15-462 Computer Graphics |
Lecture 14

Rasterization

Scan Conversion
Antialiasing
Compositing
[Angel, Ch. 7.9-7.11, 8.9-8.12]

October 14, 2003
Doug James
Carnegie Mellon University

http://www.cs.cmu.edu/~djames/15-462/Fall03

Rasterization

« Final step In pipeline: rasterization (scan conv.)
From screen coordinates (float) to pixels (int)
Writing pixels into frame buffer
Separate z-buffer, display, shading, blending

Concentrate on primitives:
— Lines
— Polygons

10/14/2003 15-462 Graphics |

DDA Algorithm

DDA (“Digital Differential Analyzer”)
Represent

Jge = J1
Lo — L1

y=mx+h where m =

Assume 0 <m<1

[Gan)
Exploit symmetry ===Eg===

10/14/2003 15-462 Graphics |

DDA Loop

« Assume write_pixel(int X, Int y, int value)

for (Ix = x1; I X <= X2; 1X++)
{
y = m
wite pixel (ix, round(y), color);

}

[

« Slope restriction needed
e Easy to interpolate colors

10/14/2003 15-462 Graphics |

Bresenham’s Algorithm |

« Eliminate floating point addition from DDA
e Assumeagain0<m<1

« Assume pixel centers halfway between ints

10/14/2003 15-462 Graphics |

Bresenham’s Algorithm |

e Decision variable (a — b)

— If a— b > 0 choose lower pixel
— If a— b < 0 choose higher pixel

 Goal: avoid explicit computation of a — b
e Step 1:re-scale d = (X, — Xy)(a — b) Ax(a — b)
e dis always integer

10/14/2003 15-462 Graphics |

Bresenham’s Algorithm Il

« Compute d at step k +1 from d at step k!
» Case: | did not change (d, > 0)

— a decreases by m, b increases by m

— (a — b) decreases by 2m = 2(Ay/AX)

— AXx(a-b) decreases by 2Ay

10/14/2003 15-462 Graphics |

Bresenham’s Algorithm IV

« Case: | did change (d, < 0)

— a decreases by m-1, b increases by m-1
— (a—b) decreases by 2m — 2 = 2(Ay/Ax — 1)
— Ax(a-b) decreases by 2(Ay - Ax)

10/14/2003 15-462 Graphics |

Bresenham’s Algorithm V

+ Sody,,=d,—24yifd, >0
. And d,,, = d, — 2(Ay — AX) if d, <O

* Final (efficient) implementation:

void draw line(int x1, int yl, int x2, int y2) {
int x, y = yo0;
Int dx = 2*(x2-x1), dy = 2*(y2-yl);
I nt dydx = dy-dx, D = (dy-dx)/2;

(X = x1; X <= x2 ; x++) {
wite pixel(x, y, color);
if (D> 0) D - ;
el se {y++; D -
}
}

10/14/2003 15-462 Graphics |

Bresenham’s Algorithm VI

 Need different cases to handle other m

« Highly efficient

 Easy to implement in hardware and software
 Widely used

10/14/2003 15-462 Graphics |

Outline

Scan Conversion for Lines
Scan Conversion for Polygons
Antialiasing

Compositing

10/14/2003 15-462 Graphics |

Scan Conversion of Polygons

Multiple tasks for scan conversion

— Filling polygon (inside/outside)

— Pixel shading (color interpolation)

— Blending (accumulation, not just writing)

— Depth values (z-buffer hidden-surface removal)

— Texture coordinate interpolation (texture mapping)

Hardware efficiency critical
Many algorithms for filling (inside/outside)
Much fewer that handle all tasks well

10/14/2003 15-462 Graphics |

Filling Convex Polygons

~ind top and bottom vertices
_Ist edges along left and right sides

~or each scan line from top to bottom

— Find left and right endpoints of span, x| and xr
— Fill pixels between x| and xr

