
October 14, 2003
Doug James
Carnegie Mellon University

http://www.cs.cmu.edu/~djames/15-462/Fall03

Scan Conversion
Antialiasing
Compositing

[Angel, Ch. 7.9-7.11, 8.9-8.12]

Scan Conversion
Antialiasing
Compositing

[Angel, Ch. 7.9-7.11, 8.9-8.12]

RasterizationRasterization

15-462 Computer Graphics I

Lecture 14

10/14/2003 15-462 Graphics I 2

RasterizationRasterization

• Final step in pipeline: rasterization (scan conv.)

• From screen coordinates (float) to pixels (int)
• Writing pixels into frame buffer
• Separate z-buffer, display, shading, blending

• Concentrate on primitives:
– Lines
– Polygons

10/14/2003 15-462 Graphics I 3

DDA AlgorithmDDA Algorithm

• DDA (“Digital Differential Analyzer”)

• Represent

• Assume 0 � m � 1

• Exploit symmetry

10/14/2003 15-462 Graphics I 4

DDA LoopDDA Loop

• Assume write_pixel(int x, int y, int value)

• Slope restriction needed
• Easy to interpolate colors

for (ix = x1; ix <= x2; ix++)
{

y += m;
write_pixel(ix, round(y), color);

}

10/14/2003 15-462 Graphics I 5

Bresenham’s Algorithm IBresenham’s Algorithm I

• Eliminate floating point addition from DDA
• Assume again 0 � m � 1

• Assume pixel centers halfway between ints

10/14/2003 15-462 Graphics I 6

Bresenham’s Algorithm IIBresenham’s Algorithm II

• Decision variable (a – b)
– If a – b > 0 choose lower pixel
– If a – b � 0 choose higher pixel

• Goal: avoid explicit computation of a – b

• Step 1: re-scale d = (x2 – x1)(a – b) = ∆x(a – b)
• d is always integer

10/14/2003 15-462 Graphics I 7

Bresenham’s Algorithm IIIBresenham’s Algorithm III

• Compute d at step k +1 from d at step k!

• Case: j did not change (dk > 0)
– a decreases by m, b increases by m

– (a – b) decreases by 2m = 2(∆y/∆x)
– ∆x(a-b) decreases by 2∆y

10/14/2003 15-462 Graphics I 8

Bresenham’s Algorithm IVBresenham’s Algorithm IV

• Case: j did change (dk � 0)

– a decreases by m-1, b increases by m-1

– (a – b) decreases by 2m – 2 = 2(∆y/∆x – 1)
– ∆x(a-b) decreases by 2(∆y - ∆x)

10/14/2003 15-462 Graphics I 9

Bresenham’s Algorithm VBresenham’s Algorithm V

• So dk+1 = dk – 2∆y if dk > 0
• And dk+1 = dk – 2(∆y – ∆x) if dk � 0

• Final (efficient) implementation:
void draw_line(int x1, int y1, int x2, int y2) {

int x, y = y0;
int dx = 2*(x2-x1), dy = 2*(y2-y1);
int dydx = dy-dx, D = (dy-dx)/2;

for (x = x1 ; x <= x2 ; x++) {
write_pixel(x, y, color);
if (D > 0) D -= dy;
else {y++; D -= dydx;}

}
}

10/14/2003 15-462 Graphics I 10

Bresenham’s Algorithm VIBresenham’s Algorithm VI

• Need different cases to handle other m

• Highly efficient
• Easy to implement in hardware and software
• Widely used

10/14/2003 15-462 Graphics I 11

OutlineOutline

• Scan Conversion for Lines

• Scan Conversion for Polygons
• Antialiasing
• Compositing

10/14/2003 15-462 Graphics I 12

Scan Conversion of PolygonsScan Conversion of Polygons

• Multiple tasks for scan conversion
– Filling polygon (inside/outside)
– Pixel shading (color interpolation)
– Blending (accumulation, not just writing)
– Depth values (z-buffer hidden-surface removal)
– Texture coordinate interpolation (texture mapping)

• Hardware efficiency critical
• Many algorithms for filling (inside/outside)

