15-462 Computer Graphics I
Lecture 22

Non-Photorealistic Rendering

Pen-and-Ink Illustrations
Painterly Rendering
Cartoon Shading
Technical Illustrations

November 18, 2003
Doug James
Carnegie Mellon University

http://www.cs.cmu.edu/~d james/15-462/Fall03
Goals of Computer Graphics

• Traditional: Photorealism
• Sometimes, we want more
 – Cartoons
 – Artistic expression in paint, pen-and-ink
 – Technical illustrations
 – Scientific visualization
Non-Photorealistic Rendering

“A means of creating imagery that does not aspire to realism” - Stuart Green

Cassidy Curtis 1998

David Gainey
Some NPR Categories

• Pen-and-Ink illustration
 – Techniques: cross-hatching, outlines, line art, etc.
• Painterly rendering
 – Styles: impressionist, expressionist, pointilist, etc.
• Cartoons
 – Effects: cartoon shading, distortion, etc.
• Technical illustrations
 – Characteristics: Matte shading, edge lines, etc.
• Scientific visualization
 – Methods: splatting, hedgehogs, etc.
Emergence of NPR

2D Paint (Pixel Oriented)
Bitmap paint systems

2D Paint (Brush Oriented)
User intervention

2D/2.5D Paint Post-Processing
Automatically generated from augmented images

3D Photorealistic Renderers
Traditional Computer Graphics

3D Renderers
Automatically generated based on 3D data
Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Pen-and-Ink Illustrations

- **Strokes**
 - Curved lines of varying thickness and density
- **Texture**
 - Character conveyed by collection of strokes
- **Tone**
 - Perceived gray level across image or segment
- **Outline**
 - Boundary lines that disambiguate structure
Pen-and-Ink Examples

Winkenbach and Salesin 1994
Rendering Polygonal Surfaces

3D Model → Lighting → Visible Polygons → Procedural Stroke Texture → Stroke Clipping → Outline Drawing

How much 3D information do we preserve?
Strokes and Stroke Textures

• Stroke generated by moving along straight path
• Stroke perturbed by
 – Waviness function (straightness)
 – Pressure function (thickness)
• Collected in stroke textures
 – Tone dependent
 – Resolution dependent
 – Orientation dependent
• How automatic are stroke textures
Stroke Texture Examples

Winkenbach and Salesin 1994
Prioritized Stroke Textures

- Technique for limiting human intervention
- Collection of strokes with associated priority
- When rendering
 - First draw highest priority only
 - If too light, draw next highest priority, etc.
 - Stop if proper tone is achieved

- Procedural stroke textures
- Support scaling
- Also applies to non-procedural stroke textures
Stroke Texture Operations

Scaling

Changing Viewing Direction (Anisotropic)
Indication

- Selective addition of detail
- Difficult to automate
- User places detail segments interactively
Indication Example

With indication

Bold strokes indicate detail segments

Without indication
Outlines

- Boundary or interior outlines
- Accented outlines for shadowing and relief
- Dependence on viewing direction
- Suggest shadow direction
Rendering Parametric Surfaces

• Stroke orientation and density
 – Place strokes along isoparameter lines
 – Choose density for desired tone
 – tone = width / spacing
Stroke Width

- Adjust stroke width to retain uniform tone

Winkenbach and Salesin 1996
Parametric Surface Example

Constant-density hatching
Smooth shading with single light
 Longer smoother strokes for glass
 Environment mapping
 Update reflection coefficient

Standard rendering techniques are still important!
Parametric Surface Example

Winkenbach and Salesin 1996
Orientable Textures

• Inputs
 – Grayscale image to specify desired tone
 – Direction field
 – Stroke character

• Output
 – Stroke shaded image

Salisbury et al. 1997
Orientable Stroke Texture Example

Salisbury et al. 1997
Figure 8: Direction fields on the Venus. (a) Silhouettes alone do not convey the interior shape of the surface. (b) Raw principle curvature directions produce an overly-complex hatching pattern. (c) Smooth cross field produced by optimization. Reliable principal curvature directions are left unchanged. Optimization is initialized by the principal curvatures. (d) Hatching with the smooth cross field. (e) Very smooth cross field produced by optimizing all directions. (f) Hatching from the very smooth field.
Animating Traditional Pencil Drawings

