
Carnegie Mellon

Near-Optimal Instruction

Selection on DAGs

David Ryan Koes
Seth Copen Goldstein

CGO 2008

4/7/2008

Carnegie Mellon

Most embedded processors

are resource constrained

Embedded Processors by the Numbers

DSP

4-Bit

8-Bit

16-Bit

32-Bit

Microprocessors Sold by Type

Carnegie Mellon

Most embedded processors

are resource constrained

Embedded Processors by the Numbers

DSP

4-Bit

8-Bit

16-Bit

32-Bit

Microprocessors Sold by Type

Example: Microchip PIC16F819
SRAM: 256 bytes
EEPROM: 256 bytes
Flash Memory: 3584 bytes

Resource Constraint: Memory

Carnegie Mellon

Most embedded processors

are resource constrained

Embedded Processors by the Numbers

Limited instruction memory

! code size critical

DSP

4-Bit

8-Bit

16-Bit

32-Bit

Microprocessors Sold by Type

Example: Microchip PIC16F819
SRAM: 256 bytes
EEPROM: 256 bytes
Flash Memory: 3584 bytes

Resource Constraint: Memory

Carnegie Mellon

Architecting for Code Size

4 Byte Instructions

Ample bits for accessing registers, supporting addressing
modes, supporting ISA extensions

Large code size

2 Byte Instructions

Small code size, better instruction fetch

Limited support for addressing modes, accessing registers;
instruction count increases

Variable Sized Instructions

Small code size; full support for addressing modes, accessing
registers, ISA extensions

Increases complexity of decoder, compiler

3

Carnegie Mellon

Complex Instruction Sets !
Complex Compilers

Complex Instruction Sets
– variable length instructions

– full complement of addressing modes

– redundant instructions

x86 Example: t+1

–incl t 1 byte

–addl $1,t 3 bytes

–leal 1(t),t 3 bytes

4

The compiler must select the best
instruction based upon its context

Instruction Selection

Carnegie Mellon

5

Compiler Backend

register
allocation

instruction
selection

IR

ASM

+

+ +

b8a 8

+

+ +

b8a

Carnegie Mellon

Intermediate Representations

(a+8) + (b+8);

6

Expression Tree Expression DAG

Linear IRs such as three address pseudo-assembly can
be easily converted to a structural IR.

Explicitly encodes redundant computations

+

add in1, in2 ! out

+

rc

add const, reg ! out

c

move const ! out

+

r

add in, reg ! out

+

+ +

b8a 8

add 8, a ! t1

add 8, b ! t2

add a, b ! t3

Carnegie Mellon

Instruction Selection = Tiling

7

Architecture specific set of tiles
mapping IR to instructions

+ tiling algorithm =
instruction

selector

What is the best tiling?

+

add in1, in2 ! out

+

rc

add const, reg ! out

c

move const ! out

+

r

add in, reg ! out

+

+ +

b8a 8

add 8, a ! t1

add 8, b ! t2

add a, b ! t3

Carnegie Mellon

Instruction Selection = Tiling

7

Architecture specific set of tiles
mapping IR to instructions

+ tiling algorithm =
instruction

selector

What is the best tiling?

Assign cost to each tile. Minimize cost.

1

5

1

5

5 5

1

Total: 11

Carnegie Mellon

Optimal Tiling on Trees:
Bottom Up Dynamic Programming

Given the optimum tiling of each subtrees, generate
optimum tiling of the current tree

– consider all tiles for the root of the current tree

– sum cost of best subtree tiles and each tile

– choose tile with minimum total cost

8

1 5

+

+ +

b8a 8

Carnegie Mellon

Optimal Tiling on Trees:
Bottom Up Dynamic Programming

Given the optimum tiling of each subtrees, generate
optimum tiling of the current tree

– consider all tiles for the root of the current tree

– sum cost of best subtree tiles and each tile

– choose tile with minimum total cost

8

1 5

+

+ +

b8a 8

51

1

Total: 7

+

+ +

b8a 8

Carnegie Mellon

Optimal Tiling on Trees:
Bottom Up Dynamic Programming

Given the optimum tiling of each subtrees, generate
optimum tiling of the current tree

– consider all tiles for the root of the current tree

– sum cost of best subtree tiles and each tile

– choose tile with minimum total cost

8

1 5

+

+ +

b8a 8

51

1

Total: 7

+

+ +

b8a 8

5

1

Total: 6
+

+ +

b8a 8

Carnegie Mellon

Optimal Tiling on Trees:
Bottom Up Dynamic Programming

Given the optimum tiling of each subtrees, generate
optimum tiling of the current tree

– consider all tiles for the root of the current tree

– sum cost of best subtree tiles and each tile

– choose tile with minimum total cost

8

1 5

+

+ +

b8a 8

51

1

Total: 7

+

+ +

b8a 8

5

1

Total: 6
+

+ +

b8a 8

5

Total: 5
+

+ +

b8a 8

Carnegie Mellon

Optimal Tiling on Trees:
Bottom Up Dynamic Programming

Given the optimum tiling of each subtrees, generate
optimum tiling of the current tree

