Ray Tracing

Ray Casting
Ray-Surface Intersections
Barycentric Coordinates
Reflection and Transmission
[Angel, Ch 13.2-13.3]
Ray Tracing Handouts

November 4, 2003
Doug James
Carnegie Mellon University

http://www.cs.cmu.edu/~d james/15-462/Fall03
Local vs. Global Rendering Models

• Local rendering models (graphics pipeline)
 – Object illuminations are independent
 – No light scattering between objects
 – No real shadows, reflection, transmission

• Global rendering models
 – Ray tracing (highlights, reflection, transmission)
 – Radiosity (surface interreflections)
Object Space vs. Image Space

- Graphics pipeline: for each object, render
 - Efficient pipeline architecture, on-line
 - Difficulty: object interactions
- Ray tracing: for each pixel, determine color
 - Pixel-level parallelism, off-line
 - Difficulty: efficiency, light scattering
- Radiosity: for each two surface patches, determine diffuse interreflections
 - Solving integral equations, off-line
 - Difficulty: efficiency, reflection
Forward Ray Tracing

- Rays as paths of photons in world space
- Forward ray tracing: follow photon from light sources to viewer
- Problem: many rays will not contribute to image!
Backward Ray Tracing

- Ray-casting: one ray from center of projection through each pixel in image plane
- Illumination
 1. Phong (local as before)
 2. Shadow rays
 3. Specular reflection
 4. Specular transmission
- (3) and (4) are recursive
Shadow Rays

- Determine if light “really” hits surface point
- Cast shadow ray from surface point to light
- If shadow ray hits opaque object, no contribution
- Improved diffuse reflection
Reflection Rays

- Calculate specular component of illumination
- Compute reflection ray (recall: backward!)
- Call ray tracer recursively to determine color
- Add contributions
- Transmission ray
 - Analogue for transparent or translucent surface
 - Use Snell’s laws for refraction
- Later:
 - Optimizations, stopping criteria
Ray Casting

- Simplest case of ray tracing
- Required as first step of recursive ray tracing
- Basic ray-casting algorithm
 - For each pixel (x,y) fire a ray from COP through (x,y)
 - For each ray & object calculate closest intersection
 - For closest intersection point p
 - Calculate surface normal
 - For each light source, calculate and add contributions

- Critical operations
 - Ray-surface intersections
 - Illumination calculation
Outline

• Ray Casting
• Ray-Surface Intersections
• Barycentric Coordinates
• Reflection and Transmission
Ray-Surface Intersections

- General implicit surfaces
- General parametric surfaces
- Specialized analysis for special surfaces
 - Spheres
 - Planes
 - Polygons
 - Quadrics

- Do not decompose objects into triangles!
- CSG (Constructive Solid Geometry)
 - Construct model from building blocks (later lecture)
Rays and Parametric Surfaces

• Ray in parametric form
 – Origin $\mathbf{p}_0 = [x_0 \ y_0 \ z_0 \ 1]^T$
 – Direction $\mathbf{d} = [x_d \ y_d \ z_d \ 0]^t$
 – Assume \mathbf{d} normalized ($x_d^2 + y_d^2 + z_d^2 = 1$)
 – Ray $\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{d} \ t$ for $t > 0$

• Surface in parametric form
 – Point $\mathbf{q} = g(u, v)$, possible bounds on u, v
 – Solve $\mathbf{p} + \mathbf{d} \ t = g(u, v)$
 – Three equations in three unknowns (t, u, v)
Rays and Implicit Surfaces

• Ray in parametric form
 – Origin \(\mathbf{p}_0 = [x_0 \ y_0 \ z_0 \ 1]^T \)
 – Direction \(\mathbf{d} = [x_d \ y_d \ z_d \ 0]^t \)
 – Assume \(\mathbf{d} \) normalized \((x_d^2 + y_d^2 + z_d^2 = 1) \)
 – Ray \(\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{d} \ t \) for \(t > 0 \)

• Implicit surface
 – Given by \(f(\mathbf{q}) = 0 \)
 – Consists of all points \(\mathbf{q} \) such that \(f(\mathbf{q}) = 0 \)
 – Substitute ray equation for \(\mathbf{q} \): \(f(\mathbf{p}_0 + \mathbf{d} \ t) = 0 \)
 – Solve for \(t \) (univariate root finding)
 – Closed form (if possible) or numerical approximation

