #below
right$ clearly prefer load cost dominant metrics.

Conclusion: The cost of moves in a simple performance metric has a negligible impact on performance. Although in some cases the load/store cost ratio
has a demonstrable e&ect on performance, in most cases other factors appear to have a more signi!cant impact. This implies that an optimal register
allocator targeting processor performance would have to adopt a more complex model than simply minimizing the number of dynamic memory operations in
order to fully maximize performance.

3. What is missing from simple performance metrics? g721_d (Core Duo)

 1.008
 1.01
 1.012
 1.014
 1.016
 1.018
 1.02
 1.022
 1.024
 1.026
 1.028

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 1.008
 1.01

 1.012
 1.014
 1.016
 1.018

 1.02
 1.022
 1.024
 1.026
 1.028

Performance
Improvement

Load Cost
Store Cost

Performance
Improvement

blowfish_e (Core Duo)

 1.175

 1.18

 1.185

 1.19

 1.195

 1.2

 1.205

 1.21

 1.215

 1.22

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 1.175
 1.18

 1.185
 1.19

 1.195
 1.2

 1.205
 1.21

 1.215
 1.22

Performance
Improvement

Load CostStore Cost

Performance
Improvement

 0.8085

 0.809

 0.8095

 0.81

 0.8105

 0.811

 0.8115

 0.812

 0.8125

 0.813

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 0.8085
 0.809

 0.8095
 0.81

 0.8105
 0.811

 0.8115
 0.812

 0.8125
 0.813

Dynamic Load
Count Ratio

Load Cost
Store Cost

Dynamic Load
Count Ratio

 0.983

 0.984

 0.985

 0.986

 0.987

 0.988

 0.989

 0.99

 0.991

 0.992

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 0.983
 0.984
 0.985
 0.986
 0.987
 0.988
 0.989

 0.99
 0.991
 0.992

Dynamic Load
Count Ratio

Load Cost
Store Cost

Dynamic Load
Count Ratio

 0.638

 0.64

 0.642

 0.644

 0.646

 0.648

 0.65

 0.652

1
2

4
8

16
32

64
128

256
512

1024

1
2

4
8

16
32

64
128

256
512

1024

 0.638

 0.64

 0.642

 0.644

 0.646

 0.648

 0.65

 0.652

Dynamic Load
Count Ratio

Load Cost
Store Cost

Dynamic Load
Count Ratio

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

Performance Improvement

1 2 4 8 16 32 64 128 256 512 1024

Load Cost

1

2

4

8

16

32

64

128

256

512

1024

S
to

re
 C

o
s
t

 1.35e+08

 1.4e+08

 1.45e+08

 1.5e+08

 1.55e+08

 1.6e+08

 1.65e+08

Mispredicted Branches

1 2 4 8 16 32 64 128 256 512 1024

Load Cost

1

2

4

8

16

32

64

128

256

512

1024

S
to

re
 C

o
s
t

Simple metrics can satisfactorily represent a uniform cost model of memory operations, but this is not su'cient for maximum performance. A benchmark
compiled with di&erent metrics may still exhibit the same dynamic memory operation behavior, yet display signi!cant di&erentials in performance. In this
case the two versions may be optimal with respect to both metrics, but some other factor that is not present in the optimization model e&ects performance.
These di&erences reveal additional factors that need to be taken into account when optimizing for maximum performance.

For a few benchmarks, the anomalous performance results are clearly dominated
by a single non"memory factor. The performance of the 124.m88ksim benchmark
on the Core Duo is dominated by mispredicted branches #see right$. The removal
of a single low"cost move instruction at the end of a function results in the
addresses of all successive functions being bumped down to the next alignment
boundary. This change of addresses apparently triggers some degenerate behavior
in the branch predictor resulting in >10% di&erences in performance.

Other benchmarks are not so clearly dominated by a single factor, but appear to be in(uenced by several factors such as the dynamic instruction count, the
amount of speculation, and data cache misses in addition to branch misprediction and resource stalls.

Conclusion: Many factors impact performance and are in(uenced by register allocation. In many cases, these factors are complex and involve
counterintuitive interprocedural interactions that depend on microarchitectural details. This complexity makes it unlikely that such factors could be
meaningfully incorporated into a performance metric for an optimal allocator.

 How e!ective are simple performance metrics? How important is the choice of metric?
What is missing "om simple performance metrics?

 1.63

 1.64

 1.65

 1.66

 1.67

 1.68

 1.69

 1.7

 1.71

Performance Improvement

1 2 4 8 16 32 64 128 256 512 1024

Load Cost

1

2

4

8

16

32

64

128

256

512

1024

S
to

re
 C

o
s
t

 1.2e+07

 1.21e+07

 1.22e+07

 1.23e+07

 1.24e+07

 1.25e+07

 1.26e+07

 1.27e+07

 1.28e+07

 1.29e+07

 1.3e+07

Cycles stalled on any resource

1 2 4 8 16 32 64 128 256 512 1024

Load Cost

1

2

4

8

16

32

64

128

256

512

1024

S
to

re
 C

o
s
t

The performance of the dijkstra benchmark on the Core Duo is strongly
correlated with cycles stalled on a resource #see right$. These cycles include stalls
due to register renaming bu&ers, memory bu&ers, and branch misprediction. The
performance does not correlate with the branch misprediction rate nor with the
cache miss rate #not shown$, and the only di&erence between benchmark versions
is the choice of register assignment. It appears that the interaction between these
di&ering register assignments and the register renamer accounts for a)4%
di&erence in peformance.

124.m88ksim (Core Duo)

dijkstra (Core Duo)