— Can use Bresenham'’s alg. to update x| and xr

g

10/14/2003 15-462 Graphics |

Other Operations

* Pixel shading (Gouraud)
— Bilinear interpolation of vertex colors

« Depth values (z-Buffer)
— Bilinear interpolation of vertex depth
— Read, and write only if visible
— Preserve depth (final orthographic projection)

e Texture coordinates u and v
— Rational linear interpolation to avoid distortion
— u(x,y) = (Ax+By+C)/(Dx+Ey+F) similarly for v(x,y)
— Two divisions per pixel for texture mapping
— Due to perspective transformation

10/14/2003 15-462 Graphics |

Concave Polygons: Odd-Even Test

e Approach 1: odd-even test

 For each scan line
— Find all scan line/polygon intersections
— Sort them left to right
— Fill the interior spans between intersections

o Parity rule: inside after
an odd number of
Crossings

10/14/2003 15-462 Graphics |

Concave Polygons: Winding Rule

* Approach 2: winding rule
e Orient the lines in polygon

 For each scan line
— Winding number = right-hdd — left-hdd crossings
— Interior if winding number non-zero

» Different only for self-intersecting polygons

A A
%

Even-odd rule Winding rule

10/14/2003 15-462 Graphics |

Concave Polygons: Tessellation

e Approach 3: divide non-convex, non-flat, or
non-simple polygons into triangles
 OpenGL specification
— Need accept only simple, flat, convex polygons
— Tessellate explicitly with tessellator objects
— Implicitly if you are lucky
e GeForced scan converts only triangles

10/14/2003 15-462 Graphics |

Boundary Cases

Boundaries and special cases require care

— Cracks between polygons

— Parity bugs: fill to infinity

Intersections on pixel: set at beginning, not end
Shared vertices: count y,.. for parity, not y,,.,

Horizontal edges: don’t change parity

no parity

change

set pixel don’t
set pixel

10/14/2003 15-462 Graphics |

Edge/Scan Line Intersections

Brute force: calculate intersections explicitly
Incremental method (Bresenham’s algorithm)

Caching intersection information
— Edge table with edges sorted by y i,
— Active edges, sorted by x-intersection, left to right

Process image from smallesty.. up

10/14/2003 15-462 Graphics |

Flood Fill

« Draw outline of polygon
Color seed
Color surrounding pixels and recurse
Must be able to test boundary and duplication
More appropriate for drawing than rendering

10/14/2003 15-462 Graphics |

Outline

Scan Conversion for Lines
Scan Conversion for Polygons
Antialiasing

Compositing

10/14/2003 15-462 Graphics |

Allasing

Artefacts created during scan conversion
Inevitable (going from continuous to discrete)

Aliasing (name from digital signal processing):
we sample a continuous image at grid points

Effect

— Jagged edges
— Molire patterns

Moire pattern from sandlotscience.com

10/14/2003 15-462 Graphics |

More Aliasing

INO, antiaiiasing

10/14/2003 15-462 Graphics |

Antialiasing for Line Segments

 Use area averaging at boundary

* (c) Is aliased, magnified
* (d) Is antialiased, magnified
 Warning: these images are sampled on screen!

10/14/2003 15-462 Graphics |

Antialiasing by Supersampling

« Traditionally for off-line rendering
 Render, say, 3x3 grid of mini-pixels
e Average results using a filter

 Can be done adaptively
— Stop If colors are similar
— Subdivide at discontinuities

10/14/2003 15-462 Graphics |

Supersampling Example

INO SnpialiiasIing SXS supersampling
nted hilte

e Other improvements
— Stochastic sampling (avoiding repetition)
— Jittering (perturb a regular grid)

10/14/2003 15-462 Graphics |

Pixel-Sharing Polygons

* Another aliasing error
e Assign color based on area-weighted average

 [nteraction with depth information
 Use accumulation buffer
or a-blending

10/14/2003 15-462 Graphics |

Temporal Aliasing

Sampling rate is frame rate (30 Hz for video)
Example: spokes of wagon wheel in movie
Possible to supersample and average
—ast-moving objects are blurred

Happens automatically in video and movies
— Exposure time (shutter speed)

— Memory persistence (video camera)

— Effect is motion blur

10/14/2003 15-462 Graphics |

Motion Blur

e Achieve by stochastic sampling in time
e Still-frame motion blur, but smooth animation

/ ¥
/

4

I

;_-_:—_:' —
—
<

An N

10/14/2003 15-462 Graphics |

Motion Blur Example

Looks like squash
and stretch!!