11/7/2003 15-462 Graphics I
Ray-Sphere Intersection I

• Common and easy case
• Define sphere by
 – Center \(\mathbf{c} = [x_c \ y_c \ z_c \ 1]^T \)
 – Radius \(r \)
 – Surface \(f(\mathbf{q}) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2 = 0 \)
• Plug in ray equations for \(x, y, z \):

\[
\begin{align*}
x &= x_0 + x_d t \\
y &= y_0 + y_d t \\
z &= z_0 + z_d t \\
\end{align*}
\]

\[
(x_0 + x_d t - x_c)^2 + (y_0 + y_d t - y_c)^2 + (z_0 + z_d t - z_c)^2 = r^2
\]
Ray-Sphere Intersection II

• Simplify to

\[a t^2 + b t + c = 0 \]

where

\[a = x_d^2 + y_d^2 + z_d^2 = 1 \quad \text{since} \quad |d| = 1 \]
\[b = 2 (x_d(x_0 - x_c) + y_d(y_0 - y_c) + z_d(z_0 - z_c)) \]
\[c = (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2 \]

• Solve to obtain \(t_0 \) and \(t_1 \)

\[
 t_{0,1} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}
\]

Check if \(t_0, t_1 > 0 \) (ray)
Return \(\min(t_0, t_1) \)
Ray-Sphere Intersection III

• For lighting, calculate unit normal

\[n = \frac{1}{r} \left[(x_i - x_c) \ (y_i - y_c) \ (z_i - z_c) \ 0 \right]^T \]

• Negate if ray originates inside the sphere!
• Note possible problems with roundoff errors
Simple Optimizations

- Factor common subexpressions
- Compute only what is necessary
 - Calculate $b^2 - 4c$, abort if negative
 - Compute normal only for closest intersection
 - Other similar optimizations [Handout]
Inverse Mapping for Texture Coords.

- How do we determine texture coordinates?
- **Inverse mapping** problem
- No unique solution
- Reconsider in each case
 - For different basic surfaces
 - For surface meshes
 - Still an area of research
Ray-Polygon Intersection I

- Assume planar polygon
 1. Intersect ray with plane containing polygon
 2. Check if intersection point is inside polygon
- Plane
 - Implicit form: \(ax + by + cz + d = 0 \)
 - Unit normal: \(\mathbf{n} = [a \ b \ c \ 0]^T \) with \(a^2 + b^2 + c^2 = 1 \)
- Substitute:

\[
a(x_0 + x_d t) + b(y_0 + y_d t) + c(z_0 + z_d t) + d = 0
\]

- Solve:

\[
t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d}
\]
Ray-Polygon Intersection II

- Substitute t to obtain intersection point in plane
- Test if point inside polygon
- For example, use even-odd rule or winding rule
 - Easier in 2D (project) and for triangles (tessellate)
Ray-Polygon Intersection III

- Rewrite using dot product

\[t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d} = \frac{-(\mathbf{n} \cdot \mathbf{p}_0 + d)}{\mathbf{n} \cdot \mathbf{d}} \]

- If \(\mathbf{n} \cdot \mathbf{d} = 0 \), no intersection
- If \(t \leq 0 \) the intersection is behind ray origin
- Point-in-triangle testing critical for polygonal models
- Project onto planes \(x = 0, y = 0, \) or \(z = 0 \) for point-in-polygon test; can be precomputed
Ray-Quadric Intersection

- Quadric $f(p) = f(x, y, z) = 0$, where f is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Important case for modelling in ray tracing
- Combine with CSG

[see Handout]
Outline

• Ray Casting
• Ray-Surface Intersections
• Barycentric Coordinates
• Reflection and Transmission
Interpolated Shading for Ray Tracing

- Assume we know normals at vertices
- How do we compute normal of interior point?
- Need linear interpolation between 3 points
- Barycentric coordinates
- Yields same answer as scan conversion
Barycentric Coordinates in 1D

