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Abstract
We present an internal language with equivalent expressive power
to Standard ML, and discuss its formalization in LF and the
machine-checked verification of its type safety in Twelf. The in-
ternal language is intended to serve as the target of elaboration in
an elaborative semantics for Standard ML in the style of Harper and
Stone. Therefore, it includes all the programming mechanisms nec-
essary to implement Standard ML, including translucent modules,
abstraction, polymorphism, higher kinds, references, exceptions,
recursive types, and recursive functions. Our successful formaliza-
tion of the proof involved a careful interplay between the precise
formulations of the various mechanisms, and required the invention
of new representation and proof techniques of general interest.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; Syntax;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs—Mechanical verification

General Terms Languages, Verification

Keywords Standard ML, language definitions, type safety, mech-
anized metatheory, logical frameworks, Twelf

1. Introduction
A formal definition of a programming language provides a rigor-
ous, implementation-independent description of the semantics of
well-formed programs. By giving a precise meaning to programs
a formal definition provides the foundation for building a commu-
nity of users, for ensuring compatibility of implementations, and
for proving properties of the language and programs written in it.
But a formal definition does not stand on its own, but must be sup-
ported by a body of metatheory that establishes both its internal
consistency and coherence with external expectations.

The formal definition of a full-scale programming language can
easily run into hundreds of pages, as exemplified by The Definition
of Standard ML [21]. Verifying the metatheory of such a language
taxes, or even exceeds, human capabilities. Absent complete ver-
ification, the best alternative is to employ well-established meth-
ods, such as type systems and operational semantics, supported by
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small case-studies that expose pitfalls. But even using these best
practices, errors and inconsistencies arise that are not easily dis-
covered. Moreover, as languages evolve, so must the metatheory
that supports it, introducing further opportunities for error.

A promising approach to reducing error is to use mechanized
verification tools to ease the burden of proving properties of
language definitions. Ideally, a language definition would come
equipped with a body of metatheory that is mechanically checked
against the definition and that can be extended as need and interest
demands. With the development of powerful tools such as mechani-
cal theorem provers and logical frameworks, it is becoming feasible
to put this idea into practice. For example, Klein and Nipkow [17]
have recently used the Isabelle theorem prover [23] to formalize
a large part of the Java programming language and to prove type
safety for it.

In this paper we report on the use of the Twelf implementa-
tion [27] of the LF logical framework [12] to verify the type safety
of the full Standard ML programming language. To our knowledge
this is the first mechanical verification of safety for a language of
this scale. The first mechanical formalizations of significant subsets
of The Definition of Standard ML were performed independently
by Syme [36] and VanInwegen and Gunter [39] using HOL [10]
for the purpose of establishing determinicity of evaluation. An at-
tempt by VanInwegen [38] to prove type safety was partially suc-
cessful, but ran into difficulties with the formalism of The Def-
inition of Standard ML, the immaturity of verification tools and
methodology at that time, and the unsoundness of the language it-
self. Our approach draws on intervening experience with logical
frameworks [12, 27] and with formalizing language definitions us-
ing type-theoretic techniques [16]. Perhaps the most significant les-
son to be drawn from VanInwegen’s and our experience is that lan-
guage definitions must be formulated with mechanical verification
of metatheory in mind. The formulation of the definition provides
the framework for verification, but the demands of verification must
also be permitted to influence the definition. Just as programs ought
to be written in conjunction with proofs of their key properties, so
too must language definitions be developed hand-in-hand with their
verification.

2. Overview
Our approach is based on the type-theoretic definition of Standard
ML given by Harper and Stone [16]. The Harper-Stone semantics
divides the definition of the language into two aspects:

1. Elaboration, which translates the external language, the ab-
stract syntax of Standard ML, into the internal language, a well-
behaved type theory based on the translucent sums formalism
of Harper and Lillibridge [14]. Elaboration performs type re-
construction, overloading resolution, equality compilation, pat-
tern compilation, and coercive signature matching, resulting in
a well-typed term of the internal language.



2. Typing and evaluation, which enforces type constraints and
imposes an operational interpretation on programs. The inter-
nal language is a well-behaved, explicitly typed λ-calculus
equipped with a transition-based operational semantics on
states of an abstract machine.

We will refer to the general structure of definition-by-elaboration
as elaborative semantics, and to the Harper-Stone semantics for
Standard ML in particular as H-S. Note that the utility of elab-
orative semantics is not limited to ML; it has also been used by
Drossopoulou, et al. [8, 9] in rigorous accounts of the semantics
of Java. The use of elaborative semantics follows in the spirit of
Reynolds [32] which explored the semantics of an idealized lan-
guage that embodied the “essence” of Algol. Elaborative semantics
goes further, in that the relationship between a language and its
idealized counterpart is made explicit by a formal translation.

In the context of Standard ML, the H-S semantics has been used
successfully as the foundation for the TILT compiler for Standard
ML [37, 25, 34, 24], and as a basis for language extensions such as
recursive modules [5] and modular type classes [7]. For the present
purposes, as well as that of the cited work, the utility of elaborative
semantics accrues from the isolation of an internal language to
which operational meaning is assigned using standard techniques;
the external language is given meaning only via its elaboration into
internal form.

This permits one to formalize type safety for the internal lan-
guage as the conjunction of preservation (well-formed states tran-
sition only to well-formed states) and progress (well-formed states
are either final or can make a transition). Type safety for the ex-
ternal language then follows from the fact that elaboration yields
a well-typed program in the internal language. In the present pa-
per we outline the proof and mechanization of the type safety of
the Standard ML internal language, leaving the formalization of
elaboration and the proof of well-typing of elaboration to future
work. The internal language used is similar enough to the H-S in-
ternal language that we believe the elaboration relation given in
H-S can be adapted for our IL without serious difficulties. In fact,
the safety proof of the internal language represents the bulk of the
effort, since the internal language has the same expressive power
as Standard ML, lacking only conveniences such as type inference
and pattern matching, which can be handled separately. However,
we will discuss elaboration, where appropriate, to motivate the in-
ternal language’s design.

It is natural to ask whether one could carry out a similar mecha-
nization based on The Definition of Standard ML. Our results have
no direct bearing on this question, but it may be informative to ex-
plain why we did not choose this approach. First, we had in mind
VanInwegen’s earlier attempt, which was not entirely successful
due in part to errors in The Definition itself (the language she stud-
ied was not type safe), and in part to complications in handling the
machinery used in The Definition (a considerable array of ad hoc
semantic objects such as finite maps, generative stamps, realiza-
tions, and so forth). Second, we drew on our previous experience
with the H-S semantics in the implementation of the TILT compiler
and in studies of language extensions that supported our belief in
the utility of type-theoretic methods in language design. Third, we
intended to make use of the Twelf implementation of the LF logi-
cal framework for our work, which provides strong support for for-
malizing and proving properties of type-theoretic languages with
purely syntactic notions of binding and scope. The machinery of
The Definition is not amenable to formalization in Twelf—more
precisely, using such machinery would obviate the advantages af-
forded by Twelf. Fourth, The Definition is based on an evaluation
semantics, which does not support a direct proof of type safety. In-
stead, one must extend the semantics with spurious “wrong” tran-

sitions, only to prove that they are, indeed, spurious. Finally, The
Definition relies on a number of informal conventions, such as the
handling of overloading and the dynamic significance of signature
matching, whose formalization would, we suspect, require a layer
of elaboration if fully developed. In short, the structure of The Def-
inition poses problems in general for proving safety, and in partic-
ular for proving safety in mechanized form.

Present Work In our present work, we do not utilize the H-S
semantics per se, but rather a variation of it that was informed
by subsequent work on the type theory of modularity and by our
first, failed attempt at verification using H-S verbatim. The inter-
nal language of H-S is an extension of Harper and Lillibridge’s
translucent sums formalism [14] with support for recursive types,
mutable references, extensible datatypes, and exceptions. That lan-
guage is endowed with an operational semantics given as a transi-
tion system for an abstract machine with an explicit control stack,
as well as a store for reference cells and generated tags. Our first
attempts at verification, conducted by the second and third authors
with Michael Philip Ashley-Rollman, uncovered numerous minor
flaws in the H-S internal language, as would be expected in a for-
mal verification effort, but also ran into apparently insurmountable
technical difficulties with proving type safety for the corrected lan-
guage.1

Our effort is based on Dreyer’s variant [5] of the H-S seman-
tics. Dreyer’s internal language (and ours) is based on Stone and
Harper’s singleton kind formalism [35], rather than translucent
sums, and employs phase separation to propagate type information
properly while respecting the phase distinction [15] in a language
with dependently typed modules. (In addition it treats data abstrac-
tion as a computational effect [6], which would permit supporting
applicative functors [20], which we do not consider here.) More-
over, we formulate the operational semantics as a transition system
using Plotkin’s method of structured operational semantics [31].
This supports a direct statement of type safety, and avoids the com-
plications that arose in our initial attempt using the H-S semantics.

The verification of safety for the internal language presents a
number of challenges. These may be divided into two broad cat-
egories: (1) mathematical challenges, and (2) formalization chal-
lenges. The mathematical challenges are those posed by the proof,
independently of any mechanization effort. These include delicate
matters of staging the key technical lemmas, such as functional-
ity and validity, so that they may be proved in logical progres-
sion. These challenges are generally typical of those arising in the
metatheories of module calculi.

More novel are the challenges arising from the demands of for-
malization of our language in LF and of verifying its metatheory
using the Twelf theorem prover. Here our previous experience with
logical frameworks was important. Our internal language is care-
fully formulated to ensure straightforward representation in LF us-
ing higher-order abstract syntax and judgements-as-types [12], to
full advantage. Using these methods ensures that we avoid the com-
plications encountered by VanInwegen in the treatment of binding
operators, since the machinery of binding and scope is provided
“for free” by LF. For example, as dicussed in Section 3, Dreyer
correlated module variables with underlying type constructor vari-
ables using a naming convention that is untenable in higher-order
abstract syntax. In our work we maintained the correlation using a
hypothetical judgement. Not only does this resolve the issue, but it
also results in a more elegant language.

1 Space limitations prevent detailing these difficulties here, but they can be
traced to a conflict between the definition of well-formed machine states and
side conditions on some typing rules restricting certain terms to be values.



In many cases, such as the issue of variable correlation, LF for-
malization pushed us to a cleaner development. However, we were
not always so fortunate. The formalized proof of functionality—
independent of its staging with other theorems—deals with the con-
text in a manner difficult to represent in LF. Consequently, proving
functionality required the development of a new proof device for
Twelf that adds a detour to the proof. This issue is discussed in
Section 6.

One issue fits into both categories. In both progress and preser-
vation, it is essential to establish inversion properties such as that no
function type is equal to any non-function type, and that equal func-
tion types must have equal domains and equal codomains. Such
“obvious” facts are very far from trivial to prove in languages, such
as ours, with a rich notion of type equality! The Standard ML type
system relies on a formulation of type equality that, among other
things, propagates type sharing information across module bound-
aries [14, 19, 35]. The declarative formulation of type equality in
the presence of singleton kinds captures these properties naturally,
but at the expense of making it very difficult to verify inversion
properties. On the other hand, an algorithmic formulation, as is
used in an implementation, makes it easy to establish inversion
properties, but very difficult to establish other key properties (in-
cluding ones as apparently simple as transitivity).

Thus, a crucial ingredient in the canonical forms lemma is a
proof of equivalence of the declarative and algorithmic formula-
tions of type equality. This result has already been established by
Stone and Harper [35], but their proof cannot currently be ex-
pressed in Twelf due to the limits of Twelf’s relational metatheory.
Consequently, it was necessary to develop a new, syntactic proof
based on Watkins’s technique of hereditary substitutions [40]. This
issue is discussed in Section 4.3.

We begin our discussion with an informal presentation of the
internal language (IL) in Section 3. For the purposes of this paper,
we mean by “informal” that the presentation is given in English and
mathematical notation, not in machine-checkable form. We follow
with an informal (in the same sense) account of the IL’s metatheory
in Section 4. We discuss the IL’s formalization in LF in Section 5,
and the safety proof’s formalization in Twelf in Section 6. We as-
sume no familiarity with LF or Twelf until Section 5. In Sections 5
and 6 we assume familiarity with the methodology of LF encod-
ing [12, 26, 13], and, in the latter, some elementary familiarity with
the Twelf meta-logic will also be helpful.

The full Twelf code of our formalization is available at:

www.cs.cmu.edu/~crary/papers/2006/tslf.tgz

3. The Internal Language
The internal language (IL) of our semantics is an explicitly-typed
λ-calculus based on Dreyer’s modules formalism [5], enriched with
a variety of features to encompass the full expressive power of
Standard ML. One simplification compared to Dreyer’s language
is that we eliminate support for applicative functors, only because
they are not necessary for modeling Standard ML.2

The IL itself is not a research contribution of this paper; nearly
every construct in it appears in some form in prior work [15, 14,
19, 16, 35, 6, 5]. Consequently, our discussion here is a summary,
not a thorough discussion. Our purpose is to convey the scope of
the language, and to set the scene for discussion of its formaliza-
tion. Full technical details are included in the companion technical
report [18].

The IL is structured into two levels: (1) the core level, which
consists of constructors classified by kinds, and terms classified

2 It would not present serious difficulties to accommodate them to model
other languages, such as Objective Caml.

constructors C ::= α
| 〈〉 unit constructor
| 〈C1, C2〉 pairs
| π1C left projection
| π2C right projection
| λα:K.C abstraction
| C1 C2 application
| Unit unit type
| C1 × C2 products
| C1 → C2 functions
| C1 + C2 sums
| Ref C1 references
| Tag C1 generative tags
| Tagged tagged expressions
| µα:T.C recursive types

kinds K ::= 1 unit kind
| T types
| S(C) singleton kind
| Πα:K.C dependent functions
| Σα:K.C dependent pairs

Figure 1. Constructor and Kind Syntax

by types (constructors of kind T) and (2) the module level, which
consists of modules classified by signatures. The layers are linked
by projections that extract the type and term components of a
module. The language is designed to enforce the phase distinction,
which ensures that type equality is independent of term equality
by arranging that an admissible type projection can be immediately
determined to be a core language type.

Type definitions and type sharing relationships are managed
using singleton kinds [35], which are separable from modules, in
contrast to the translucent sums formalism used in the Harper-Stone
semantics. This formalism isolates the issues of type equality from
the other aspects of the language, and is of independent interest
from its application here. In particular, the complications related to
type equality mentioned in the overview are cleanly isolated from
the rest of the metatheory.

