15-462 Computer Graphics I Lecture 10

Curves and Surfaces

Parametric Representations
Cubic Polynomial Forms
Hermite Curves
Bezier Curves and Surfaces
[Angel 10.1-10.6]

September 30, 2003

Doug James
Carnegie Mellon University

http://www.cs.cmu.edu/~djames/15-462/Fall03/

Goals

- How do we draw surfaces?
 - Approximate with polygons
 - Draw polygons
- How do we specify a surface?
 - Explicit, implicit, parametric
- How do we approximate a surface?
 - Interpolation (use only points)
 - Hermite (use points and tangents)
 - Bezier (use points, and more points for tangents)
- Next lecture: splines, realization in OpenGL

Explicit Representation

- Curve in 2D: y = f(x)
- Curve in 3D: y = f(x), z = g(x)
- Surface in 3D: z = f(x,y)
- Problems:
 - How about a vertical line x = c as y = f(x)?
 - Circle $y = \pm (r^2 x^2)^{1/2}$ two or zero values for x
- Too dependent on coordinate system
- Rarely used in computer graphics

Implicit Representation

- Curve in 2D: f(x,y) = 0
 - Line: ax + by + c = 0
 - Circle: $x^2 + y^2 r^2 = 0$
- Surface in 3d: f(x,y,z) = 0
 - Plane: ax + by + cz + d = 0
 - Sphere: $x^2 + y^2 + z^2 r^2 = 0$
- f(x,y,z) can describe 3D object:
 - Inside: f(x,y,z) < 0
 - Surface: f(x,y,z) = 0
 - Outside: f(x,y,z) > 0

What Implicit Functions are Good For

Ray - Surface Intersection Test

Inside/Outside Test

Isosurfaces of Simulated Tornado

Constructive Solid Geometry (CSG)

Generate complex shapes with basic building blocks

machine an object - saw parts off, drill holes glue pieces together

This is sensible for objects that are actually made that way (human-made, particularly machined objects)

A CSG Train

CSG: Negative Objects

- Use point-by-point boolean functions
 - remove a volume by using a negative object
 - e.g. drill a hole by subtracting a cylinder

Inside(BLOCK-CYL) = Inside(BLOCK) And Not(Inside(CYL))

CSG

CSG

Figure 20: Unions and differences of piecewise-smooth surfaces. The resulting surfaces have creases and corners.

Figure 21: Sequence of difference operations: Subtracting two boxes and a cylinder from a sphere. The result has convex and concave corners. The subdivision scheme that we use [4] represents these features explicitely.

Algebraic Surfaces

- Special case of implicit representation
- f(x,y,z) is polynomial in x, y, z
- Quadrics: degree of polynomial ≤ 2
- Render more efficiently than arbitrary surfaces
- Implicit form often used in computer graphics
- How do we represent curves implicitly?

Parametric Form for Curves

- Curves: single parameter u (e.g. time)
- x = x(u), y = y(u), z = z(u)
- Circle: x = cos(u), y = sin(u), z = 0
- Tangent described by derivative

$$\mathbf{p}(u) = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix} \qquad \frac{d\mathbf{p}(u)}{du} = \begin{bmatrix} \frac{dx(u)}{du} \\ \frac{dy(u)}{du} \\ \frac{dz(u)}{du} \end{bmatrix}$$

Magnitude is "velocity"

Parametric Form for Surfaces

- Use parameters u and v
- x = x(u,v), y = y(u,v), z = z(u,v)
- Describes surface as both u and v vary
- Partial derivatives describe tangent plane at each point $p(u,v) = [x(u,v) \ y(u,v) \ z(u,v)]^T$

$$\frac{\partial \mathbf{p}(u,v)}{\partial u} = \begin{bmatrix} \frac{\partial x(u,v)}{\partial u} \\ \frac{\partial y(u,v)}{\partial u} \\ \frac{\partial z(u,v)}{\partial u} \end{bmatrix} \qquad \frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \frac{\partial x(u,v)}{\partial v} \\ \frac{\partial y(u,v)}{\partial v} \\ \frac{\partial z(u,v)}{\partial v} \end{bmatrix}$$