- **Linear interpolation**
 - \(p(t) = (1 - t)p_1 + tp_2, \quad 0 \leq t \leq 1 \)
 - \(p(t) = \alpha p_1 + \beta p_2 \) where \(\alpha + \beta = 1 \)
 - \(p \) is between \(p_1 \) and \(p_2 \) iff \(0 \leq \alpha, \beta \leq 1 \)

- **Geometric intuition**
 - Weigh each vertex by ratio of distances from ends

- \(\alpha, \beta \) are called **barycentric coordinates**
Barycentric Coordinates in 2D

• Given 3 points instead of 2

• Define 3 barycentric coordinates, α, β, γ

• $\mathbf{p} = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2 + \gamma \mathbf{p}_3$

• \mathbf{p} inside triangle iff $0 \leq \alpha, \beta, \gamma \leq 1$, $\alpha + \beta + \gamma = 1$

• How do we calculate α, β, γ given \mathbf{p}?
Barycentric Coordinates for Triangle

- Coordinates are ratios of triangle areas

\[\alpha = \frac{\text{Area}(C_0 C_1 C_2)}{\text{Area}(C_0 C_1 C_2)} \]
\[\beta = \frac{\text{Area}(C_0 C_2)}{\text{Area}(C_0 C_1 C_2)} \]
\[\gamma = \frac{\text{Area}(C_0 C_1 C)}{\text{Area}(C_0 C_1 C_2)} = 1 - \alpha - \beta \]
Computing Triangle Area

• In 3 dimensions
 – Use cross product
 – Parallelogram formula
 – Area(ABC) = \((1/2)|((B - A) \times (C - A))|\)
 – Optimization: project, use 2D formula

• In 2 dimensions
 – Area(x-y-proj(ABC)) =
 \[(1/2)((b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y))\]
Outline

• Ray Casting
• Ray-Surface Intersections
• Barycentric Coordinates
• Reflection and Transmission
Recursive Ray Tracing

- Calculate specular component
 - Reflect ray from eye on specular surface
 - Transmit ray from eye through transparent surface
- Determine color of incoming ray by recursion
- Trace to fixed depth
- Cut off if contribution below threshold
Angle of Reflection

- Recall: incoming angle = outgoing angle
- $r = 2(l \cdot n) n - l$
- For incoming/outgoing ray negate l!
- Compute only for surfaces with actual reflection
- Use specular coefficient
- Add specular and diffuse components
Transmitted Light

- Index of refraction is relative speed of light
- Snell’s law
 - \(\eta_l \) = index of refraction for upper material
 - \(\eta_t \) = index of refraction for lower material

\[
\frac{\sin(\theta_l)}{\sin(\theta_t)} = \frac{\eta_t}{\eta_l} = \eta
\]

\[
t = -\frac{1}{\eta}l - (\cos(\theta_t) - \frac{1}{\eta} \cos(\theta_l))n
\]

where \(\cos(\theta_l) = l \cdot n \)

and \(\cos^2(\theta_t) = 1 - \frac{1}{\eta^2}(1 - l \cdot n) \)

Note: negate \(l \) or \(t \) for transmission!
Translucency
Translucency

- Diffuse component of transmission
- Scatter light on other side of surface
- Calculation as for diffuse reflection
- Reflection or transmission not perfect
- Use stochastic sampling
Translucency

Jensen et al.,
SIGGRAPH 2001
(Photon Mapping)

11/7/2003
Ray Tracing Preliminary Assessment

- Global illumination method
- Image-based
- Pros:
 - Relatively accurate shadows, reflections, refractions
- Cons:
 - Slow (per pixel parallelism, not pipeline parallelism)
 - Aliasing
 - Inter-object diffuse reflections
Ray Tracing Acceleration

• Faster intersections
 – Faster ray-object intersections
 • Object bounding volume
 • Efficient intersectors
 – Fewer ray-object intersections
 • Hierarchical bounding volumes (boxes, spheres)
 • Spatial data structures
 • Directional techniques

• Fewer rays
 – Adaptive tree-depth control
 – Stochastic sampling

• Generalized rays (beams, cones)
Raytracing Example II

Saito, Saturn Ring
Raytracing Example IV

www.povray.org
Summary

- Ray Casting
- Ray-Surface Intersections
- Barycentric Coordinates
- Reflection and Transmission
Preview

- Spatial data structures
- Ray tracing optimizations