Compiler Controlled Cache Placement

David Koes
dkoes@cs.cmu.edu

David McWherter
cache@Qcs.cmu.edu

December 15, 2002

Abstract

This paper considers a novel approach for support-
ing parallel accesses to a data cache. We explore the
possibility of explicitly managing cache accesses us-
ing a static compile-time analysis. First we perform a
limit study on dynamic instruction traces to discover
an upper bound on the amount of memory paral-
lelism that is exploitable at compile time. Then we
introduce compiler controlled split caches, or cc-split
caches, and discuss our initial implementation. Our
results suggest this architecture has potential, but we
question whether moving complexity from the hard-
ware to software is a profitable trade-off in this case.

1 Introduction

Modern processors are being designed to exploit an
increasing amount of parallelism. As a result, modern
processors require higher bandwidth access to data
caches. Three currently implemented types of caches
which provide parallel access are:

e Ideal multi-port. A true multi-ported cache,
such as the Intel Itanium’s dual ported L1 data
cache[9] provides the best possible performance.
However, this scheme does not scale well in
the number of ports and requires a prohibitive
amount chip area relative to the cache size. For
example, an ideal dual ported cache requires
more than twice the chip area as a single ported
cache.

e Copy Cache. A copy cache maintains a copy of
the cache for each memory port in the system.
When a load is issued, it is dispatched to the
first available memory port. Every store must
be issued simultaneously to each cache copy in
order to maintain coherence. Since a copy of
the cache is maintained for each memory port,
the chip area required to implement this scheme
scales very poorly with respect to the number
of memory ports. However, the logic required to
implement a copy cache is relatively simple. The

DEC Alpha 21164 has an 8k dual ported L1 data
cache which is implemented with two 8k copies
of the cache[8].

o Multi-banked cache. In a multi-banked cache,
the cache is split into multiple banks each of
which can be accessed in parallel. A load or
store is dispatched to a certain bank based on
the value of the address of the load or store. The
cost of implementing the crossbar which routes
requests between the processor and the cache
is minor relative to the size of the cache. In-
creasing the number of banks does result in a
larger crossbar which may increase the cache ac-
cess time. However, it has been shown that the
biggest performance bottleneck for multi-banked
caches are the bank conflicts that occur when
two memory operands try to access the same
bank in parallel[13]. As the number of banks
is increased, the performance of the system im-
proves with only a small increase in required chip
area[10]. The Intel Pentium utilizes an 8 bank
data cache[7].

The purpose of this study is to is to explore the abil-
ity to provide enhanced memory parallelism without
using complex and expensive hardware by allowing
the compiler to make static choices regarding cache
bank selection. First, we analyze the memory access
behavior of various programs by examining dynamic
instruction traces. We describe our approach to this
limit study in section 2 and our results in section 3.
In section 4 we describe our compiler controlled split
cache scheme which allows the compiler to explicitly
managed cache bank selection and then give our re-
sults in section 5. Finally we describe future work
and conclude in section 6.

2 Dynamic Analysis

Part of the overall goal of our work is to understand
whether static placement of data into the banks of
a banked cache would improve overall performance.
Through the examination of dynamic traces an up-



per bound on the improvement that can be achieved
using static placement can be determined.

We make the assumption that the mechanism for
static bank placement involves tagging individual
load and store instructions at compile time to in-
dicate which cache banks should be used. Under
this assumption, any static placement algorithm must
ensure that every instruction that accesses a given
memory address be tagged in the same way. Other-
wise, the results of the program may be inconsistent
with those using a single-banked cache. Consider, for
example, a sequence of loads and stores as follows:

Op Address Value Cache Bank
load 0x4 0 A
store 0x4 1 B

load 0x4 0 A

Since cache bank A was not updated during the
store through cache bank B, the final load results in
an incorrect value.

Given the assumption that load/store instructions
specify which cache banks are used, we can examine
dynamic traces of programs’ memory accesses to de-
termine the optimal assignment of banks to instruc-
tions for those traces. Whenever two instructions
happen to access the same address, they must be as-
signed to the same bank. Otherwise, they are may be
placed into different cache banks, which can improve
performance.

Clearly, the assignment of banks to instructions
done according to the dynamic trace will be better
that the assignment that a compiler would ever be
able to generate. Due to aliasing and other prob-
lems, a compiler will often not be able to determine
that two instructions never access the same data. As
a result, a compiler will be forced to conservatively
label two instructions with the same cache bank even
though they never access the same data at runtime.
Analysis using dynamic traces is much easier than
implementing sophisticated alias analysis in a com-
piler and provides a good picture of the limit of what
static analysis could achieve.

2.1 Methodology

In order to collect dynamic memory access traces
from benchmark applications, we made use of the
Simplescalar simulator[3]. Simplescalar simulates a
very reasonable RISC processor derived from the
MIPS-IV ISA, suiting it for modern architectural
studies. In addition, there is a large amount of sup-
port for the architecture, including ports of binutils,
gce, and many spec benchmarks for the architecture,
making it convenient to use.

We modified the Simplescalar simulator to keep
track of every memory access made as the system
executes. We track every memory address accessed
along with the program counter of the instruction
that accessed the memory. For each memory access
we form a < address, pc > tuple The least significant
bits of the address which are used to index into the
cache line are ignored. For our analysis, we use a
cache line size of 64 bytes. These tuples are used to
construct a mapping of addresses to lists of program
counters which access that address in the dynamic
trace, or < address, pclist > tuples.

Due to the sheer quantity of < address,pc > tu-
ples generated during the execution of a normal pro-
gram, and the desire to hack Simplescalar as little
as possible, Simplescalar was modified to write these
tuples to a secondary application through a named
pipe. This secondary program collected and collated
the data, eliminating duplicate tuples, to reduce the
storage requirements of the data.

Given a set of < address, pclist > tuples generated
during the execution of an application, we are left
with the task of determining which of the instructions
must be forced to use the same cache banks, due to
accessing the same data. This can be computed fairly
efficiently using a disjoint set algorithm (disjoint set
with path compression). First, we make a set for
each program counter seen in the data. Then, for
each < address,pclist > tuple, we union all of the
program counters in the pclist together.

For example, assume program counter PC1 ac-
cesses addresses {4, B} and PC?2 accesses addresses
{B, C}, and PC3 accesses address C. After the first
stage of post processing, we will have the following
tuples:

Address PC List
A PC1
B PC1, PC2
C PC2, PC3

During the disjoint set algorithm, we will call both
union(PC1, PC?2) and union(PC2, PC3), placing all
of the program counters into the same set. Note that
this is despite the fact that PC3 doesn’t access any
of the same data that PC'1 accesses.

This property, that instructions that don’t directly
access the same data (PC1, PC3) may be forced into
the same bank due to interactions through other pro-
gram counters (PC2) seems to be the largest problem
for static bank placement. The reason is that as the
number of sets in the disjoint set decreases, the abil-
ity to find a good assignment of banks becomes more
difficult. At one extreme, when there is only one large
set, all of the banks save one will be left unused in the



system. At the other extreme, when every program
counter is in a different set, we can split data evenly
between sets without any difficulty.

2.2 Stack Accesses

Another problem associated with this approach is
that stack data may cause a lot of “false sharing” be-
tween various program counters. When a function is
called at some location on the stack, its stack manip-
ulation instructions will join with all other functions’
instructions that are called at that location as well.
Local stack data that is not passed to child functions
does not need to be kept consistent with reads and
writes across other functions as long as each func-
tion’s stack area doesn’t share cache lines with other
stack areas. As a result, it would be reasonable to as-
sume that these accesses should not be used to union
PC sets together.

Stack data passed to child functions, however,
needs to be accessed in the right cache bank to en-
sure correctness. In the simulator, it is more difficult
to detect whether a memory access to the stack is to
the local stack, or to the stack frame of another func-
tion. This, combined with our desire to upper bound
our ability to assign banks to instructions, leads us to
assume that accesses to stack memory never unions
program counter sets. Thus, even if the address of
stack data is passed as an argument to a function,
accesses to that data in the child will not join sets.

2.3 Inlining

If one thinks carefully about what causes the join-
ing of sets of instructions in the disjoint set, it is
not hard to see that the lack of inlining of function
calls could increase the number of unions that must
be done. Assume that function fooA() accesses ar-
ray A, and fooB() accesses array B and the arrays
do not alias. Let Inst(A) be the instructions out-
side of memset() that access array A and likewise
for Inst(B). If fooA() calls memset(A) and fooB()
calls memset(B), then the disjoint set will result in a
large set containing {memset(), Inst(A), Inst(B)}.