– consider all tiles for the root of the current tree

– sum cost of best subtree tiles and each tile

– choose tile with minimum total cost

8

1 5

+

+ +

b8a 8

51

1

Total: 7

5
+

+ +

b8a 8

5

1

Total: 6
+

+ +

b8a 8

5

Total: 5
+

+ +

b8a 8

Expression DAGs better representation

– explicitly encode redundant expressions

Carnegie Mellon

Tiling on Directed Acyclic Graphs

9

+

+ +

b8a

Expression DAG

Expression DAGs better representation

– explicitly encode redundant expressions

Tiling NP-complete

– Heuristic: convert DAG into tree

Carnegie Mellon

Tiling on Directed Acyclic Graphs

9

+

+ +

b8a

Expression DAG

+

+ +

b8a

+

+ +

b8a 8

+

+ +

bta t

mov

8t

Carnegie Mellon

Turning a DAG into a Tree

10

decom
positiondu

pl
ica

tio
n

This can be done
conceptually without
modifying the underlying
DAG data structure

This is common
subexpression

elimination

Carnegie Mellon

Instruction Selection:
State of the Art

11

Method DAG Support Fast Optimal

Dynamic Programming:
Trees

N Y Y

Dynamic Programming:
DAGS

Y Y N

Greedy Matching Y Y N

Peephole Matcher Y Y N

Binate Covering Y N Y

NOLTIS Y Y Nearly

Carnegie Mellon

Instruction Selection:
State of the Art

11

Method DAG Support Fast Optimal

Dynamic Programming:
Trees

N Y Y

Dynamic Programming:
DAGS

Y Y N

Greedy Matching Y Y N

Peephole Matcher Y Y N

Binate Covering Y N Y

NOLTIS Y Y Nearly

Carnegie Mellon

NOLTIS: Near Optimal Linear Time
Instruction Selection

1. Run dynamic programming on DAG

- implicitly duplicate all shared nodes

2. “Fix” shared nodes

- mark nodes for which decomposition appears more beneficial

3. Rerun dynamic programming

- “fixed” nodes must be at root of a tile

12

Carnegie Mellon

Dynamic Programming First Pass

Compute best tiling cost in bottom-up pass

– result is optimal for fully duplicated DAG

– linear time

Obtain tiling in top-down pass

– avoid redundant overlap

– linear time

13

5 5

1

Total: 11

+

+ +

b8a
(1; mov x ! out)(5; mov 8 ! out)(1; mov y ! out)

(5; add 8, x ! out)(5; add y, 8 ! out)

(11; add in1, in2 ! out)

+

+ +

ba 8

+

+ +

ba 8

Carnegie Mellon

Fixing Shared Nodes

Would the overall solution be improved if a shared node
was decomposed into the root of a tree?

– assuming rest of tiling remains the same, what happens to the cost
if we “cut” the tiles overlapping this shared node?

– if cost improves, “fix” the node

14

+

+ +

ba 8

Carnegie Mellon

Fixing Shared Nodes

Would the overall solution be improved if a shared node
was decomposed into the root of a tree?

– assuming rest of tiling remains the same, what happens to the cost
if we “cut” the tiles overlapping this shared node?

– if cost improves, “fix” the node

14

+

+ +

ba 8

Carnegie Mellon

Fixing Shared Nodes

Would the overall solution be improved if a shared node
was decomposed into the root of a tree?

– assuming rest of tiling remains the same, what happens to the cost
if we “cut” the tiles overlapping this shared node?

– if cost improves, “fix” the node

14

+

+ +

b8a

+

+ +

ba 8

Carnegie Mellon

Fixing Shared Nodes

Would the overall solution be improved if a shared node
was decomposed into the root of a tree?

– assuming rest of tiling remains the same, what happens to the cost
if we “cut” the tiles overlapping this shared node?

– if cost improves, “fix” the node

14

+

+ +

b8a

cost = 5 + 5 = 10 cost = 5 + 1 + 1 = 7

+

+ +

ba 8

Carnegie Mellon

Fixing Shared Nodes

Would the overall solution be improved if a shared node
was decomposed into the root of a tree?

– assuming rest of tiling remains the same, what happens to the cost
if we “cut” the tiles overlapping this shared node?