Assessment of Parametric Forms

- Parameters often have natural meaning
- Easy to define and calculate
 - Tangent and normal
 - Curves segments (for example, $0 \le u \le 1$)
 - Surface patches (for example, $0 \le u, v \le 1$)

Parametric Polynomial Curves

- Restrict x(u), y(u), z(u) to be polynomial in u
- Fix degree n $\mathbf{p}(u) = \sum_{k=0}^{n} \mathbf{c}_k u^k$
- Each c_k is a column vector

$$\mathbf{c}_k = \left[\begin{array}{c} c_{xk} \\ c_{yk} \\ c_{zk} \end{array} \right]$$

Parametric Polynomial Surfaces

 Restrict x(u,v), y(u,v), z(u,v) to be polynomial of fixed degree n

$$\mathbf{p}(u,v) = \begin{bmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{bmatrix} = \sum_{i=0}^{n} \sum_{k=0}^{n} \mathbf{c}_{ik} u^{i} v^{k}$$

- Each c_{ik} is a 3-element column vector
- Restrict to simple case where 0 ≤ u,v ≤ 1

Approximating Surfaces

- Use parametric polynomial surfaces
- Important concepts:
 - Join points for segments and patches
 - Control points to interpolate
 - Tangents and smoothness
 - Blending functions to describe interpolation
- First curves, then surfaces

Outline

- Parametric Representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Cubic Polynomial Form

- Degree 3 appears to be a useful compromise
- Curves:

$$\mathbf{p}(u) = \mathbf{c}_0 + \mathbf{c}_1 u + \mathbf{c}_2 u^2 + \mathbf{c}_3 u^3 = \sum_{k=0}^{3} \mathbf{c}_k u^k$$

- Each c_k is a column vector [c_{kx} c_{ky} c_{kz}]^T
- From control information (points, tangents) derive 12 values c_{kx} , c_{ky} , c_{kz} for $0 \le k \le 3$
- These determine cubic polynomial form
- Later: how to render

Interpolation by Cubic Polynomials

- Simplest case, although rarely used
- Curves:
 - Given 4 control points p₀, p₁, p₂, p₃
 - All should lie on curve: 12 conditions, 12 unknowns
- Space 0 ≤ u ≤ 1 evenly

$$p_0 = p(0), p_1 = p(1/3), p_2 = p(2/3), p_3 = p(1)$$

Equations to Determine ck

Plug in values for u = 0, 1/3, 2/3, 1

$$p_{0} = p(0) = c_{0}$$

$$p_{1} = p(\frac{1}{3}) = c_{0} + \frac{1}{3}c_{1} + (\frac{1}{3})^{2}c_{2} + (\frac{1}{3})^{3}c_{3}$$

$$p_{2} = p(\frac{2}{3}) = c_{0} + \frac{2}{3}c_{1} + (\frac{2}{3})^{2}c_{2} + (\frac{2}{3})^{3}c_{3}$$

$$p_{3} = p(1) = c_{0} + c_{1} + c_{2} + c_{3}$$

$$\begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & \frac{1}{3} & (\frac{1}{3})^2 & (\frac{1}{3})^3 \\ 1 & \frac{2}{3} & (\frac{2}{3})^2 & (\frac{2}{3})^3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \text{ Note: } p_k \text{ and } c_k \text{ are vectors!}$$

Interpolating Geometry Matrix

Invert A to obtain interpolating geometry matrix

$$\mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -5.5 & 9 & -4.5 & 1 \\ 9 & -22.5 & 18 & 4.5 \\ -4.5 & 13.5 & -13.5 & 4.5 \end{bmatrix} \quad \mathbf{c} = A^{-1}\mathbf{p}$$

Joining Interpolating Segments

- Do not solve degree n for n points
- Divide into overlap sequences of 4 points
- p₀, p₁, p₂, p₃ then p₃, p₄, p₅, p₆, etc.