Type abstraction is managed using the effects-based techniques
of Dreyer, Crary, and Harper [6] in which the imposition of ab-
straction is regarded as akin to a computational effect. However, in
contrast to the DCH formalism, we need only the basic distinction
between pure and impure modules, rather than the more sophisti-
cated classification considered there. The reason is simply that the
additional sophistication is not required for the semantics of Stan-
dard ML.

3.1 Core Language
3.1.1 Constructors and Kinds
The grammar for constructors and kinds3 is given in Figure 1.
The kind T classifies types, which are themselves used to clas-
sify terms.4 Most of the types and constructors are familiar. The
Tag and Tagged types are used to implement Standard ML’s exn
type [16].

The singleton kind [35], S(C), classifies the constructors that
are definitionally equivalent to the constructor C. It is used to model

3 In addition to these constructs, our formalization supports some orthogo-
nal constructs not used by Standard ML in anticipation of future develop-
ment.
4 In the terminology of the ML type system [3] these are the monotypes; the
polytypes arise in our formalism as a special case of functor signatures [16].



S1(C)
def
= 1

ST(C)
def
= S(C)

SS(D)(C)
def
= S(C)

SΣα:K1.K2(C)
def
= SK1(π1C)× S[π1C/α]K2(π2C)

SΠα:K1.K2(C)
def
= Πα:K1.SK2(C α)

Γ ` π1C : K1 Γ ` π2C : K2

Γ ` C : K1 ×K2

Γ ` C : Πα:K1.L Γ, α:K1 ` C α : K2 α /∈ Dom(Γ)

Γ ` C : Πα:K1.K2

Figure 2. Higher-Order Singletons and Extensionality

type definitions and type sharing specifications. Singletons create
dependencies of kinds on constructors, so function and product
kinds take dependent form, Πα:K1.K2 and Σα:K1.K2, respec-
tively.

The following judgement forms govern constructors and kinds:

• K is a well-formed kind: Γ ` K.
• C has kind K: Γ ` C : K.
• K1 is a subkind of K2: Γ ` K1 ≤ K2.
• C1 and C2 are equivalent at kind K: Γ ` C1 ≡ C2 : K.
• K1 and K2 are equivalent kinds: Γ ` K1 ≡ K2.

The grammar of typing contexts is given in Figure 8.
Constructor equivalence is induced by βη rules for application

and projection, together with rules for introducing and eliminating
singleton kinds. The introduction rule for singletons, called self-
ification, assigns to each constructor C of kind T the singleton
S(C); this is evidently the most precise kind for C. The elimina-
tion rule for singletons permits deduction of Γ ` C1 ≡ C2 : T
from Γ ` C1 : S(C2). Consequently, constructor equivalence is
context-sensitive. For example, we have α:S(C) ` α ≡ C : T
because of the kinding assumption on α.

Because of dependencies, constructor equivalence induces a
non-trivial kind equivalence. In addition there is a subkinding re-
lation that is used to “forget” type equivalences due to single-
tons. Subkinding contains constructor equality, and is closed under
the axiom S(C) ≤ T, together with the usual variance rules for
product and sum kinds. Constructor formation and equivalence are
closed under kind subsumption. Consequently, constructor equiva-
lence is kind-sensitive. For example, the identity operator and the
constantly C operator are equivalent at kind S(C) → T, but not at
the kind T → T.

Although singleton kinds can be formed only over constructors
of kind T; we can lift them to higher kinds as well. In Figure 2
we give the definition of higher-order singletons, together with two
extensionality rules that are key to introducing them. For example,
if C : T × T, then we can use the first extensionality rule to show
that C : S(π1C)× S(π2C) = ST×T(C).

3.1.2 Terms
The syntax for the term language is given in Figure 3. The lan-
guage of terms includes tuples, variants, isomorphisms for recur-
sive types, generative tags, and tagged values. It also includes prim-
itives for raising and handling exceptions, tag checking, and projec-
tion of the dynamic component from a module. Terms also include

locations ` ::= · · ·
terms e ::= x variables

| 〈〉 unit term
| 〈e1, e2〉 pairs
| π1e left projection
| π2e right projection
| fun x (y:C1):C2.e recursive function
| e1 e2 application
| inlCe sum intro
| inrCe sum intro
| case(e1, x.e2, y.e3) case
| loc ` locations
| ref e new reference
| ! e dereference
| e1 := e2 assignment
| tagloc ` tag literals
| newtagC new tag
| tag(e1, e2) tag injection
| iftagof

(e1, e2, x.e3, e4) tag check
| raise e raise exception
| try(e1, x.e2) try/handle
| rollCe recursive type intro
| unroll e recursive type elim
| snd(M) module projection

Figure 3. Term Syntax

signatures K ::= 1 unit signature
| [[C]] constructor signature
| [[K]] kind signature
| Πα:σ1.σ2 dependent functions
| Σα:σ1.σ2 dependent pairs

Figure 4. Signature Syntax

locations (reference literals) and tag literals, which arise during ex-
ecution but not in user programs.

The typing judgment for terms is written as Γ; Φ ` e : C, where
Γ is a context and Φ is a store typing that assigns types to locations
and tags (Figure 8).

3.2 Module Level
The chief technical novelty of the IL’s module level (due to
Dreyer [5]) are two projection operations, Fst and snd. The for-
mer is a judgement that extracts the constructor portion of a (pure)
module. The latter is a dynamic operation that projects the term
portion of an (appropriately-typed) module. It is important to note
that while snd is an ordinary operation, Fst is used only by the se-
mantics, and cannot appear in the syntax of programs. In addition,
the static semantics has a meta-operation on signatures (mirror-
ing Fst, and also written Fst) that extracts the kind portion of a
signature. This too cannot appear in the syntax of programs.

3.2.1 Signatures
The syntax of signatures is given in Figure 4. There are three
basic forms of signature, 1 for the trivial signature, [[K]] for the
signature of modules containing a single constructor of kind K,
and [[C]] for the signature of modules containing a single term of
type C. Signatures are closed under formation of dependent func-



Fst(1)
def
= 1

Fst([[C]])
def
= 1

Fst([[K]])
def
= K

Fst(Πα:σ1.σ2)
def
= 1

Fst(Σα:σ1.σ2)
def
= Σα:Fst(σ1).Fst(σ2)

Figure 5. Static Part of a Signature (Fst)

tions, Πα:σ1.σ2, and dependent products, Σα:σ1.σ2. These are
used to represent functors and sub-structures in Standard ML, re-
spectively. Consequently, functor signatures are partial (generative)
in that applications are regarded as impure. (More on this below.)

The astute reader will have noticed that the function and product
signatures bind constructor variables, rather than module variables.
This is a reflection of the phase distinction in Standard ML, which
precludes constructors that depend on terms, even indirectly via
modules. In general modules consist of a static part, which is a
type constructor, and a dynamic part, which is a term. The syntax
expresses the fact that the result signature of a functor can depend
only on the static part of its arguments, and similarly that a module
in the scope of a sub-module can only depend on the static part of
the sub-module.