If, on the other hand, memset() had
been inlined into fooA() and fooB(), then
we would have been left with two indepen-
dent  sets, {memset.fooA(), Inst(A)}  and
{memset.fooB(),Inst(B)}. Thus, if we assume
that the compiler aggressively inlines functions,
the number of sets should increase dramatically
— and likewise, the possibility of finding an ideal
assignment of banks to instructions.

Our compiler, however, is inconsistent with inlin-
ing of functions, even with library functions such as

memset() or memcpy(). In order to determine how
much an aggressively inlining compiler could help set
construction, we decided to simulate the behavior of
inlining when constructing the disjoint set. In or-
der to do this, we modified the Simplescalar sim-
ulator to keep a stack of the program counters of
branch-and-link instructions used to make function
calls. Thus, for each memory access, we keep track
of < address,parentpc,pc > tuples. By building a
disjoint set of < parentpc,pc > pairs that access
the same memory addresses, we effectively perform
one level of inlining everywhere in the code. Thus, if
memcpy() failed to be inlined by the compiler, and
it is called by fooA() and fooB(), we will have en-
tries for fooA.memcepy() and fooB.memcepy() in the
disjoint set.

This approach is very similar to automatically in-
lining every function. The technique will, however,
often produce results that are “more aggressive” than
inlining. The reason is that we ignore such things as
cycles in the call graph, which obviously cannot be
fully inlined. We, however record each member of the
cycle as being inlined in its parent.

We would expect this technique to increase the
number of sets in the disjoint set, and perhaps make
assignment of banks to instructions a much easier
task.

2.4 Inter-PC-Set Contention

Regardless of whether we can generate a large num-
ber of PC sets or not, it becomes important to as-
sign a cache bank to each set. The goal in assigning
cache banks is to reduce contention for memory ports
on the caches. Formally, we define cache bank con-
tention as the event that a load or store must wait in
the Load/Store Queue because it cannot be serviced
due to the lack of a free memory port.

In order to reduce bank contention, our goal is to
assign banks to PC sets so as to minimize the number
of remaining contentions. Note that assigning differ-
ent banks to two contending instructions will remove
that contention from the system, as they will be ser-
viced at different cache banks, each with their own
memory port. Since we cannot break contentions be-
tween instructions within the same set without al-
located to multiple banks, we ignore intra-set con-
tentions. Furthermore, we should note that assign-
ment of banks to sets may enable the elimination
of some contention, but may prevent the removal of
other contentions as the banks we choose are fixed.
The problem is one of finding the maximal k-coloring
of the contention graph.

Due to the difficulty of the coloring problem and
the discouraging results of our contention data, we



did not examine heuristics or algorithms for assigning
banks to these PC sets.

3 Limit Study Results

3.1 PC Sets
Num Sets Size % of MemlInsns
1 2742 PCs 95.4%
34 6-11 PCs 1.23%
97 1-5 PCs 3.37%

Table 1: Distribution of memory instructions (PCs)
between disjoint memory sets in compress with stack
addresses. Almost everything is stuck into one big
set.

The construction of PC sets by joining instruc-
tions based on stack references is particularly trouble-
some. For all of our benchmark applications, ijpeg,
compress, and 1i, almost all of the instructions are
put into one large set. Table 1 shows this behavior
for the compress benchmark. We found 57 sets, and
95% of the instructions wound up being placed into
one of those sets.

This is particularly worrying due to the simple fact
that any static placement algorithm will have very lit-
tle leeway in choosing banks for a program’s instruc-
tions. The 95% of instructions must all be placed
in one cache bank. In a banked cache system, this
would result in horrible cache utilization, making the
mechanism undesirable.

3.2 Stack Removal

We can make the assumption that accesses to the
stack are able to be handled specially, and should
not be used to join sets of program counters. Analy-
sis reveals that this assumption increases the number
of sets found in the disjoint set. In compress, for
instance, we increase from finding 57 sets when in-
cluding stack accesses, to 308 sets when excluding
them from the disjoint set analysis.

