Global Illumination

Substructuring
Progressive Refinement
Bidirectional Reflectance Dist. Fcn.
Combining Radiosity and Ray Tracing

[Angel, Ch 13.5]

November 13, 2003
Doug James
Carnegie Mellon University

http://www.cs.cmu.edu/~d james/15-462/Fall03
Classical Radiosity Method

• Divide surfaces into patches
• Model light transfer between patches as system of linear equations
• Important assumptions (so far):
 – Reflection and emission are diffuse
 – No participating media (no fog)
 – No transmission (only opaque surfaces)
 – Radiosity is constant across each patch
 – Solve for R, G, B separately
Radiosity Equation

- For each patch i:

$$B_i = E_i + \rho_i \sum_j (F_{ij} A_j / A_i) B_j$$

- B_i = radiosity (unknown)
- E_i = emittance of light sources (given)
- ρ_i = reflectance (given)
- F_{ij} = form factor from i to j (computed)
 fraction of light emitted from patch i arriving at patch j
- A_i = area of patch i (computed)
Idealized Radiosity Computation

- Division into patches
- Form factor calculation
- Solution of radiosity eqn
- Visualization
- Scene
 - Geometry
- Reflectance Properties
- Radiosity Image
- Viewing Conditions
Form Factors via Hemicubes

R. Ramamoorthi
Outline

• Substructuring
• Progressive Refinement
• Bidirectional Reflectance Distribution Function
• Combining Radiosity and Ray Tracing
Substructuring

- Radiosity assumed constant across patch
- Impact of number of patches
 - Few: fast, but very inaccurate (blocky)
 - Many: slow $O(n^2)$, but much more accurate
- Substructuring
 - Introduce elements as a substructure for patches
 - Use adaptively where radiosity varies rapidly
 - Distinguish elements and patches to avoid explosion
Elements vs. Patches

• Analyse transport from patch onto elements
• Do not analyze element-to-element detail
• This means
 – Compute form factors from elements to patches
 – Do not compute form factors from patches to elements
 – Use weighted patch to parent-of-element
 – Complexity O(m · n) for m elements, n patches

• Typically substructured areas
 – Near lights
 – Shadow boundaries
Adaptive subdivision and shadows

Figure 11.13
Adaptive subdivision and shadows.

(a) Shape and shadow areas do not correspond to shape of the occluder.
Outline

• Substructuring
• Progressive Refinement
• Bidirectional Reflectance Distribution Function
• Combining Radiosity and Ray Tracing
Matrix Radiosity Revisited

• Compute all form factors F_{ij}
• Make initial approximation to radiosity
 – Emitting elements $B_i = E_i$
 – Other elements $B_i = 0$
• Apply equation to get next approximation
 \[B'_i = E_i + \rho_i \sum_j F_{ij} B_j \]
• Iterate with new approximation
• Intuitively
 – Gather incoming light for each element i
 – Base new estimate B' on previous estimate B
Progressive Refinement

- Cohen et al., SIGGRAPH 1988
- Shoot light instead of gathering light
- Each iteration is O(n)
- May or may not keep F_{ij} after each iteration
Gathering: a single iteration \((k) \) updates a single patch \(i \) by gathering contributions from all other patches.

\[
B_i^{(k+1)} = E_i + R_i \sum_{j=1}^{N} F_{ij} B_j^{(k)}
\]

Equivalent to gathering light energy from all the patches in the scene.

(a) Gathering

Shooting: a single step computes form factors from the shooting patch to all receiving patches and distributes (unshot) energy \(\Delta B_i \) for all \(j \):

\[
B_j^{(k+1)} = B_j^{(k)} + R_j F_{ji} \Delta B_i
\]

Equivalent to shooting light energy from a patch to all other patches in the scene.

(b) Shooting
Progressive Refinement

- Basic algorithm
 - Initialize emitting element with $B_i = E_i$
 - Initialize others with $B_i = 0$
 - Pick source i (start with brightest)
 - Using hemicube around source, calculate F_{ij}
 - For each $j \neq i$, approximate $B'_j = \rho_j B_i F_{ij} \left(\frac{A_i}{A_j} \right)$
 - Pick next source i and iterate until convergence

- Each iteration is $O(n)$
- May or may not keep F_{ij} after each iteration
Progressive Refinement Corrected

• Problem: double-count if source is used more than once as source
• Solution: compute and use difference from last time a patch was used as a source (ΔB_i), i.e., the unshot radiosity:
 – Initialize ΔB_i, $B_i = E_i$
 – Pick source i with maximum unshot power
 – Using hemicube, calculate F_{ij} for each j
 • $\Delta R = \rho_j \Delta B_i \cdot F_{ij} (A_i / A_j)$
 • $B_j = B_j + \Delta R$
 • $\Delta B_j = \Delta B_j + \Delta R$
 – $\Delta B_i = 0$
Progressive Refinement

A radiosity image after 20, 250, and 5000 iterations of the progressive refinement method. From top to bottom for each column: (a) The radiosity solution as output from the iteration process. Each patch is allocated a constant radiosity. (b) The previous solution after it has been subjected to the interpolation process. (c) The same solution with the addition of the ambient term. (d) The difference between the previous two images. This gives a visual indication of the energy that had to be added to account for the unshot radiosity.
Some Special Cases

• Image after we have iterated through all light sources?
 - Shadows, but *no interreflections*
• Can incrementally display image while iterating
 – Add ambient light at each stage for visibility
 – Ambient shading if progressively refined
• Incremental form factor computation
Effect of Ambient Light for Viewing