Only certain forms of module—the projectible modules—have
a static part that can be determined during type checking. (The class
of projectible modules will be discussed in more detail shortly.)
When the static part exists, it is a constructor whose kind is deter-
mined by the module’s signature. The meta-level operation Fst(σ)
defined in Figure 5 determines the kind of the static part of a mod-
ule of signature σ. Hence the rule:

Γ ` σ1 Γ, α:Fst(σ1) ` σ2

Γ ` Πα:σ1.σ2

Note that the static part of a functor signature is trivial. This is a
reflection of the fact that Standard ML functors are generative, and
hence do not have a statically computable static part. (Were we to
support pure, or applicative, functors, their static parts would have
functional kinds.)

The judgement forms governing signatures are as follows:

• σ is a well-formed signature: Γ ` σ.
• σ1 and σ2 are equivalent signatures: Γ ` σ1 ≡ σ2.
• σ1 is a subsignature of σ2: Γ ` σ1 ≤ σ2.

Signature equivalence is induced by constructor and kind equiva-
lence. The subsignature relation is induced by the subkind relation
in the usual fashion, except that our functor signatures are invariant,
rather than contra- and covariant on the left and right. This reflects
from the fact that our intended elaborator [16] employs explicit co-
ercions at functor applications,5 so the IL does not require subsig-
natures at those points. It would not be difficult to use the standard
rule instead, were the IL to be used with a different elaborator.

3.2.2 Modules
The syntax of modules, given in Figure 6, consists of introductory
and eliminatory forms for each form of signature, plus two addi-
tional constructs that we shall describe shortly. The introductory

5 The reason for this, in turn, is because much more can happen in a
Standard ML signature coercion than just dropping of type information.
For example, dynamic fields may be dropped and polymorphic functions
specialized.

modules M ::= s
| 〈〉 unit module
| [e] term module
| [C] constructor module
| 〈M1, M2〉 pairs
| π1M left projection
| π2M right projection
| λ(s/αs:σ1):>σ2.M functor
| M1 M2 application
| M :> σ sealing
| let s/αs = M1

in(M2 :> σ) let binding

Figure 6. Module Syntax

forms for atomic signatures are [C] for [[K]], and [e] for [[C]]. In-
stead of an elimination form for [[C]], the static semantics use the
aforementioned Fst. Atomic term modules [[C]] are eliminated us-
ing snd.

Modules of product signature are introduced by pairing, and
eliminated by projection, and modules of function signature are in-
troduced by λ-abstraction, and eliminated by application. The syn-
tax of λ-abstraction is unusual in that it introduces two variables,
s and αs, standing for the argument module itself, and its static
part. The variables s and αs are “twinned” in the sense that there
is an implicit correlation between them, even in the face of alpha-
conversion. (As we shall see in Section 5, this is represented in LF
by an explicit judgement form.) Typing contexts are extended ac-
cordingly with a declaration of the form s/αs : σ.

There are two additional constructs, sealing a module with a
signature to impose abstraction, written M :> σ, and a form of
let-binding for modules whose syntax is reminiscent of that of
λ-abstractions. (The explicit signature information is necessary to
circumvent the avoidance problem [6].)

Abstraction is enforced using an effects system that classifies
modules into two categories, pure (or projectible), and impure (or
non-projectible). Sealed modules are impure, and, since functors
are generative, so are all functor applications. On the other hand
module variables are pure, as are pairs of pure modules.6

As the name suggests, projectible modules permit projection
of type components. Moreover, if a module expression, M , of
signature σ is projectible, then Fst(M) is a constructor of kind
Fst(σ) representing the static part of M . Just as for signatures,
Fst(M) is a meta-level operation, rather than a constructor-forming
construct of the language. Its definition is given in Figure 7; in the
case of a module variable, s, we define Fst(s) to be the correlated
constructor variable, αs. Note that while snd may be used only
with modules having signature [[C]], Fst may be used with any
projectible module.

The meta-variable κ stands for the purity (projectibility) class of
a module, either P or I, according to whether the module is pure or
impure. The typing judgment for modules is Γ; Φ ` M :κ σ, where
κ is a projectibility class. Projectibility classes are ordered by
P v I, so that every pure module may be regarded as (vacuously)
impure.

6 Lambda abstractions may be considered pure, but this turns out to be of
no importance: since Standard ML functors are first-order and generative,
there is no way to use them without incurring an effect.



s/αs:σ ∈ Γ

Γ ` Fst(s) � αs Γ ` Fst(〈〉) � 〈〉

Γ ` Fst([e]) � 〈〉 Γ ` Fst([C]) � C

Γ ` Fst(M1) � C1 Γ ` Fst(M2) � C2

Γ ` Fst(〈M1, M2〉) � 〈C1, C2〉

Γ ` Fst(M) � C

Γ ` Fst(π1M) � π1C

Γ ` Fst(M) � C

Γ ` Fst(π2M) � π2C

Γ ` Fst(λ(s/αs:σ1):>σ2.M) � 〈〉

Figure 7. Static Part of a Projectible Module (Fst)

3.3 States and Stores
As Standard ML is an imperative language, terms must be consid-
ered along with a store that assigns meanings to locations. Loca-
tions are used in two ways in our IL: to identify reference cells and
to identify tags (we use the latter to implement exn constructors
in Standard ML). When used to identify a reference cell, a loca-
tion is mapped to the value contained by that cell, and when used
to identify a tag, a location is mapped to the type expected by that
tag. Thus, stores have two components, a heap serving the former
purpose, and a tag typing serving the latter. A state in the IL’s ab-
stract machine consists of a term or module being evaluated, and
an accompanying store. (The syntax for states and stores is given
in Figures 8 and 9.)

Heaps are classified by heap types and stores by store types
(Figure 8). Tag typings do not require a classifier; we merely re-
quire that they be well-formed, which is the case when each tag
type in it is well-formed with kind T. Thus, the judgement forms
governing states and stores are as follows:

• Θ is a well-formed tag typing: ` Θ.
• H has type Υ: Φ ` H : Υ.
• S has type Φ: Φ ` S : Φ.
• ς is a well-formed state: ` ς .

A state (e, S) is well-formed if there exists some store type Φ
classifying S, and some type C, such that ·; Φ ` e : C:

Φ ` S : Φ ·; Φ ` e : C

` (e, S)

A similar rule exists for typing states in which a module is being
evaluated.

3.4 Dynamic Semantics
The dynamic semantics of the core level involves three main judge-
ment forms:

• Expression e1 is a value: e1 val.
• Expression e1 raises the exception e2: e1↗e2.
• Transition between states: (e1, S1) 7→ (e2, S2).

These are defined simultaneously with three analogous judgements
at the module level.

Our progress theorem proves that for any well typed state
(e1, S1), one of these three judgements will hold. Note that val-
ues are defined using an explicit predicate val. Although it is

contexts Γ ::= ·
| Γ, α:K constructor binding
| Γ, x:C value binding
| Γ, s/αs:σ module binding

heap types Υ ::= ·
| Υ, `:C reference type

tag typings Θ ::= ·
| Θ, `:C tag type

store types Φ ::= (Υ, Θ)

Figure 8. Contexts and Store Typings

heaps H ::= ·
| H, ` e

stores S ::= (H, Θ)
states ς ::= (e, S)

| (M, S)

Figure 9. States and Stores

somewhat more common to define values using a sub-syntactic
grammar, to do so requires subtyping on syntactic classes, which is
not supported by LF.