Num Sets Size % of MemlInsns
1 2237 PCs 7%
16 6-83 PCs 9.82%
35 2-6 PCs 4.9%
238 1 PCs 8.28%

Table 2: Distribution of memory instructions (PCs)
between disjoint memory sets in compress ignoring
stack addresses. Almost everything is still stuck into
one big set.

Num Sets Size % of MemlInsns
1 4778 PCs 86.85%
119 4-17 PCs 2.16%
21 3 PCs 1.145%
32 2 PCs 1.16%
492 1 PC 8.9%

Table 3: Distribution of memory instructions (PCs)
between disjoint memory sets in 1i, ignoring stack
accesses. Almost everything is stuck into one big set.

App Static Dynamic
compress 77.8%  99.7%
ijpeg 98.2% 98.67%
1i % %

Table 4: Sizes of the dominating set in terms of
static and dynamic memory instruction footprint.
The dominating set is all that matters, statically or
dynamically.

Unfortunately, the resulting sets still have the same
problem as the sets computed using stack addresses.
Table 2 illustrates the results for compress. A single
large component dominates and contains almost all
of the instructions. There is some hope, however, in
that this large set has become much smaller, reducing
from containing 95% of all memory instructions to
only 77% of memory instructions.

Table 3 shows the sizes of the sets found in the
application 1i when ignoring stack addresses. There
were 682 sets discovered in the analysis, but 1 con-
tained 86.85% of the instructions. The trend of a
dominating set appears throughout all of our bench-
marks.

The numbers above suggest that there is consis-
tently a large disjoint set that contains most instruc-
tions. Another interesting question is how much these
dominating sets are represented during the dynamic
execution of the program. We counted the number
of times a memory instruction from each set was exe-
cuted while running the program. Table 4 shows the
results of this experiment. For all of our applications,
the dominating set not only is the most significant in
the static set of instructions, but it is also by far the
only set that matters during dynamic execution.

3.3 Inlining

Given the assumption that inlining function calls
should enable us to find many more disjoint PC sets
in the resulting program, we analyzed the effects that
inlining had under our benchmark applications.



Under the 1i benchmark, we managed to find 682
disjoint sets of program counters under our standard
pc set analysis when ignoring stack data. When also
using our inlining technique, we managed to find 5001
disjoint sets. This improvement of over 7-fold is quite
impressive, and would suggest that we have a much
greater ability to efficiently assign banks to memory
instructions.

Unfortunately, we still have the same fundamen-
tal problem that we encountered without inlining.
By aggressively inlining functions, we’ve bloated the
code. The number of memory instructions increased
from 5141 instructions to 21996 instructions. Corre-
spondingly, we observed an increase in the absolute
number of disjoint sets. At the same time, the size
of the dominating large set expanded to cover 16851
instructions, or 76.6% of the memory instructions.
Thus, we are still stuck with the problem of having
to place a large set of data into one bank of our cache,
which will reduce our cache utilization.

We also examined the effect that inlining had on
the ijpeg benchmark. Without inlining, we found 37
disjoint sets, and one large set that hit 5821 of 5927,
or 98% of the memory instructions. After inlining,
we found 2449 disjoint sets, by bloating the code by
only a factor of two. The largest set in the inlined
disjoint set contained 67.68% of the memory instruc-
tions, which is still a sizeable number of instructions.

On one hand, inlining seems as if it should be an
effective solution for increasing the number of sets for
bank assignment in order to make assignment easier.
On the other hand, it appears that aggressive inlin-
ing fails to greatly improve the situation, as the PC
sets are still dominated by a huge component, which
cannot be broken and distributed across the cache
banks.

3.4 PC Set Contention

The event that there is contention between an in-
struction in one PC set and another instruction in
the same set is particularly problematic. The reason
is that the set of instructions cannot be split up and
be made to use different cache banks.

We examined the degree of inter- versus intra- PC-
set contention on our suite of benchmarks. We found
that most of the “static” contention that occurs in
the benchmark programs occurs between members of
the same set. Table 5 depicts the amount of intra-
set contention that was found between sets in our
benchmark suite under varying issue widths.