A radiosity image after 20, 250, and 5000 iterations of the progressive refinement method. From top to bottom for each column: (a) The radiosity solution as output from the iteration process. Each patch is allocated a constant radiosity. (b) The previous solution after it has been subjected to the interpolation process. (c) The same solution with the addition of the ambient term. (d) The difference between the previous two images. This gives a visual indication of the energy that had to be added to account for the unshot radiosity.
Radiosity Algorithms Summary

• Matrix radiosity algorithm
 – Pre-compute all form factors
 – Iterative solution (Gauss-Seidel)
 • Start with emission
 • Each object gathers light from all other objects

• Progressive refinement
 – Pick brightest patch
 – Compute outgoing form factors
 – Shoot light from this patch to all other patches
 – Repeat for next brightest batch

• Combine substructuring and progressive refinement.
Outline

• Substructuring
• Progressive Refinement
• Bidirectional Reflectance Distribution Function
• Combining Radiosity and Ray Tracing
Bidirectional Reflectance Distribution

- General model of light reflection
- Hemispherical function
- 6-dimensional (location, 4 angles, wavelength)

\[f(\omega_i \rightarrow \omega_r) = \frac{L_r(\omega_r)}{L_i(\omega_i) \cos \theta_i} d\omega_i \]

A. Wilkie
BRDF Examples

• Measure BRDFs for different materials
Bidirectional Reflectance (BRDF)
Fig. 16. Resampled scattering diagrams of the BRDF measurements of two paints: a blue enamel (top row) and a red automotive lacquer (bottom row). The RGB color measurements are shown from left to right.
BRDF Isotropy

- Rotation invariance of BRDF
- Reduces 4 angles to 2
- Holds for a wide variety of surfaces
- Anisotropic materials
 - Brushed metal
 - Others?
- How many parameters for
 - Ideal specular?
 - Ideal diffuse?
Subsurface Light Transport

- Jensen et al. 2001

Using only BRDF
With subsurface light transport
Outline

• Substructuring
• Progressive Refinement
• Bidirectional Reflectance Distribution Function
• Combining Radiosity and Ray Tracing
Light Transport and Global Illumination

- Ray tracing (viewer dependent)
 - Light to diffuse
 - Specular to specular
- Radiosity (viewer independent)
 - Diffuse to diffuse
- Inherent limitations

Figure 2. The four "mechanisms" of light transport: (a) diffuse to diffuse, (b) specular to diffuse, (c) diffuse to specular and (d) specular to specular.
Specular Radiosity

• Diffuse radiosity
 – Light reflected equally in all directions
 – Relationship between patches limited to form factor

• Specular radiosity
 – Retain viewer independence (unlike ray tracing)
 – Light reflected differently in different directions
 – For each source and each direction, need to calculation interaction
 – Not practical
Two-Pass Approach

• A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods, John R. Wallace, Michael F. Cohen & Donald P. Greenberg, SIGGRAPH 87.

• View-dependent specular is tractable
• View-independent diffuse is tractable
• First pass view independent
 – Enhanced radiosity
• Second pass is view dependent
 – Enhanced ray tracing
Pass 1: Enhanced Radiosity

- Diffuse transmission (translucent surfaces)
 - Backwards diffuse form factor [Rushmeier, 86]
- Specular transmission
 - Extended form factor computation
 - Consider occluding translucent surfaces
 - Window form factor
- Specular reflection
 - Create “virtual” (mirror-image) environment
 - Use specular transmission technique
 - Mirror form factor
Example: Mirror Form Factors

Figure 3. Calculation of extra form-factors to account for mirror reflection. Patch A receives light directly from patch B and indirectly through reflection by the mirror. The mirror is treated as a window into a virtual "mirror world." Projecting patch B’ onto the hemicube is then equivalent to following the actual path of reflection back to patch B.
Pass 1 Result

- Account only for one specular reflection between surfaces (diffuse-specular-diffuse)
- Accurate diffuse component
- Solve enhanced radiosity equation as before
- Viewer independent solution
Figure 10. (a) Direct illumination by light sources only.
(b) Diffuse to diffuse transfer included. Specular to diffuse ignored.
(c) Full solution.
Pass 2: Enhanced Ray Tracing

• Classical ray tracing
 – Specular to specular light transport

• For diffuse-to-specular transport:
 – Should integrate incoming light over hemisphere
 – Approximate by using small frustum in direction of ideal reflection
 – Use radiosity of pixels calculated in Pass 1
 – Apply recursively if visible surface is specular
Two-Pass Radiosity Example

Figure 10. (a) Direct illumination by light sources only.
(b) Diffuse to diffuse transfer included. Specular to diffuse ignored.
(c) Full solution.
Two-Pass Global Illumination

- Still several approximating assumptions
- Appropriate for scenes with few specular reflecting or transmitting surfaces
- More expensive than already expensive methods
- Photon Mapping: Another two-pass algorithm
Two-Pass Radiosity Example
Photon Mapping Example

Jensen 1996
Photon Mapping Example

Plate VI. The box scene ray-traced. (See Figure 9.10)
Photon Mapping Example

Plate VII. The box scene with full global illumination. (See Figure 9.9)
Figure 5.4. The photons stored in the box scene. The top picture shows the box scene, and the lower image shows the photon hits. We used 100,000 photons in this image. The photon hits represent incoming flux in the model. Each photon shows the incoming flux density—the power of the photons multiplied by the local photon density.
Summary

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing