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Embedded Processors by the Numbers
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! code size critical
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Architecting for Code Size

4 Byte Instructions

Ample bits for accessing registers, supporting addressing 
modes, supporting ISA extensions

Large code size

2 Byte Instructions

Small code size, better instruction fetch

Limited support for addressing modes, accessing registers; 
instruction count increases

Variable Sized Instructions

Small code size; full support for addressing modes, accessing 
registers, ISA extensions

Increases complexity of decoder, compiler
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Complex Instruction Sets !
Complex Compilers

Complex Instruction Sets
– variable length instructions

– full complement of addressing modes

– redundant instructions

x86 Example:  t+1

–incl t 1 byte

–addl $1,t 3 bytes

–leal 1(t),t 3 bytes

4

The compiler must select the best 
instruction based upon its context
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Intermediate Representations

(a+8) + (b+8);

6

Expression Tree Expression DAG 

Linear IRs such as three address pseudo-assembly can 
be easily converted to a structural IR. 

Explicitly encodes redundant computations
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Instruction Selection = Tiling
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Architecture specific set of tiles 
mapping IR to instructions

+ tiling algorithm =
instruction 

selector

What is the best tiling?

Assign cost to each tile. Minimize cost.
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Optimal Tiling on Trees:
Bottom Up Dynamic Programming

Given the optimum tiling of each subtrees, generate 
optimum tiling of the current tree

– consider all tiles for the root of the current tree

– sum cost of best subtree tiles and each tile

– choose tile with minimum total cost
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Expression DAGs better representation

– explicitly encode redundant expressions
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Tiling on Directed Acyclic Graphs
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Expression DAGs better representation

– explicitly encode redundant expressions

Tiling NP-complete

– Heuristic: convert DAG into tree

Carnegie Mellon

Tiling on Directed Acyclic Graphs
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Turning a DAG into a Tree
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This can be done 
conceptually without 
modifying the underlying 
DAG data structure

This is common 
subexpression 

elimination
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Instruction Selection:
State of the Art

11

Method DAG Support Fast Optimal

Dynamic Programming: 
Trees

N Y Y

Dynamic Programming: 
DAGS

Y Y N

Greedy Matching Y Y N

Peephole Matcher Y Y N

Binate Covering Y N Y

NOLTIS Y Y Nearly



Carnegie Mellon

Instruction Selection:
State of the Art

11

Method DAG Support Fast Optimal

Dynamic Programming: 
Trees

N Y Y

Dynamic Programming: 
DAGS

Y Y N

Greedy Matching Y Y N

Peephole Matcher Y Y N

Binate Covering Y N Y

NOLTIS Y Y Nearly



Carnegie Mellon

NOLTIS: Near Optimal Linear Time 
Instruction Selection

1. Run dynamic programming on DAG

- implicitly duplicate all shared nodes

2. “Fix” shared nodes

- mark nodes for which decomposition appears more beneficial

3. Rerun dynamic programming

- “fixed” nodes must be at root of a tile

12
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Dynamic Programming First Pass

Compute best tiling cost in bottom-up pass

– result is optimal for fully duplicated DAG

– linear time 

Obtain tiling in top-down pass

– avoid redundant overlap

– linear time

13
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Fixing Shared Nodes

Would the overall solution be improved if a shared node 
was decomposed into the root of a tree?

– assuming rest of tiling remains the same, what happens to the cost 
if we “cut” the tiles overlapping this shared node?

– if cost improves, “fix” the node
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Dynamic Programming Second Pass

Compute best tiling in bottom-up pass

– tiles not allowed to span fixed nodes

Obtain tiling in top-down pass
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NOLTIS Implementation

LLVM 2.1 compiler infrastructure targeting x86

Algorithms implemented:
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default greedily select largest tile in top-down topological traversal of DAG

cse-all decompose entire DAG into trees then perform dynamic programming

cse-leaves
decompose non-leaf expressions into trees, duplicate leaf expressions and 

perform dynamic programming

cse-none perform dynamic programming on DAG treating shared nodes as duplicated

NOLTIS near optimal linear-time instruction selection
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Evaluating NOLTIS: Optimality

Compute optimal instruction tiling using integer linear 
programming and ILOG CPLEX 10.0

Evaluated nearly half a million functions

17
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Evaluating NOLTIS: Optimality

Compute optimal instruction tiling using integer linear 
programming and ILOG CPLEX 10.0

Evaluated nearly half a million functions
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NOLTIS Optimal Functions
99.7%

0.3%



Two pass algorithm results in 2X slowdown

– each linear time pass is ideally a small part of total compile-time

Carnegie Mellon

Evaluating NOLTIS: Compile Time
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Evaluating NOLTIS: Code Size 
After Instruction Selection
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Evaluating NOLTIS: Code Size 
After Instruction Selection
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Evaluating NOLTIS: Final Code Size
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Conclusions

NOLTIS is fast, effective, and easy to implement 

Expression DAGs are better than trees 

But, need to further investigate interaction between 
instruction selection and register allocation
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Q u e s t i o n s ?
http://www.cs.cmu.edu/~dkoes
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Questions?

22

http://www.cs.cmu.edu/~dkoes
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Performance Improvement
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Impact of ISA on Code Size

24

Architecture Instruction Size Integer Registers FP Registers

68k (68040) 2-14 16 (8/8) 8

Alpha 4 32 32

Arm 4 16 8

Arm Thumb 2 8*

Coldfire (V4e) 2, 4, 6 16 (8/8) 8

MIPS32 4 32 32

NEC v850 2, 4 32 0

PowerPC (750) 4 32 32

s390 2, 4 16 16

Sparc 4 32 32

SuperH (SH4) 2 16 16+16

x86 1-15 8 8

*Additional registers can be accessed inefficiently
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Impact of ISA on Code Size
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Results obtained using gcc 4.2.1 compiling the 403.gcc benchmark of SPEC2006 using the -Os option