Issue Width App IntraSet

4 compress | 100.0%
ijpeg 54.19%

1i 8%
8 compress | 100.0%
ijpeg 57.9%
1i 69.4%
16 compress | 100.0%
ijpeg 100.0%
1i 75.2%

Table 5: Intra- and Inter- PC set contention. Most
contention appears between instructions within the
same set — in particular, between the dominating
set and itself.

3.5 Inter-Function, Intra-Function

Contention

When considering the implementation of a compiler
that performs static assignment of instructions to
cache banks, there are a number of issues that be-
come important. One, in particular, is the compu-
tational difficulty of determining where contentions
occur in the program source code.

It is a well known fact that inter-function analysis
is an extremely difficult problem for modern com-
pilers [12]. This would suggest that locating and
dealing with contention across functional boundaries
would be extremely difficult at compile time as well.
Within a single function, contention can be approx-
imated using heuristics if the compiler knows the
cycle counts for accessing the caches. If most con-
tention is found to be between instructions in the
same function, then just “simple” intra-function con-
tention analysis should improve performance greatly.

We measured contention between instructions in
the ijpeg, compress95, and 1i spec benchmark
programs under Simplescalar using 4-, 8-, and 16-
issue widths (precisely, we set the parameters issue :
width, decode : width, fetch : ifqgsize, lsq : size and
ruw : size to the desired “issue width”).

First, we examined contention between instruc-
tions “statically.” In order to measure this, we de-
termined whenever two instructions contended for a
memory port at runtime, and counted this contention
once. This corresponds to the compiler recognizing
that contention is possible, but not recognizing how
many times those two instructions will contend dur-
ing the execution of the program. Table 6 lists the
results of this static contention analysis. Figure 1 il-
lustrates the ratio of inter-function to intra-function
static contention broken down according to applica-
tion, and Figure 2 shows the ratio for 1i as the issue



Issue Width App IntraFn contention
4 ijpeg 97.05%
compress 95.59%
1i 89.75%
8 ijpeg 93.946%
compress 91.94%
1i 73.39%
16 ijpeg 87.87%
compress 83.6%
1i 39%

Table 6: Static Intra- vs. Inter-function contention
on spec benchmarks as the issue width increases.
As issue width increases, more and more contention
crosses function boundaries.

Dynamic Contention w.r.t. Application

Il intra—function
[ inter—function

0.81

o
=)

Contention %

I
'S

0.2f

ijpeg compress lisp

Figure 1: Static Intra- vs Inter-function contention
for ijpeg, compress, and 1i.

width increases.

The data clearly indicates that for low issue widths,
the number of intra-function contentions dominate
the contentions present for all applications. On the
other hand, as issue widths increase, the number of
inter-functional contentions grows significantly, espe-
cially for the 1i benchmark. The observed inter-
function contentions occur mostly between stack and
frame setup, global pointer initialization, and regis-
ter save/restore code. However, there are instances of
contention between regular, user originating memory
operations and there are even instances of contention
spanning multiple functions on a 16-issue processor.

In addition to considering inter- and intra-function
contention statically, we considered how things would
change if dynamic behavior were taken into consider-
ation. Thus, each time that an instruction contends
with another, it is counted, and reflects the number
of times the contention appears at runtime. This in-
formation is much less likely to be readily available to

Dynamic Lisp Contention w.r.t. Issue Width

- intra—function
:I inter—function

16-issue

0.8f

0.6

Contention %

1N
'S
T

0.2r

4-issue 8-issue

Figure 2: Static Intra- vs Inter-function contention
for 1i, as issue increases. As issue width increases,
inter-function contention becomes more significant.

Issue Width | App | IntraFn contention
16 ijpeg 96%
compress 81%

Table 7: Dynamic Intra- vs. Inter-function con-
tention on spec benchmarks. Dynamically, more than
80% of contention occurs intra-procedurally. Even
1i, which had little static intra-function contention
has much dynamic intra-function contention.

a compiler without much nontrivial analysis, but it
seems promising. Table 7 illustrates the dynamic con-
tention results for the benchmark applications under
16-issue width. We find that considering runtime be-
havior, by far most contention occurs intra-function.
Even the 1i benchmark, which had much less intra-
function contention in the static analysis, has much
more dynamic contention. As a result, it appears
likely that intra-function contention analysis alone
may be a very powerful tool in the construction of
static bank assignments. Additionally, writing com-

piler technology to get large wins may be quite feasi-
ble.