• Much fewer that handle all tasks well

10/14/2003 15-462 Graphics I 13

Filling Convex PolygonsFilling Convex Polygons

• Find top and bottom vertices

• List edges along left and right sides
• For each scan line from top to bottom

– Find left and right endpoints of span, xl and xr
– Fill pixels between xl and xr
– Can use Bresenham’s alg. to update xl and xr

xl xr

10/14/2003 15-462 Graphics I 14

Other OperationsOther Operations

• Pixel shading (Gouraud)
– Bilinear interpolation of vertex colors

• Depth values (z-Buffer)
– Bilinear interpolation of vertex depth
– Read, and write only if visible
– Preserve depth (final orthographic projection)

• Texture coordinates u and v
– Rational linear interpolation to avoid distortion
– u(x,y) = (Ax+By+C)/(Dx+Ey+F) similarly for v(x,y)
– Two divisions per pixel for texture mapping
– Due to perspective transformation

10/14/2003 15-462 Graphics I 15

Concave Polygons: Odd-Even TestConcave Polygons: Odd-Even Test

• Approach 1: odd-even test

• For each scan line
– Find all scan line/polygon intersections
– Sort them left to right
– Fill the interior spans between intersections

• Parity rule: inside after
an odd number of

crossings

10/14/2003 15-462 Graphics I 16

Concave Polygons: Winding RuleConcave Polygons: Winding Rule

• Approach 2: winding rule

• Orient the lines in polygon
• For each scan line

– Winding number = right-hdd – left-hdd crossings
– Interior if winding number non-zero

• Different only for self-intersecting polygons

Even-odd rule

21
1

1

1 1

Winding rule

10/14/2003 15-462 Graphics I 17

Concave Polygons: TessellationConcave Polygons: Tessellation

• Approach 3: divide non-convex, non-flat, or
non-simple polygons into triangles

• OpenGL specification
– Need accept only simple, flat, convex polygons
– Tessellate explicitly with tessellator objects
– Implicitly if you are lucky

• GeForce3 scan converts only triangles

10/14/2003 15-462 Graphics I 18

Boundary CasesBoundary Cases

• Boundaries and special cases require care
– Cracks between polygons
– Parity bugs: fill to infinity

• Intersections on pixel: set at beginning, not end
• Shared vertices: count ymin for parity, not ymax

• Horizontal edges: don’t change parity

set pixel don’t
set pixel

parity
change

no parity
change

10/14/2003 15-462 Graphics I 19

Edge/Scan Line IntersectionsEdge/Scan Line Intersections

• Brute force: calculate intersections explicitly

• Incremental method (Bresenham’s algorithm)
• Caching intersection information

– Edge table with edges sorted by ymin

– Active edges, sorted by x-intersection, left to right

• Process image from smallest ymin up

10/14/2003 15-462 Graphics I 20

Flood FillFlood Fill

• Draw outline of polygon

• Color seed
• Color surrounding pixels and recurse
• Must be able to test boundary and duplication

• More appropriate for drawing than rendering

10/14/2003 15-462 Graphics I 21

OutlineOutline

• Scan Conversion for Lines

• Scan Conversion for Polygons
• Antialiasing
• Compositing

10/14/2003 15-462 Graphics I 22

AliasingAliasing

• Artefacts created during scan conversion

• Inevitable (going from continuous to discrete)
• Aliasing (name from digital signal processing):

we sample a continuous image at grid points

• Effect
– Jagged edges
– Moire patterns

Moire pattern from sandlotscience.com

10/14/2003 15-462 Graphics I 23

More AliasingMore Aliasing

10/14/2003 15-462 Graphics I 24

Antialiasing for Line SegmentsAntialiasing for Line Segments

• Use area averaging at boundary

• (c) is aliased, magnified

• (d) is antialiased, magnified
• Warning: these images are sampled on screen!