– if cost improves, “fix” the node

14

+

+ +

b8a

cost = 5 + 5 = 10 cost = 5 + 1 + 1 = 7

Carnegie Mellon

Dynamic Programming Second Pass

Compute best tiling in bottom-up pass

– tiles not allowed to span fixed nodes

Obtain tiling in top-down pass

15

1 1

5

1
Total: 8

+

+ +

b8a
(1; mov x ! out)(5; mov 8 ! out)(1; mov y ! out)

(6; add in, x ! out)(6; add y, in ! out)

(13; add in1, in2 ! out)

+

+ +

b8a

Carnegie Mellon

NOLTIS Implementation

LLVM 2.1 compiler infrastructure targeting x86

Algorithms implemented:

16

default greedily select largest tile in top-down topological traversal of DAG

cse-all decompose entire DAG into trees then perform dynamic programming

cse-leaves
decompose non-leaf expressions into trees, duplicate leaf expressions and

perform dynamic programming

cse-none perform dynamic programming on DAG treating shared nodes as duplicated

NOLTIS near optimal linear-time instruction selection

Carnegie Mellon

Evaluating NOLTIS: Optimality

Compute optimal instruction tiling using integer linear
programming and ILOG CPLEX 10.0

Evaluated nearly half a million functions

17

Carnegie Mellon

Evaluating NOLTIS: Optimality

Compute optimal instruction tiling using integer linear
programming and ILOG CPLEX 10.0

Evaluated nearly half a million functions

17

NOLTIS Optimal Functions
99.7%

0.3%

Two pass algorithm results in 2X slowdown

– each linear time pass is ideally a small part of total compile-time

Carnegie Mellon

Evaluating NOLTIS: Compile Time

18

0

0.5

1.0

1.5

2.0

2.5

default cse-all cse-leaves cse-none NOLTIS

R
el

at
iv

e
Sl

o
w

d
o
w

n

Carnegie Mellon

Evaluating NOLTIS: Code Size
After Instruction Selection

19

-4%

-2%

0%

2%

4%

6%

4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
2
9
.m

cf

4
3
3
.m

ilc

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k

4
5
0
.s

o
p
le

x

4
5
3
.p

o
vr

ay

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
6
2
.li

b
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
7
0
.lb

m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
2
.s

p
h
in

x
3

4
8
3
.x

al
an

cb
m

k

Pe
rc

en
t

Im
p
ro

ve
m

en
t

O
ve

r
D

ef
au

lt

cse-all cse-leaves cse-none NOLTIS

Carnegie Mellon

Evaluating NOLTIS: Code Size
After Instruction Selection

19

-2.00%

-0.75%

0.50%

1.75%

3.00%

A
verage C

o
d
e Size Im

p
ro

vem
en

t

cse-all
cse-leaves

cse-none
NOLTIS

Carnegie Mellon

Evaluating NOLTIS: Final Code Size

20

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
2
9
.m

cf

4
3
3
.m

ilc

4
4
4
.n

am
d

4
4
5
.g

o
b
m

k

4
5
0
.s

o
p
le

x

4
5
3
.p

o
vr

ay

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
6
2
.li

b
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
7
0
.lb

m

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
2
.s

p
h
in

x
3

4
8
3
.x

al
an

cb
m

k

av
er

ag
e

Pe
rc

en
t

Im
p
ro

ve
m

en
t

O
ve

r
D

ef
au

lt

cse-all cse-leaves cse-none NOLTIS

Carnegie Mellon

Conclusions

NOLTIS is fast, effective, and easy to implement

Expression DAGs are better than trees

But, need to further investigate interaction between
instruction selection and register allocation

21

Carnegie Mellon

Conclusions

NOLTIS is fast, effective, and easy to implement

Expression DAGs are better than trees

But, need to further investigate interaction between
instruction selection and register allocation

21

My thesis topic!

Carnegie Mellon

Conclusions

NOLTIS is fast, effective, and easy to implement

Expression DAGs are better than trees

But, need to further investigate interaction between
instruction selection and register allocation

21

My thesis topic!

Q u e s t i o n s ?
http://www.cs.cmu.edu/~dkoes

Carnegie Mellon

Questions?

22

http://www.cs.cmu.edu/~dkoes

Carnegie Mellon

Performance Improvement

23

-12%

-9%

-6%

-3%

0%

3%
4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
2
9
.m

cf

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
6
2
.li

b
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
7
1
.o

m
n
et

p
p

4
7
3
.a

st
ar

4
8
3
.x

al
an

cb
m

k

4
3
3
.m

ilc

4
4
4
.n

am
d

4
5
0
.s

o
p
le

x

4
7
0
.lb

m

4
8
2
.s

p
h
in

x
3

av
er

ag
e

cse-all cse-none NOLTIS

Carnegie Mellon

Impact of ISA on Code Size

24

Architecture Instruction Size Integer Registers FP Registers

68k (68040) 2-14 16 (8/8) 8

Alpha 4 32 32

Arm 4 16 8

Arm Thumb 2 8*

Coldfire (V4e) 2, 4, 6 16 (8/8) 8

MIPS32 4 32 32

NEC v850 2, 4 32 0

PowerPC (750) 4 32 32

s390 2, 4 16 16

Sparc 4 32 32

SuperH (SH4) 2 16 16+16

x86 1-15 8 8

*Additional registers can be accessed inefficiently

Carnegie Mellon

Impact of ISA on Code Size

25

0

1

2

3

C
o
d
e Size (M

B
)

mips alpha sparc ppc arm s390 v850 cf x86 68k sh thumb

Results obtained using gcc 4.2.1 compiling the 403.gcc benchmark of SPEC2006 using the -Os option