4  Split Caches

In a compiler controlled split cache, or cc-split cache,
the compiler can statically assign memory operations
to specific cache banks. The compiler may assign a
memory operation to multiple cache banks. Every
load and store instruction includes a bitmask which
specifies what cache bank(s) that memory operation’s
request will be routed to. If the bitmask is zero, then
the request is dynamically routed just as it would be
in a multi-banked cache.
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Figure 3: Different methods of cache bank selection
and utilization.

When servicing a load, the processor will use the
first available cache bank whose corresponding bit is
set in the bitmask. When servicing a store, the pro-
cessor will simultaneously store to every cache bank
whose corresponding bit is set in the bitmask. If any
required cache banks are not available (because they
are busy servicing other requests), the memory oper-
ation will block. Note that it is possible for a cc-split
cache to exhibit the full semantics of either a copy
cache or a multi-bank cache. Our dynamic routing
function uses bit selection.

The least significant bits of the address which
aren’t part of the cache line offset are used to select
which cache bank the address gets routed to. The
cache bank selector bits must be distinct from the
bits in the address used to index into the cache bank
to avoid under-utilization of cache resources. Other
bank selection functions, such as XOR-folding, have
been proposed but only result in marginal improve-
ment and increase the required chip area for the rout-
ing crossbar[11][1][14].

An important side-effect of supporting dynamic
routing in a cc-split cache is that the same ad-
dress will map to a different cache line depending on
whether it is dynamically or statically routed, even if
it is routed to the same cache bank.

The compiler is responsible for ensuring the cor-
rectness of the cache bank assignments. This is abso-
lutely necessary for good performance since the over-
head involved in having the hardware maintain cache
bank consistency would more than offset the advan-
tages of a cc-split cache.

Even with the correctness constraint, there is still
ample opportunity for the compiler to improve mem-
ory parallelism. When the compiler detects con-
tention for access to memory (for example, two con-
secutive loads) and can determine that the memory
references will never alias, it can assign the mem-
ory accesses to separate cache banks. If the compiler
detects contention between memory accesses which

do alias, it can still improve parallelism by assigning
the memory accesses to two cache banks. This can
be beneficial if increased load parallelism offsets the
penalty of having to store to multiple cache banks.

We estimate that a cc-split cache would require
about as much chip area as a traditional multi-bank
cache. As with a multi-banked cache, the cache banks
have no need to communicate among themselves and
so can be physically separate.

4.1 Implementation

We have performed an initial evaluation of the
cc-split cache architecture by extending the Sim-
pleScalar 3.0 toolset. Every load and store instruc-
tion is annotated with a 16 bit bitmask as in the
following example:

1w/15:0(2) $2,c

sw/15:0(10) $2,20($fp)

1w/15:0(4) $2,b

1w/15:0(8) $3,x.2
In this example there are four cache banks. The deci-
mal number within the parentheses is the value the 16
bit bitmask is set to. Each load is assigned to a dis-
tinct, non-contending, bank. The store to the stack
is assigned to two banks since this memory location
is found to contend with itself later in the program.

We have modified the SimpleScalar compiler,
which is based on GCC 2.7.2, to generate cache bank
selection annotations. Our annotation pass happens
late in the compilation after all other optimization
passes. The compiler first uses the GCC 2.7.2 alias
detection to build up disjoint sets of aliasing memory
operands. Memory operations that are in the same
set may potentially alias and therefore must be as-
signed to the same cache bank. Next, the compiler
scans through the instruction stream and attempts to
determine areas of memory contention. If two mem-
ory operands are accessed within an appropriately
sized fixed window they are considered to contend un-
less these accesses are dissected by a possible change
in control flow (such as a call instruction). Since in
our implementation the cache has separate read and
write ports, stores are not considered to contend with
loads and vice versa.