10/14/2003 15-462 Graphics I 25

Antialiasing by SupersamplingAntialiasing by Supersampling

• Traditionally for off-line rendering

• Render, say, 3x3 grid of mini-pixels
• Average results using a filter
• Can be done adaptively

– Stop if colors are similar
– Subdivide at discontinuities

10/14/2003 15-462 Graphics I 26

Supersampling ExampleSupersampling Example

• Other improvements
– Stochastic sampling (avoiding repetition)
– Jittering (perturb a regular grid)

10/14/2003 15-462 Graphics I 27

Pixel-Sharing PolygonsPixel-Sharing Polygons

• Another aliasing error

• Assign color based on area-weighted average
• Interaction with depth information
• Use accumulation buffer

or α-blending

10/14/2003 15-462 Graphics I 28

Temporal AliasingTemporal Aliasing

• Sampling rate is frame rate (30 Hz for video)

• Example: spokes of wagon wheel in movie
• Possible to supersample and average
• Fast-moving objects are blurred

• Happens automatically in video and movies
– Exposure time (shutter speed)
– Memory persistence (video camera)
– Effect is motion blur

10/14/2003 15-462 Graphics I 29

Motion BlurMotion Blur

• Achieve by stochastic sampling in time

• Still-frame motion blur, but smooth animation

10/14/2003 15-462 Graphics I 30

Motion Blur ExampleMotion Blur Example

T. Porter, Pixar, 1984
16 samples/pixel

Looks like squash
and stretch!!

10/14/2003 15-462 Graphics I 31

OutlineOutline

• Scan Conversion for Polygons

• Antialiasing
• Compositing

10/14/2003 15-462 Graphics I 32

Accumulation BufferAccumulation Buffer

• Accumulation buffer parallel to frame buffer

• Superimpose images from frame buffer
• Copy back into frame buffer for display

• Negative accum values possible
• OpenGL mechanism for supersampling or jitter

glClear(GL_ACCUM_BUFFER_BIT);
for (i = 0; i < num_images; i++) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
display_image(i);
glAccum(GL_ACCUM, 1.0/(float)num_images);

}
glAccum(GL_RETURN, 1.0);

10/14/2003 15-462 Graphics I 33

Filtering and ConvolutionFiltering and Convolution

• Image transformation at pixel level
• Represent N � M image as matrix A = [aik]

• Process each color component separately
• Linear filter produces matrix B = [bik] with

• B is the result of convolving A with filter H
• Represent H by n � m convolution matrix

10/14/2003 15-462 Graphics I 34

Filters for AntialiasingFilters for Antialiasing

• Averaging pixels with neighbors

• For antialiasing: weigh center more heavily

10/14/2003 15-462 Graphics I 35

Convolution: OpenGL ExampleConvolution: OpenGL Example

http://www.opengl.org/developers/code/glut_examples/advanced/convolve.c

http://www.opengl.org/developers/code/glut_examples/advanced/advanced.html

10/14/2003 15-462 Graphics I 36

Convolution: OpenGL ExampleConvolution: OpenGL Example

void convolve(void (*draw)(void), Filter *mat)
{
...

for(j = 0; j < jmax; j++) {
for(i = 0; i < imax; i++) {
glViewport(-i, -j, winWidth - i, winHeight - j);
draw();
glAccum(GL_ACCUM, mat->array[i + j * imax]);

}
}

}

10/14/2003 15-462 Graphics I 37

Depth of FieldDepth of Field

10/14/2003 15-462 Graphics I 38

Filter for Depth-of-FieldFilter for Depth-of-Field

• Simulate camera depth-of-field
– Keep plane z = zf in focus
– Keep near and far planes unchanged

• Move viewer by ∆x
• Compute x’min, x’max, y’min, y’max for new frustum

10/14/2003 15-462 Graphics I 39

Depth-of-Field JitterDepth-of-Field Jitter

• Compute

• Blend the two images in accumulation buffer

10/14/2003 15-462 Graphics I 40

OpenGL Depth of Field ExampleOpenGL Depth of Field Example

See depth of field example:

http://www.opengl.org/developers/code/examples/redbook/redbook.html

Can jitter in both x- and y-directions…

10/14/2003 15-462 Graphics I 41

Close-upClose-up

10/14/2003 15-462 Graphics I 42

NVIDIA Depth of Field ExampleNVIDIA Depth of Field Example

Uses a pixel shader approach.
http://developer.nvidia.com/object/depth_field.html