4. Informal Metatheory
We prove the type safety theorem for our IL in the usual manner.
In that proof, complications arise due to dependent typing of con-
structors, due to stores, due to the interaction of evaluation with
type abstraction in modules, and most significantly due to single-
ton kinds. We outline here the most interesting lemmas on the path
to proving type safety.

4.1 Preliminaries
One baseline property that is used throughout the metatheory is
validity which states that the static semantics deals only with well-
formed entities. For example, if C1 is equal to C2 at the kind K,
then C1 and C2 individually have the kind K, and K itself is well-
formed. A direct proof of validity is stymied by the asymmetry in
some definitional equality rules. For example:

Γ ` C1 ≡ C′
1 : Πα:K1.K2 Γ ` C2 ≡ C′

2 : K1

Γ ` C1C2 ≡ C′
1C

′
2 : [C2/α]K2

That C1C2 has kind [C2/α]K2 follows immediately by induction
and the appropriate formation rule, but the same is not true for
C′

1C
′
2. For the latter, we need the additional fact that [C′

2/α]K2

is equal to [C2/α]K2.
Induction and inversion on kind formation gives us that Γ, α:K1 `

K2, so the desired fact appears to follow from a functionality prin-
ciple. However, to use this principle at this stage, we must carefully
state it so that it can be proven before validity.

Lemma 4.1 (Functionality).

1. If Γ, α:K ` K′,
and Γ ` C1 ≡ C2 : K,
and Γ ` C1 : K,
and Γ ` C2 : K,
then Γ ` [C1/α]K′ ≡ [C2/α]K′.

2. If Γ, α:K ` C′ : K′,
and Γ ` C1 ≡ C2 : K,



and Γ ` C1 : K,
and Γ ` C2 : K,
then Γ ` [C1/α]C′ ≡ [C2/α]C′ : [C1/α]K′.

The third and fourth premises (Γ ` C1, C2 : K) can be dropped,
but only after validity has been established:

Lemma 4.2 (Validity for Constructors and Kinds).

1. If Γ ` C : K, then Γ ` K.
2. If Γ ` C1 ≡ C2 : K,

then Γ ` C1 : K, and Γ ` C2 : K, and Γ ` K.
3. If Γ ` K1 ≡ K2, then Γ ` K1 and Γ ` K2.
4. If Γ ` K1 ≤ K2, then Γ ` K1 and Γ ` K2.

In our preservation theorem, it is necessary to know that typ-
ing of terms and modules is not disturbed by the allocation of new
references or tags. Thus, we require a lemma that expresses weak-
ening with respect to heap types:

Lemma 4.3 (Weakening with Respect to Heap Types).

1. If Γ; (Υ, Θ) ` e : C and ` /∈ Dom(Υ),
then Γ; ((Υ, `:C′), Θ) ` e : C.

2. If Γ; (Υ, Θ) ` M :κ σ and ` /∈ Dom(Υ),
then Γ; ((Υ, `:C′), Θ) ` M :κ σ.

A similar lemma expresses weakening with respect to tag typ-
ings. As an aside, although weakening with respect to the context
comes for free with the formalization in LF, weakening with re-
spect to these store type constituents requires explicit proof. This is
because, as we will see, our formalization treats the store type not
as a context handled implicitly by LF, but as an explicit argument
to the term and module formation judgement.

4.2 Modules
As usual, the preservation theorem requires substitution lemmas
for term and module values. Term substitution is standard, but the
statement of module substitution must account for Fst:

Lemma 4.4 (Module Substitution).

1. If Γ, s/αs:σ; Φ ` e′ : C′,
and Γ; Φ ` M :P σ,
and Γ ` Fst(M) � C,
then Γ; Φ ` [C/αs][M/s]e′ : [C/αs]C

′.
2. If Γ, s/αs:σ; Φ ` M ′ :κ σ′,

and Γ; Φ ` M :P σ,
and Γ ` Fst(M) � C,
then Γ; Φ ` [C/αs][M/s]M ′ :κ [C/αs]σ

′.

Note that module substitution requires that the substitutend be
pure, so its constructor component can be extracted. Since the let-
binding construct permits the module being bound to be impure,7

we require a lemma saying that module values are necessarily pure.
In other words, by the time we are ready to substitute a module, it is
permissible to do so, because all of its effects have been resolved.

Lemma 4.5 (Module Values are Pure). If M val and ·; Φ ` M :κ
σ, then ·; Φ ` M :P σ.

Finally, since the module language is dependently typed, an
issue typical to dependently typed systems arises in the cases of
the preservation theorem pertaining to application or to projection
from a pair. Since the signature of F M depends on Fst of M (and
similarly for π2M ), when M steps to M ′, we need to show that
their constructor portions are equal.

7 This is a vital feature; without it, abstract types (the type components of
impure modules) can never be used.

Lemma 4.6 (Evaluation Preserves Fst).
If (M, S) 7→ (M ′, S′),
and ·; Φ ` M :P σ,
and · ` Fst(M) � C,
then · ` Fst(M ′) � C′ and · ` C ≡ C′ : Fst(σ).

4.3 Inversion
As is the case for any language supporting a non-trivial notion
of definitional type equality, our safety proof requires a number
of inversion properties such as that no function type is equal to
any non-function type, and that equal function types have equal
domains and equal codomains.

For example, the canonical forms lemma (the key lemma for
progress), states that any value e with type C1 → C2 must have the
form fun x(y:C′

1):C
′
2.e

′. This is not difficult to prove, provided
one can rule out the case that e is actually (say) a pair, which is
placed into the function type by virtue of C1 × C2 ≡ C1 → C2.

Similarly, in preservation, when considering the case of the
beta-reduction of a function application, we need to know that
if fun x(y:C1):C2.e has type C′

1 → C′
2, then C1 ≡ C′

1 and
C2 ≡ C′

2. Again, this is not difficult to show, provided one may
employ inversion on the equality of function types.

Quite a number of such inversion results are required (quadratic
in the number of type primitives, which is eight). A few typical
instances are as follows:

Lemma 4.7. Inversion: Contradiction

1. It is not the case that Γ ` Unit ≡ C1 × C2 : T.
2. It is not the case that Γ ` Unit ≡ C1 → C2 : T.
3. It is not the case that Γ ` C1 × C2 ≡ C′

1 → C′
2 : T.

4. And so forth.

Lemma 4.8. Inversion: Injectivity

1. If Γ ` C1 × C2 ≡ C′
1 × C′

2 : T,
then Γ ` C1 ≡ C′

1 : T and Γ ` C2 ≡ C′
2 : T.

2. If Γ ` C1 → C2 ≡ C′
1 → C′

2 : T,
then Γ ` C1 ≡ C′

1 : T and Γ ` C2 ≡ C′
2 : T.

3. And so forth.

Since our IL includes a transitivity rule over constructors, we
cannot obtain any of these results by direct inductive proof. We re-
quire some strategy for taming the complexity of definitional equal-
ity. The solution is to employ an equivalent but syntax-directed pre-
sentation of type equality. We will refer to this alternative presen-
tation as algorithmic equality. It is not at all difficult to show that
functional types are never algorithmically equal to non-functional
types, and that two function types are algorithmically equal ex-
actly when they have equal domains and equal codomains. What
remains is to show that algorithmic equality coincides with defini-
tional equality.