The result of finding the contentions between mem-
ory operands is a contention graph between memory
sets. An edge exists between memory sets if it is pos-
sible that two memory operations might be trying to
access these two sets during the same cycle. Some
memory sets (in fact, many of them) will contend
with themselves. The compiler attempts to “color”
all the memory sets which do not contend with a sin-
gle cache bank “color” using a heuristic driven graph
coloring algorithm. Then the compiler attempts to



assign self-conflicting memory sets to multiple cache
banks, but only if it can do so without creating con-
tention against other, already assigned, memory sets.
When choosing cache banks, the compiler attempts
to balance the number of accesses assigned to each
bank when possible. If the compiler cannot success-
fully color a memory set it defaults to either full
multi-bank mode (algorithm 1) or full copy cache
mode (algorithm 2).

4.2 Limitations

There are several limitations in our current im-
plementation affecting both correctness and perfor-
mance. Since the compiler works on each function
individually, it is not currently possible to ensure cor-
rectness across function calls. For example, if a refer-
ence to a global variable is assigned to different cache
banks in different functions, cache consistency issues
might arise if the corresponding cache line doesn’t
get evicted between accesses in the different func-
tions. Some possible solutions are supporting inter-
procedural analysis in the compiler and linker and/or
adding additional instructions for explicit cache man-
agement (allowing the compiler to force an eviction
if necessary). Another serious correctness limitation
not addressed by our implementation is that the com-
piler must not only correctly determine which mem-
ory accesses do not alias, but also make sure these
accesses do not share a cache line. That is, the com-
piler needs to have full knowledge of the layout of
data in memory.

The SimpleScalar toolset simulates cache latencies,
but does not actually simulate the cache data flow (it
just keeps tracks of the cache tags). As such, the ex-
pected correctness issues do not inhibit implementing
an incorrect, but substantially less complicated, ini-
tial compiler infrastructure for evaluation purposes.

Our current compiler infrastructure merely anno-
tates the conventional output of the compiler. We
could further enhance performance by performing
code transformations that would encourage better
cache bank placement such as modulo unrolling[2],
cache driven data layout[4] and structure layout[6][5],
and cache bank aware instruction scheduling. An-
other major limitation of the current compiler is
that it uses the GCC 2.7.2 alias detection routines
which are quite primitive compared to modern alias
analyses[12].

5 Results

To evaluate the cc-split cache architecture we com-
piled and ran programs from the SpecInt95 bench-
mark suite. All programs were compiled with our

modified GCC 2.7.2 compiler using the -O2 option.
The simulator is configured to simulate a full featured
4-way out-of-order superscalar processor. The num-
ber of memory ports available to the processor is set
equal to the number of cache banks being simulated.
The L2 cache is a unified 1MB 4-way set associative
cache with 64 byte cache lines. The L1 instruction
cache is a 16k direct mapped cache with 32 byte cache
lines. The L1 data cache is a 32k direct mapped cc-
split cache (the sum of the sizes of the cache banks
is 32k) with 32 byte cache lines.

In Figure 4 we show our results for a system con-
figured to have two memory ports and two cache
banks. We compare an ideal dual port 16k cache, a
pure copy cache, a pure multi-banked cache, and our
two algorithms. All results are normalized against an
ideal dual port 32k cache and longer bars are slower.
We compare algorithm 1 against the multi-banked
cache since the difference between them is caused by
the compiler’s ability to statically select cache banks
(when the compiler is unsuccessful in selecting cache
banks for a memory operation, it defaults to multi-
bank cache mode in algorithm 1). For the same rea-
son, we compare algorithm 2 to the copy cache.

In most cases algorithm 1’s performance closely fol-
lows that of the multi-bank cache. In vortex, how-
ever, the compiler static placement is 3.17% faster.
In this benchmark, the compiler managed to success-
fully introduce memory parallelism in a few small,
very frequently called functions. Algorithm 2 does at
least slightly better than the copy cache in all cases
but gcc and 1i. The best improvement seen for al-
gorithm 2 over copy cache is in compress, where al-
gorithm 2 is 1.04% faster, but algorithm 2 is 1.69%
slower on 1i. However, in most case, the copy cache
and algorithm 2 don’t match the performance of the
multi-bank cache or algorithm 1. In the go bench-
mark the multi-banked cache and algorithm 1 actual
beat the ideal 16k cache indicated that cache space
is more important than perfect memory parallelism
in this benchmark.