From SIGGRAPH 2003 course notes on NPR; Daniel Teece, Walt Disney Feature Animation
Animating Traditional Pencil Drawings

Results

© Disney

From SIGGRAPH 2003 course notes on NPR; Daniel Teece, Walt Disney Feature Animation
Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations
Painterly Rendering

• Physical simulation
 – User applies brushstrokes
 – Computer simulates media

• Automatic painting
 – User provides input image or 3D model
 – User specifies painting parameters
 – Computer generates all strokes

• Subject to controversy
Physical Simulation Example

Curtis et al. 1997, *Computer Generated Watercolor*
Computer-Generated Watercolor

• Complex physical phenomena for artistic effect
• Build simple approximations
• Paper generation as random height field

• Simulated effects
Fluid Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity

- Discretize and use cellular automata
Interactive Painting

User input
Simulation in progress
Finished painting
Automatic Painting Example

Hertzmann 1997
Automatic Painting from Images

- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controled by parameters
Layered Painting

Blurring

Adding detail with smaller strokes
Brush Strokes

• Start at point of maximal error
 – Calculate difference between original image and image painted so far

• Direction perpendicular to gradient
 – Stroke tends to follow equally shaded area

• Stopping criteria
 – Difference between brush color and original image color exceeds threshold
 – Maximal stroke length reached
Longer Brush Strokes

• For longer, curved brush strokes
 – Repeat straight line algorithm
 – Stop, again on length or difference threshold
• Use anti-aliased cubic B-spline
Painting Styles

• Style determined by parameters
 – Approximation threshold
 – Brush sizes
 – Curvature filter
 – Blur factor
 – Minimum and maximum stroke lengths
 – Opacity
 – Grid size
 – Color jitter

• Encapsulate parameter settings as style
Some Styles

• “Impressionist”
 – No random color, $4 \leq$ stroke length ≤ 16
 – Brush sizes 8, 4, 2; approximation threshold 100
• “Expressionist”
 – Random factor 0.5, $10 \leq$ stroke length ≤ 16
 – Brush sizes 8, 4, 2; approximation threshold 50
• “Pointilist”
 – Random factor ~0.75, $0 \leq$ stroke length ≤ 0
 – Brush sizes 4, 2; approximation threshold 100
• Not convincing to artists
Style Examples

Source image

“Impressionist”

“Expressionist”

“Pointillist”
Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Cartoon Shading

• Shading model in 2D cartoon
 – Use material color and shadow color
 – Present lighting cues, shape, and context

• Stylistic

• Used in many animated movies

• Developing real-time techniques for games
Cartoon Shading as Texture Map

- Apply shading as 1D texture map

\[u = N \cdot L \]
Shading Variations

- Gouraud: Flat shading
- 1 texel: Shadow
- 2 texels: Shadow + highlight
- 8 texels: Shadow + highlight
Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations
Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details
- Do not represent reality

Photo

Ruppel 1995
Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used
Technical Illustration Example

Phong shading Metal shading (anisotropic) Edge lines Tone shading (cool to warm shift)
Scientific Visualization

– Effective visualization of large, multidimensional datasets

Turk & Banks, “Image-Guided Streamline Placement,” SIGGRAPH 96
The future

• How to evaluate/define?
• Smart graphics
 – design from user’s perspective
 – with data?
 – HCI, AI, Perceptual studies
• Artistic graphics
 – beyond imitating
 – a way to create art work
 – how to assess?
Art-Based Rendering of Fur, Grass and Trees
[Kowalski et al., SIGGRAPH 99]

Figure 3 The same scene as in figure 2 rendered without graftual textures or the stroke-based textures on the truffula trunks.
Art-Based Rendering of Fur, Grass and Trees
[Kowalski et al., SIGGRAPH 99]
Using eye tracking to discover importance

Doug DeCarlo, Anthony Santella. Stylization and Abstraction of Photographs In SIGGRAPH 2002.
Using eye tracking to discover importance
Using eye tracking to discover importance
Image Analogies
[Hertzmann et al., SIGGRAPH 2001]
Image Analogies
[Hertzmann et al., SIGGRAPH 2001]
Image Analogies
[Hertzmann et al., SIGGRAPH 2001]
Summary

What is NPR?
“\textit{A means of creating a work of art that appeals to human perception}”

— Carl Marshall