Thus far, the story is typical of languages with non-trivial no-
tions of type equality. For our IL, definitional equality is resolutely
context sensitive (recall Section 3.1.1) making it far from clear how
to use a typical reduction-based account [1, 29]. Nevertheless, a
satisfactory algorithm was devised and proven equivalent to defini-
tional equality by Stone and Harper [35].

Unfortunately, while Stone and Harper’s algorithm would be
satisfactory for our purposes, their proof is not, because it can-
not currently be formalized in Twelf. (We discuss why not in Sec-
tion 6.4.) Consequently, we found it necessary to develop an en-
tirely new proof, based on a somewhat different algorithm. Space
considerations preclude a complete discussion of the new proof
here. Instead, we summarize the salient points.

The proof is based on Watkins’s technique of hereditary sub-
stitutions [40]. It in we formulate a canonical presentation of the



singleton kind calculus. (By the singleton kinds calculus, we mean
the kind and constructor portions of the IL. For the purposes of this
proof, the remainder of the IL can be neglected.8) The canonical
presentation requires that constructors must be written in canonical
form.9 The key property of the canonical presentation is that a con-
structor can be written in only one way, up to alpha-equivalence. In
other words, definitional equality is identity.

Substitution cannot be defined in the usual manner in the canon-
ical presentation, since it could produce non-canonical construc-
tors. Thus, a notion of hereditary substitution is defined that simul-
taneously substitutes and re-canonizes. It is not at all obvious that
any of the usual properties of substitution hold for hereditary substi-
tution, so those properties must be established. Measuring coarsely
by lines of Twelf code, this is about half the work.

Once the properties of substitution are established, we may
show, by induction on derivations, that equivalence classes of con-
structors in the singleton kind calculus can be mapped to a unique
canonical form. This immediately provides an equivalence algo-
rithm and its completeness proof. For soundness, it remains to
show that a constructor is equal to its canonical form, which can
be proven by induction over the structure of the canonical form.

4.4 Type Safety
Once inversion is established, we can prove the canonical forms
lemma:

Lemma 4.9 (Canonical Forms).

1. If e val and ·; Φ ` e : C1 × C2, then e has the form 〈e1, e2〉.
2. If e val and ·; Φ ` e : C1 → C2, then e has the form

funf(x:C′):C′′.e′.
3. If e val and ·; Φ ` e : Ref C, then e has the form loc `.
4. And so forth.

We now have everything we need to prove progress and preser-
vation.

Theorem 4.10 (Progress).

1. If ` (e, S) then either:
• e val, or
• e↗e′, for some e′, or
• (e, S) 7→ (e′, S′), for some e′, S′.

2. If ` (M, S) then either:
• M val, or
• M↗e, for some e, or
• (M, S) 7→ (M ′, S′), for some M ′, S′.

Theorem 4.11 (Preservation).

1. If (e, S) 7→ (e′, S′),
and ·; Φ ` e : C,
and Φ ` S : Φ,
then there exists some extension Φ′ of Φ
such that ·; Φ′ ` e′ : C and Φ′ ` S′ : Φ′.

2. If (M, S) 7→ (M ′, S′),
and ·; Φ ` M :κ σ,
and Φ ` S : Φ,
then there exists some extension Φ′ of Φ
such that ·; Φ′ ` M ′ :κ σ and Φ′ ` S′ : Φ′.

This concludes the informal overview of the safety proof.

8 The fact that Fst is a meta-operation and not a syntactic construct is key
here.
9 Canonical forms are those that are beta-normal and eta-long, and do
not include any subterms whose natural kind (in the sense of Stone and
Harper [35]) is a singleton.

5. Formalization in LF
We encode the IL in LF using the usual LF methodology [12]. That
is, syntax is represented using higher-order abstract syntax, and
semantics using judgements-as-types. We will not reprise the basic
LF methodology here; unfamiliar readers are referred to summaries
by Harper, et al. [12], Pfenning [26], and Harper and Licata [13].
The examples use Twelf’s [27] concrete syntax for LF.

To establish notation, we give the declarations of the type fam-
ilies (that is, the syntactic classes and judgements) in Figure 10,
and the declarations of context blocks in Figure 11. Most of the
formalization goes through smoothly, leaving little worth remark-
ing on. However, two points do raise interesting issues, and each
of them shed some light on the “on-paper” presentation as well.
These points are (1) the use of the store type in the static semantics
of terms and modules, and (2) the matter of “twinned” variables,
arising in the formalization of the Fst operation on modules.

5.1 Store Types in Term and Module Typing
In the informal system, we follow standard practice and write the
store type to the left of the turnstile in the term and module typing
judgements. However, the store typing is not truly a context, in the
sense of a collection of alpha-convertible assumptions.10 Instead,
the store typing indicates a world of discourse, relative to which
the term or module is to be considered. Accordingly, while the IL
context is identified with the LF context, as usual, the store type is
included explicitly in the typing judgements for terms and modules.
(Moreover, for technical convenience, the heap type and tag typing
are actually supplied as separate parameters.)

However, an explicit store type is not given for term and mod-
ule variable assumptions. Since, as is typical, our IL’s store evolves
monotonically, an assumption x : Ref C, provides a usable refer-
ence value not just for the current store, but for all future stores.
Put more concretely, if variable assumptions were good only for
specific store types, Lemma 4.3 would not hold. In the terminology
of modal logic, variable assumptions are necessary.

Consequently, the judgement used for terms and modules on the
left (that is, for variable assumptions) is different than that used on
the right. On the left we use an assumption judgement with no store
type parameter:

assm/tm : tm -> cn -> type. %% x : C
assm/md : md -> sg -> type. %% s : σ

The assumption judgements are tied to the typing judgements
by hypothesis rules:

oftp/var : oftp HT TT E C
<- assm/tm E C.

ofsg/var : ofsg HT TT pty/p M S
<- assm/md M S.

Note that the store type in these rules are unconstrained. This is
sound because it is an invariant of the type system that whenever a
value is substituted for a variable, that value is well-typed relative
to the current store. This invariant is typical of type systems for
ML-like languages [11, 30], but rarely is it considered explicitly.

5.2 Twinned Variables
A key technical point in the design of the IL is that the constructor
and kind language may be considered independently. In particular,
it makes no reference to the syntactic class of modules. However,
it is clearly necessary for constructors to be able to refer to module
assumptions. Harper et al. [15] resolved the apparent contradiction

10 The account of Morrisett et al., [22] suggests that perhaps it could be, but
we have not attempted to adapt their approach to our work.



kd : type. %% kinds (K)
cn : type. %% constructors (C)
sg : type. %% signatures (σ)
tm : type. %% terms (e)
md : type. %% modules (M )

ht : type. %% heap type (Υ)
tt : type. %% tag typing (Θ)
st : type. %% heap (H)
pty : type. %% purity level (κ = P or I)

kd-wf : kd -> type. %% ` K
ofkd : cn -> kd -> type. %% ` C : K
kd-deq : kd -> kd -> type. %% ` K ≡ K′

kd-sub : kd -> kd -> type. %% ` K ≤ K′

cn-deq : cn -> cn -> kd -> type. %% ` C ≡ C′ : K

fst-sg : sg -> kd -> type. %% Fst(σ)
def
= K

fst-md : md -> cn -> type. %% ` Fst(M) � C

sg-wf : sg -> type. %% ` σ
sg-deq : sg -> sg -> type. %% ` σ ≡ σ′

sg-sub : sg -> sg -> type. %% ` σ ≤ σ′

oftp : ht -> tt -> tm -> cn
-> type. %% (Υ, Θ) ` e : C

ofsg : ht -> tt -> pty
-> md -> sg -> type. %% (Υ, Θ) ` M :κ σ

oflt : st -> ht -> tt -> type

%% (Υ, Θ) ` (H, Θ) : (Υ, Θ) †

val/tm : tm -> type. %% e val
val/md : md -> type. %% M val
raises/tm : tm -> tm -> type. %% e↗e′

raises/md : md -> tm -> type. %% M↗e
step/tm : tm -> st -> tt

-> tm -> st -> tt -> type.
%% (e, (H, Θ)) 7→ (e′, (H ′, Θ′))

step/md : md -> st -> tt
-> md -> st -> tt -> type.