In Figure 5 we explore the effect of increasing the
number of cache banks on the linpack benchmark. As
the number of cache banks increases, the multi-bank
cache does better since the number of bank conflicts
drops. However, as the number of cache banks in-
creases, the copy cache does worse since the amount
of actual cache space decreases and the effect of hav-
ing to issue multiple stores is more pronounced. Al-
gorithm 1 manages to be competitive with the multi-
bank cache, providing slightly better results for a 4-
bank cache. However algorithm 1 actually gets worse
when the number of banks increases to 8. Further-
more, it fails to improve upon the multi-bank cache
in the 2-bank case where a full copy cache is consid-



1.08—

1.06—

1.04+

Slowdown Relative to

32k Ideal Cache 10299

0.98—

0.96 L =

ijpeg

compress gce go

016k Ideal

02*16k Copy Cache

032k Multi-Bank Cache

B Compiler Placement Alg1
B Compiler Placement Alg2

li m88ksim perl vortex

Benchmark

Figure 4: Comparison of various cache bank placement algorithms with 2 banks and 32k total cache space.
All results are normalized against a 32k idea dual port cache.

595000007

59000000

585000001

@ Copy Cache
mMulti-Bank

O Compiler Algo1
0 Compiler Algo2

Cycle Count 58000000

575000001

570000001

a
Number of Memory Ports/Cache Banks

Figure 5: Comparison of various cache bank placement
algorithms applied to the 1inpack benchmark as the num-
ber of cache banks is increased.

erably faster.

Finally, in Figure 6 we demonstrate just how lim-
ited our current compiler infrastructure is. We hand-
annotated the assembly for a single frequently called
function in the compress95 benchmark. The compiler
could not make the same annotation since the alias
analysis failed to identify a certain pair of memory
references as not aliasing. By just changing 16 lines
of assembly code we improved the performance of the
benchmark to be competitive with a 16k ideal dual
ported cache.

6 Conclusion
Through the use of dynamic traces collected from the

Simplescalar simulator, we have been able to investi-
gate several aspects relevant to the static placement
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Figure 6: Demonstration of improvement possible if com-
piler technology can be improved.

of data in a multi-banked cache. We primarily fo-
cused on two areas — the natural sets of memory
instructions which access disjoint pieces of memory
and contention between memory instructions. We
found that keeping stack accesses from interfering
with other memory instructions is relatively impor-
tant for finding a large number of disjoint sets for
bank assignment. We also discovered that aggressive
inlining can aid in the creation of new disjoint sets of
instructions. Inlining fails to be very effective, how-
ever, in getting rid of the problematic dominating set
that appears to stand in the way of effective bank
assignment.

The dominating set found in each of our disjoint
instruction sets appears to reduce the performance
increases possible with static cache placement, since



most contention occurs between instructions within
the same set. In particular, by far most contention
happens between the dominating set and itself, both
statically and dynamically. As a result, it appears as
if it should be nearly impossible to produce efficient
bank assignments that reduce bank contention unless
assignment to multiple banks or dynamic assignment
support is provided.

Finally we evaluate the practicality of construct-
ing efficient compiler algorithms for handling static
assignment of cache banks to memory instructions.
While some amount of careful inter-procedural full-
program analysis would be essential for correctness,
we have found that most performance gains should
be able to be attained through less difficult intra-
procedural analysis.

We also described compiler controlled split caches
and our initial implementation of a compiler frame-
work which is capable of optimizing for them. Al-
though our results are mixed, they do indicate that
there is definite potential for a cc-split cache’s perfor-
mance to exceed more traditional cache implementa-
tions requiring similar amounts of chip area. How-
ever, in many cases it appears that by accepting a
marginal increase in chip area (doubling or quadru-
pling the number of banks, for example) a hardware
solution can significantly improve in performance. In
order to obtain a similar improvement in performance
using cc-split caches it would be necessary to dramat-
ically increase the complexity of the compiler and
linker (to support inter-procedural analysis). Fur-
thermore, since the compiler is explicitly managing
the cache placement, it would be easy for the com-
piler to introduce subtle errors into programs which
would be extremely difficult to track down. A cc-split
cache could provide an effective way to increase mem-
ory parallelism without increasing cache complexity
and chip area requirements, but is probably only suit-
able when increasing chip area usage even slightly is
prohibitively expensive.
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