T. Porter, Pixar, 1984
16 samples/pixel

10/14/2003 15-462 Graphics |

Outline

« Scan Conversion for Polygons
« Antialiasing
e Compositing

10/14/2003 15-462 Graphics |

Accumulation Buffer

Accumulation buffer parallel to frame buffer
Superimpose images from frame buffer

Copy back into frame buffer for display

gl d ear (G._ACCUM BUFFER BI T);

for (i =0; I < num.linmages; iI++) {
gl dear(G._COLOR BUFFER BI T | G._DEPTH BUFFER BI T);
di spl ay_1 nage(i);
gl Accun{ GL_ACCUM 1.0/ (fl oat)num.i mages);

}
gl Accun{ G._RETURN, 1.0);

Negative accum values possible
OpenGL mechanism for supersampling or jitter

10/14/2003 15-462 Graphics |

Filtering and Convolution

mage transformation at pixel level
Represent N x M image as matrix A = [a]
Process each color component separately
_inear filter produces matrix B = [b,] with

zk_ Z Z z —1,k—1

1=—ml=-—n
B Is the result of convolving A with filter H
Represent H by n x m convolution matrix

10/14/2003 15-462 Graphics |

Filters for Antialiasing

« Averaging pixels with neighbors

H=-=
5

 For antialiasing: weigh center more heavily

H=—
16

10/14/2003 15-462 Graphics |

Convolution: OpenGL Example

i accumulation buffer convolve [i[=] E3

Using the accumulation
butter for fast convolutions.
Source code: convolve.c.

Snapshots: 5x5 blu

S L L
| S LTI)

http://www.opengl.org/developers/code/glut_examples/advanced/advanced.html

http://www.openaql.org/developers/code/glut examples/advanced/convolve.c

10/14/2003 15-462 Graphics |

Convolution: OpenGL Example

voi d convol ve(void (*draw)(void), Filter *mat)

{

for(j =0;] <jmax; |++) {
for(i =0; I < imax; i++) {
gl Viewport(-i, -j, wnWdth - i, wnHeight - j);
draw) ;
gl Accum{ GL_ACCUM mat->array[i + | * imax]);

10/14/2003 15-462 Graphics |

Depth of Field

10/14/2003 15-462 Graphics |

Filter for Depth-of-Field

o Simulate camera depth-of-field
— Keep plane z = z; in focus
— Keep near and far planes unchanged

 Move viewer by Ax

e Compute X' iy X o Y mine Y max 10 new frustum

(xmin’ Y min’ “min

10/14/2003 15-462 Graphics |

Depth-of-Field Jitter

« Compute
, A

Tomin = Tmin (Zf =)

o
 Blend the two Images in accumulation buffer

10/14/2003 15-462 Graphics |

OpenGL Depth of Field Example

Can jitter in both x- and y-directions...

' VATRTE N

See depth of field example:

http://www.opengl.org/developers/code/examples/redbook/redbook.html

10/14/2003 15-462 Graphics |

Close-up

10/14/2003 15-462 Graphics |

NVIDIA Depth of Field Example

F- L\

Uses a pixel shader approach.
http://developer.nvidia.com/object/depth_field.html

10/14/2003 15-462 Graphics |

Soft shadows too...

Figure 1: Hard shadow images from 2x 2 grid of sample points on light source.

NEN

Figure 2: Left: scene with square light source (foreground), triangular occluder (center), and rectangular receiver (background), with shadows
on receiver. Center: Approximate soft shadows resulting from 2 x 2 grid of sample points; the average of the four hard shadow images in
Figure 1. Right: Correct soft shadow image (generated with 16 x 16 sampling). This image is used as the texture on the receiver at left.