%% (M, (H, Θ)) 7→ (M ′, (H ′, Θ′))

† In oflt, the heap type and tag typing are given once each, not
repeated two and three times as in the informal system.

Figure 10. Encoding in LF (Type Families)

%block ofkd-block %% α : K
: some {K:kd}

block {a:cn} {da:ofkd a K}.

%block oftp-block %% x : C
: some {C:cn}

block {x:tm} {dx:assm/tm x C}.

%block ofsg-block %% s/αs : σ
: some {S:sg} {K:kd}

block {s:md} {ds:assm/md s S}
{a:cn} {da:ofkd a K}
{dfst:fst-md s a}.

Figure 11. Encoding in LF (Context Blocks)

by allowing constructors to refer directly to the module variables.
When used within a constructor, a module variable s is written sc,
and refers to the constructor portion of the module represented by s.
This device was borrowed by Dreyer [5] in his type theory on which
we based our IL.

This device poses a problem for our formalization, since we
have no license in LF to take a variable with type md and decree
that it has type cn. On the other hand, to make −c into an explicit
construct by adding

mdToCn : md -> cn.

would introduce exactly the dependence of constructors on mod-
ules that we wish to avoid.11

Another alternative is to introduce a new type for module vari-
ables, mdVar, with one injection into modules and one into con-
structors.

mdVarToMd : mdVar -> md.
mdVarToCn : mdVar -> cn.

We can avoid introducing a dependence of constructors on mod-
ules by ensuring that the only objects of type mdVar are variables.
However, such an approach (sometimes called “weak higher-order
abstract syntax” [4]) sacrifices a key advantage of LF: the ability to
define substitution simply as LF application. Rather, an explicit def-
inition of substitution (and requisite theorems) would be required.

Instead, we decided that the binding of a module variable ac-
tually introduces two variables: the module variable itself and a
constructor variable representing its Fst part. We do not maintain
the connection between the two variables using a convention of
spelling (as do Harper et al. and Dreyer), since such a spelling con-
vention would do violence to alpha-convertibility, and is therefore
incompatible with LF. Instead, as discussed earlier in Section 3.2.2,
we explicitly use two binding occurrences to bind two distinct vari-
ables, each one of which may be freely alpha-varied. (Signatures,
which care only about a module’s constructor portion, actually bind
only the constructor variable.) Although this design seems obvious
in retrospect, it took the pressure of formalization in LF to lead us
to it.

For example, functors (module lambdas) are encoded using:

md/lam : sg -> (cn -> sig)
-> (md -> cn -> md) -> md.

The first argument is the functor’s domain, the second its
codomain, which can depend on the constructor portion of the ar-
gument, and the third its body, which can depend on the argument
and its constructor portion.

Once introduced, we can cleanly maintain the pairing between
module and constructor variables using a hypothetical judgement.
The type fst-md M C (recall Figure 10) represents the judgement
` Fst(M) � C, expressing the relationship between a module
and its constructor portion. When we introduce twinned variables,
we simply introduce a fst-md hypothesis at the same time. For
example, the typing rule for functors is:

11 It might be possible to use a typing rule to ensure that mdToCn was used
only with module variables, but since Twelf’s subordination relation would
still be affected, it is unclear how much advantage we would still receive
from the separation. In any case, we had a better idea.



ofsg/md/lam
: ofsg HT TT pty/p

(md/lam S1 S2 M) (sg/pi S1 S2)
<- fst-sg S1 K1
<- sg-wf S1
<- ({s:md} assm/md s S1

{a:cn} ofkd a K1
-> fst-md s a
-> ofsg HT TT Y (M s a) (S2 a)).

When typing the body of the functor, in addition to introducing
the twinned variables s and a, with signature S1 and kind K1, we
also introduce an assumption of type fst-md s a, indicating that
a is the constructor portion of s. The resulting block of assumptions
added to the context while typing the body is ofsg-block, given
in Figure 11.

6. Verification with Twelf
We verified the IL’s metatheory using the Twelf meta-logical frame-
work [27]. We will not reprise the Twelf methodology here; unfa-
miliar readers are referred to summaries by Crary and Sarkar [2],
Harper and Licata [13], and Pfenning [26] (in increasing order of
detail).

Once we devised the appropriate formalization of the IL in
LF, the process of verifying the metatheory within Twelf went
smoothly for the most part. Many of the proofs are very similar to
how the metatheory would be developed on paper. However, several
interesting issues did arise, which we discuss here.

6.1 Functionality and Explicit Contexts
The functionality lemma (Lemma 4.1) expressed in Twelf takes the
form:

funct/kd-wf : ({a:cn} ofkd a K -> kd-wf (K’ a))
-> cn-deq C1 C2 K
-> ofkd C1 K
-> ofkd C2 K
%% outputs begin here
-> (kd-deq (K’ C1) (K’ C2))
-> type.

%mode funct/kd-wf +D1 +D2 +D3 +D4 -D5. 12

The difficulty appears with the very first argument. This argu-
ment refers to a derivation of kd-wf (K’ a) that is permitted to
depend on some a:cn such that ofkd a K. Furthermore, it can re-
fer to other variables residing in the context. However, note that no
variables in the context can refer to the variable a; its entire scope is
the first argument. In other words, implicit in the theorem statement
is the fact that a appears last in the context.

This is satisfactory for all our uses of the lemma, but it is not
a strong enough induction hypothesis for the proof to go through.
Any rule that adds a new assumption to the context will break the
invariant, and such new assumptions cannot in general be moved to
before a because our constructors are dependently kinded.

Consequently, it is necessary to strengthen the induction hy-
pothesis so that that variable of interest need not appear last. To
expressing the strengthened hypothesis in LF requires a novel de-
vice we call explicit contexts.

The idea is to formulate an alternative formalization of the IL in
which contexts are made explicit, rather than identified with the LF
context as usual. More precisely, we reformulate the static seman-
tics of constructors, kinds, and signatures; terms and modules have

12 The %mode declaration specifies the input/output behav-
ior of the metatheorem. A “+” identifies an input position, while “−” iden-
tifies output positions.

no bearing on the former and require no functionality lemma in
their own right. Importantly, the alternative formalization changes
only the static semantics; the syntax remains unchanged. Thus, the
explicit system is talking about the same objects as the original sys-
tem.

