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Problem Methodology
Compiler optimizers that use an explicit model, such as an integer linear program, to !nd optimal solutions to classical optimization problems have become 
a feasible alternative to traditional, suboptimal heuristic optimizers.  However, the actual optimality of these techniques depends on the accuracy of the 
model.  Existing model"based optimizers that target processor performance do not attempt to accurately represent all the features of a modern desktop 
processor.  Instead, simple metrics such as minimizing the dynamic total instruction count or memory instruction count are used.  The goal of this work is to 
answer three questions in the context of optimal register allocation:

A large space of simple performance metrics for an ILP"based optimal register allocator is explored using the Intel x86 architecture #1.8GHz Pentium 4 and 
2GHz Core Duo$ and gcc compiler #version 3.4.4, compiling with "O3$.

Evaluation:
Use pro!le data for exact execution frequencies
No optimization after register allocation
Measurements use hardware performance counters
Only fully optimal benchmarks evaluated

Performance Metric Framework:
Three separate costs:

moves, loads, and stores
Costs multiplied by execution frequency
Optimal allocation minimizes total cost

Expectation:  
Meaningful and understandable correlations 
between various cost ratios and performance 
will be observed #e.g., a metric where moves 
cost more than loads will be slower$.

1. How effective are simple performance metrics?
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More than 100 performance metrics were evaluated with load and store costs ranging between 1 and 1024 and move costs ranging between 1 and 8.  The 
performance of the best and worse performing metric for each benchmark, as well as the performance of a uniform cost metric #which minimizes the 
dynamic instruction count$ is shown below.  Overall, an average performance improvement of about 20% is achieved with some benchmarks demonstrating a 
50% or better performance improvement.  Although for many benchmarks the performance di&erence between the best and worst metric is small, for 
several the di&erence is larger than 5%.

2. How important is the choice of metric?
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The impor tance o f mo ve cos t s in a s imple 
performance metric is evaluated by !xing the costs 
of loads and stores while varying the cost of a move 
instruction.  Although increasing the cost of a move 
does result in more memory operations being 
performed #see graph at immediate right$, this does 
not discernibly e&ect the performance #see graph at 
far right$.
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Conclusion: Simple performance metrics can be very e&ective at improving performance. In addition, the performance di&erence between the best and 
worst metrics implies that the choice of metric may sometimes play a meaningful role.

The importance of load and store costs is evaluated 
by varying these costs with respect to a unit move 
cost.  The average performance improvement across 
this space for both architectures is shown at right. 
Although the metrics have the expected e&ect on 
the number of dynamic loads and stores #see graphs 
in title$, neither result displays a discernible pattern.  
For example, g721_d displays no obvious correlation 
between performance and metric #below left$ 
despite the strong, expected, correlation between 
dynamic memory operation count and metric 
#below left , second row $ .  In fact , only two 
benchmarks exhibit a de!nite relationship between 
metr ic s , dynamic memor y operat ions , and 
performance. 124.m88ksim on the Pentium 4 #below 
center$ and blow!sh_e on the Core Duo #below 
right$ clearly prefer load cost dominant metrics. 

Conclusion: The cost of moves in a simple performance metric has a negligible impact on performance.  Although in some cases the load/store cost ratio 
has a demonstrable e&ect on performance, in most cases other factors appear to have a more signi!cant impact. This implies that an optimal register 
allocator targeting processor performance would have to adopt a more complex model than simply minimizing the number of dynamic memory operations in 
order to fully maximize performance.

3. What is missing from simple performance metrics? g721_d (Core Duo)
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Simple metrics can satisfactorily represent a uniform cost model of memory operations, but this is not su'cient for maximum performance.  A benchmark 
compiled with di&erent metrics may still exhibit the same dynamic memory operation behavior, yet display signi!cant di&erentials in performance.  In this 
case the two versions may be optimal with respect to both metrics, but some other factor that is not present in the optimization model e&ects performance.  
These di&erences reveal additional factors that need to be taken into account when optimizing for maximum performance. 

For a few benchmarks, the anomalous performance results are clearly dominated 
by a single non"memory factor.  The performance of the 124.m88ksim benchmark 
on the Core Duo is dominated by mispredicted branches #see right$.  The removal 
of a single low"cost move instruction at the end of a function results in the 
addresses of all successive functions being bumped down to the next alignment 
boundary.  This change of addresses apparently triggers some degenerate behavior 
in the branch predictor resulting in >10% di&erences in performance.

Other benchmarks are not so clearly dominated by a single factor, but appear to be  in(uenced by several factors such as the dynamic instruction count, the 
amount of speculation, and data cache misses in addition to branch misprediction and resource stalls.

Conclusion:  Many factors impact performance and are in(uenced by register allocation.  In many cases, these factors are complex and involve 
counterintuitive interprocedural interactions that depend on microarchitectural details. This complexity makes it unlikely that such factors could be 
meaningfully incorporated into a performance metric for an optimal allocator.

 How e!ective are simple performance metrics? How important is the choice of metric?
What is missing "om simple performance metrics?
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The performance of the dijkstra benchmark on the Core Duo is strongly 
correlated with cycles stalled on a resource #see right$. These cycles include stalls 
due to register renaming bu&ers, memory bu&ers, and branch misprediction. The 
performance does not correlate with the branch misprediction rate nor with the 
cache miss rate #not shown$, and the only di&erence between benchmark versions 
is the choice of register assignment.  It appears that the interaction between these 
di&ering register assignments and the register renamer accounts for a )4% 
di&erence in peformance.

124.m88ksim (Core Duo)

dijkstra (Core Duo)