Simulating Soft Shadows with Graphics Hardware (199 7)
Paul S. Heckbert & Michael Herf, CMU Technical Report

10/14/2003 15-462 Graphics |

Blending

e Frame buffer
— Simple color model: R, G, B; 8 bits each
— a-channel A, another 8 bits

« Alpha determines opacity, pixel-by-pixel ._;m'-‘lé,;--:

— o = 1: opagque
— o = 0: transparent
* Blend translucent objects during rendering

e Achieve other effects (e.g., shadows)

10/14/2003 15-462 Graphics |

Image Compositing

« Compositing operation

— Source:s =[s, 55 S, S,

— Destination: d =[d, d, d, d]

— b =[b, b, b, b,] source blending factors

— ¢ =][c, ¢4 ¢, ¢] destination blending factors

- d =[bs,+cd, b, +cyd, b,s,+c,dy, b,s, +c,d]
e Overlay n images with equal weight

— Set a-value for each pixel in each image to 1/n

— Source blending factor is “a”

— Destination blending factor is “1”

10/14/2003 15-462 Graphics |

Blending in OpenGL

« Enable blending
gl Enabl e(G._BLEND) ;

e Set up source and destination factors

gl Bl endFunc(source_factor, dest_factor);

e Source and destination choices
- G ONE, G ZERO
— GL_SRC ALPHA, GL_ONE_M NUS SRC ALPHA
— GL_DST ALPHA, GL_ONE_M NUS DST ALPHA

10/14/2003 15-462 Graphics |

Blending Errors

e Operations are not commutative
« Operations are not idempotent

e |nteraction with hidden-surface removal

— Polygon behind opaque one should be culled
— Translucent in front of others should be composited
— Solution:

* Two passes using alpha testing (glAlphaFunc): 1t pass
alpha=1 accepted, and 2"d pass alpha<l accepted

* make z-buffer read-only for translucent polygons (alpha<1)
with gl Dept hMask(GL_FALSE) ;

10/14/2003 15-462 Graphics |

Antialiasing Revisited

Single-polygon case first

Set a-value of each pixel to covered fraction
Use destination factor of “1 — a”

Use source factor of “a”

This will blend background with foreground
Overlaps can lead to blending errors

10/14/2003 15-462 Graphics |

Antialiasing with Multiple Polygons

Initially, background color C,, a, =0

Render first polygon; color C,;fraction a,

- Cy=(1-a)C+a,Cy

— Uy =0,

Render second polygon; assume fraction a,
If no overlap (a), then

- Cy=(1-0a,)Cqy + 0,C,

- ag=0a;+a,

10/14/2003 15-462 Graphics |

Antialiasing with Overlap

 Now assume overlap (b)

* Average overlap Is a,0,

e Soay=0, +0a,—040,

 Make front/back decision for color as usual

10/14/2003 15-462 Graphics |

Antialiasing in OpenGL

* Avoid explicit a-calculation in program
 Enable both smoothing and blending

gl Enabl e(G._ PO NT_SMOOTH) ;

gl Enabl e(GL_LI NE_SMOOTH) ;

gl Enabl e(G._BLEND) ;

gl Bl endFunc(G._SRC ALPHA, G._ONE_M NUS_SRC ALPHA) ;

10/14/2003 15-462 Graphics |

Depth Cueing and Fog

* Another application of blending

« Use distance-dependent (z) blending
— Linear dependence: depth cueing effect
— Exponential dependence: fog effect
— This Is not a physically-based model

G.float fcolor[4] ={...};

gl Enabl e(G._FOG) ;

gl Fogf (G._FOG MCDE;, . _EXP);

gl Fogf (G._FOG DENSI TY, 0.5);

gl Fogf v(G._FOG COLOR, fcolor);

[Example: Fog Tutor]

10/14/2003 15-462 Graphics |

Summary

e Scan Conversion for Polygons
— Basic scan line algorithm
— Convex vs concave
— Odd-even and winding rules, tessellation

e Antialiasing (spatial and temporal)
— Area averaging
— Supersampling
— Stochastic sampling
e Compositing
— Accumulation buffer
— Blending and a-values

10/14/2003 15-462 Graphics |