For example, constructor formation is formalized in the explicit
system by the judgement:

eofkd : cxt -> cn -> kd -> type. %% Γ ` C : K

where contexts are formalized simply as lists of assumptions:

cxt : type.
cxt/nil : cxt. %% ·
cxt/cons : cxt -> cn -> kd -> cxt. %% Γ, α:K

In the explicit system one can prove functionality using a direct
proof by induction, but this is not enough. We must also prove that
the explicit system is equivalent to the standard (implicit context)
system. (The explicit system is clunkier to work with, so we wish to
use it as little as possible. We certainly do not wish to use it for our
entire verification.) Consequently, for each judgement, we prove an
“implication” and “explication” theorem. For example:

implicate-closed/ofkd
: eofkd cxt/nil C K -> ofkd C K -> type.

%mode implicate-closed/ofkd +D1 -D2.

explicate-closed/ofkd
: ofkd C K -> eofkd cxt/nil C K -> type.

%mode explicate-closed/ofkd +D1 -D2.

Note that the explication theorem always produces a derivation
using an empty explicit context. (This must be so, since we do
not have access to the LF context.) However, we do need to use
functionality in non-empty contexts. Therefore, the explicit context
system is formulated so that it can refer to the implicit (LF) context,
as well as the explicit one. In practice, then, the explicit context is
used for bindings accumulated during the proof, while the implicit
context is used for pre-existing bindings.

6.2 Evaluation Contexts
In the course of proving preservation for modules, we need to
establish a lemma regarding beta reduction of module pairs:

Lemma 6.1.

1. If Γ; Φ ` π1〈M1, M2〉 :κ σ1 then Γ; Φ ` M1 :κ σ1.
2. If Γ; Φ ` π2〈M1, M2〉 :κ σ2 then Γ; Φ ` M2 :κ σ2.

The proof of this lemma is complicated by an extensionality rule
for modules (recall from Section 3.1.1 and Figure 2 a similar rule
for constructors):

Γ; Φ ` π1M :P σ1 Γ; Φ ` π2M :P σ2

Γ; Φ ` M :P σ1 × σ2

This rule makes it possible for the module in question to grow
by the addition of projections as we consider smaller derivations.
Consequently, it is necessary to strengthen the induction hypothe-
sis:

Lemma 6.2. Let evaluation contexts be defined by:

Ψ ::= [ ] | π1Ψ | π2Ψ

Then:

1. If Γ; Φ ` Ψ[π1〈M1, M2〉] :κ σ, then Γ; Φ ` Ψ[M1] :κ σ.
2. If Γ; Φ ` Ψ[π2〈M1, M2〉] :κ σ, then Γ; Φ ` Ψ[M2] :κ σ.



3. If Γ; Φ ` 〈M1, M2〉 :κ σ, then there exists σ1 and σ2

such that Γ; Φ ` C1 :κ σ1, and Γ; Φ ` C2 :κ σ2,
and Γ ` σ1 × σ2 ≤ σ.

Our represention of evaluation contexts in LF is based on the
observation that an evaluation context is simply an LF function of
type md -> md. We then used a judgement to restrict attention to
the members of that type that actually represent evaluation con-
texts:

psi-md : (md -> md) -> type.
psi-md/eps : psi-md ([s] s).
psi-md/pj1 : psi-md ([s] md/pj1 (F s))

<- psi-md F.
psi-md/pj2 : psi-md ([s] md/pj2 (F s))

<- psi-md F.

With this definition in hand, we may state the induction hypoth-
esis. For example, the first clause is:

module-beta/pj1
: psi-md F

-> ofsg HT TT Y
(F (md/pj1 (md/pair M1 M2))) S

%% outputs begin here
-> ofsg HT TT Y (F M1) S
-> type.

%mode module-beta/pj1 +D1 +D2 -D3.

6.3 Subderivations
In various places in the proof we utilize subderivation lemmas in
which a judgement is asserted to be derivable by a subderivation of
an input derivation. For example, the following lemma arises when
proving canonical forms for modules:

Lemma 6.3. If Γ; Φ ` π1M :κ σ is derivable, then there exist
Σα:σ1.σ2 and κ′ v κ such that Γ; Φ ` M :κ′ Σα:σ1.σ2 is
derivable by a subderivation.

This arises when, given a module value M whose signature is a
sum, we wish to show that M must be a pair. We cannot prove that
directly by induction, because the extensionality rule mentioned
above makes it possible to ascribe such a signature to M by virtue
of ascribing signatures to π1M and π2M . Using the lemma, we
can show that there exists a subderivation that gives M another
sum signature, and then we can proceed by induction.

Subderivation requirements are expressed in Twelf using a
%reduces directive [28]:

subder/md/pj1
: ofsg HT TT Y (md/pj1 M) S

%% outputs begin here
-> ofsg HT TT Y’ M (sg/sgm S1 S2)
-> pty-sub Y’ Y
-> type.

%mode subder/md/pj1 +D1 -D2 -D3.

... proof ...

%reduces D2 < D1 (subder/md/pj1 D1 D2 ).

The %reduces directive causes Twelf to check that the output
ofsg derivation is always a subderivation of the input one. There-
after, that information is used automatically by Twelf’s theorem
checker when it checks that inductions are valid.

6.4 Inversion
As we discussed in Section 4.3, a crucial component of the metathe-
ory is a collection of inversion lemmas for constructors that are

proved using an algorithmic presentation of definitional equality.
The core of the inversion arguments is the proof that the algorithm
is sound and complete for definitional equality.

Prior to this work, Stone and Harper [35] gave an algorithm
for the singleton kind calculus and proved it sound and complete.
Unfortunately, it was not possible to utilize that proof in this work,
because it relied crucially on a logical relation.

In Twelf, every theorem takes the form of a logic program ac-
companied by a mode declaration indicating which parameters are
inputs and which are outputs. Thus, every Twelf theorem is a sim-
ple implication from a universally quantified collection of inputs to
an existentially quantified collection of outputs. In particular, it is
not possible to nest implications, either on the left or on the right.
Since the method of logical relations requires arbitrary nesting of
implication on both the left and the right, there is no way to express
a logical relations argument in the Twelf meta-logic.13

Consequently, it was necessary to develop a syntactic proof of
correctness of an algorithm for the singleton kind calculus. The
proof was summarized previously in Section 4.3. In the proof’s
formalization, we made heavy use of the explicit context technique
from Section 6.1 while establishing the properties of hereditary
substitution [40], for reasons similar to those that motivated it for
functionality.

7. Conclusion
This work establishes a new high-water mark in the verification of
the safety of programming languages. Although many safety proofs
exist for various core calculi, none before have existed for any
full-scale programming language, due to the daunting complexity
of such languages. For the languages we actually use, we have
always settled for much less: at most, a general agreement that
the language’s core aspects have been studied carefully, and that
any errors that might exist in the language as a whole must be
minor. Thus it is unsurprising that numerous minor errors have been
uncovered in supposedly type-safe languages.

Our aim is to place Standard ML on as solid a footing as any
core calculus, using the techniques of elaborative semantics and
mechanical verification in Twelf to deal with the complexities of
a full-scale programming language. In this work we mechanize
the proof of type safety of an internal language with equivalent
expressive power to Standard ML. It remains, in our ongoing work,
to define elaboration of Standard ML into this internal language,
along the lines suggested by Harper and Stone [16].
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