10/14/2003 15-462 Graphics I 43

Soft shadows too…Soft shadows too…

Simulating Soft Shadows with Graphics Hardware (199 7)
Paul S. Heckbert & Michael Herf, CMU Technical Report

10/14/2003 15-462 Graphics I 44

BlendingBlending

• Frame buffer
– Simple color model: R, G, B; 8 bits each

– α-channel A, another 8 bits

• Alpha determines opacity, pixel-by-pixel
– α = 1: opaque
– α = 0: transparent

• Blend translucent objects during rendering

• Achieve other effects (e.g., shadows)

10/14/2003 15-462 Graphics I 45

Image CompositingImage Compositing

• Compositing operation
– Source: s = [sr sg sb sa]
– Destination: d = [dr dg db da]
– b = [br bg bb ba] source blending factors
– c = [cr cg cb ca] destination blending factors
– d’ = [brsr + crdr bgsg + cgdg bbsb + cbdb basa + cada]

• Overlay n images with equal weight
– Set α-value for each pixel in each image to 1/n
– Source blending factor is “α”
– Destination blending factor is “1”

10/14/2003 15-462 Graphics I 46

Blending in OpenGLBlending in OpenGL

• Enable blending

• Set up source and destination factors

• Source and destination choices
– GL_ONE, GL_ZERO

– GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA

– GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

glEnable(GL_BLEND);

glBlendFunc(source_factor, dest_factor);

10/14/2003 15-462 Graphics I 47

Blending ErrorsBlending Errors

• Operations are not commutative

• Operations are not idempotent
• Interaction with hidden-surface removal

– Polygon behind opaque one should be culled
– Translucent in front of others should be composited
– Solution:

• Two passes using alpha testing (glAlphaFunc): 1st pass
alpha=1 accepted, and 2nd pass alpha<1 accepted

• make z-buffer read-only for translucent polygons (alpha<1)
with glDepthMask(GL_FALSE);

10/14/2003 15-462 Graphics I 48

Antialiasing RevisitedAntialiasing Revisited

• Single-polygon case first

• Set α-value of each pixel to covered fraction
• Use destination factor of “1 – α”
• Use source factor of “α”
• This will blend background with foreground
• Overlaps can lead to blending errors

10/14/2003 15-462 Graphics I 49

Antialiasing with Multiple PolygonsAntialiasing with Multiple Polygons

• Initially, background color C0, α0 = 0

• Render first polygon; color C1fraction α1

– Cd = (1 – α1)C0 + α1C1

– αd = α1

• Render second polygon; assume fraction α2

• If no overlap (a), then
– C’d = (1 – α2)Cd + α2C2

– α’d = α1 + α2

10/14/2003 15-462 Graphics I 50

Antialiasing with OverlapAntialiasing with Overlap

• Now assume overlap (b)

• Average overlap is α1α2

• So αd = α1 + α2 – α1α2

• Make front/back decision for color as usual

10/14/2003 15-462 Graphics I 51

Antialiasing in OpenGLAntialiasing in OpenGL

• Avoid explicit α-calculation in program
• Enable both smoothing and blending

glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

10/14/2003 15-462 Graphics I 52

Depth Cueing and FogDepth Cueing and Fog

• Another application of blending

• Use distance-dependent (z) blending
– Linear dependence: depth cueing effect
– Exponential dependence: fog effect
– This is not a physically-based model

[Example: Fog Tutor]

GLfloat fcolor[4] = {...};
glEnable(GL_FOG);
glFogf(GL_FOG_MODE; GL_EXP);
glFogf(GL_FOG_DENSITY, 0.5);
glFogfv(GL_FOG_COLOR, fcolor);

10/14/2003 15-462 Graphics I 53

SummarySummary

• Scan Conversion for Polygons
– Basic scan line algorithm
– Convex vs concave
– Odd-even and winding rules, tessellation

• Antialiasing (spatial and temporal)
– Area averaging
– Supersampling
– Stochastic sampling

• Compositing
– Accumulation buffer
– Blending and α-values