- At join points
 - Will be continuous (C⁰ continuity)
 - Derivatives will usually not match (no C¹ continuity)

Blending Functions

- Make explicit, how control points contribute
- Simplest example: straight line with control points p₀ and p₃
- $p(u) = (1 u) p_0 + u p_3$
- $b_0(u) = 1 u$, $b_3(u) = u$

Blending Polynomials for Interpolation

- Each blending polynomial is a cubic
- Solve (see [Angel, p. 427]): $p(u) = b_0(u)p_0 + b_1(u)p_1 + b_2(u)p_2 + b_3(u)p_3$

Cubic Interpolation Patch

Bicubic surface patch with 4 × 4 control points

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{k=0}^{3} u^{i} v^{k} \mathbf{c}_{ik}$$

Note: each c_{ik} is 3 column vector (48 unknowns)

[Angel, Ch. 10.4.2]

Outline

- Parametric Representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Hermite Curves

- Another cubic polynomial curve
- Specify two endpoints and their tangents

Deriving the Hermite Form

As before

$$p(0) = p_0 = c_0$$

 $p(1) = p_3 = c_0 + c_1 + c_2 + c_3$

Calculate derivative

Calculate derivative
$$\mathbf{p}'(u) = \begin{bmatrix} \frac{dx}{du} \\ \frac{dy}{du} \\ \frac{dz}{du} \end{bmatrix} = \mathbf{c}_1 + 2u\mathbf{c}_2 + 3u^2\mathbf{c}_3$$
 Yields
$$\mathbf{p}'_0 = \mathbf{p}'(0) = \mathbf{c}_1$$

• Yields
$$p_0' = p'(0) = c_1$$

$$p_3' = p'(1) = c_1 + 2c_2 + 3c_3$$

Summary of Hermite Equations

- Write in matrix form
- Remember p_k and p'_k and c_k are vectors!

$$\begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_3 \\ \mathbf{p}'_0 \\ \mathbf{p}'_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{c}_0 \\ \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{bmatrix}$$

• Let $q = [p_0 \ p_3 \ p'_0 \ p'_3]^T$ and invert to find Hermite geometry matrix M_H satisfying

$$c = M_H q$$

Blending Functions

Explicit Hermite geometry matrix

$$\mathbf{M}_H = \left[egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ -3 & 3 & -2 & -1 \ 2 & -2 & 1 & 1 \end{array}
ight]$$

• Blending functions for $\mathbf{u} = [1 \ u \ u^2 \ u^3]^T$

$$\mathbf{b}(u) = \mathbf{M}_{H}^{T}\mathbf{u} = \begin{bmatrix} 2u^{3} - 3u^{2} + 1 \\ -2u^{3} + 3u^{2} \\ u^{3} - 2u^{2} + u \\ u^{3} - u^{2} \end{bmatrix}$$

Join Points for Hermite Curves

Match points and tangents (derivatives)

- Much smoother than point interpolation
- How to obtain the tangents?
- Skip Hermite surface patch
- More widely used: Bezier curves and surfaces

Parametric Continuity

Matching endpoints (C⁰ parametric continuity)

$$\mathbf{p}(1) = \begin{bmatrix} p_x(1) \\ p_y(1) \\ p_z(1) \end{bmatrix} = \begin{bmatrix} q_x(0) \\ q_y(0) \\ q_z(0) \end{bmatrix} = \mathbf{q}(0)$$

Matching derivatives (C¹ parametric continuity)

$$\mathbf{p}'(1) = \begin{bmatrix} p_x'(1) \\ p_y'(1) \\ p_z'(1) \end{bmatrix} = \begin{bmatrix} q_x'(0) \\ q_y'(0) \\ q_z'(0) \end{bmatrix} = \mathbf{q}'(0)$$

Geometric Continuity

For matching tangents, less is required

$$\mathbf{p}'(1) = \begin{bmatrix} p'_x(1) \\ p'_y(1) \\ p'_z(1) \end{bmatrix} = k \begin{bmatrix} q'_x(0) \\ q'_y(0) \\ q'_z(0) \end{bmatrix} = k\mathbf{q}'(0)$$

- G¹ geometric continuity
- Extends to higher derivatives

Outline

- Parametric Representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Bezier Curves

- Widely used in computer graphics
- Approximate tangents by using control points

$$p'(0) = 3(p_1 - p_0)$$

$$p'(1) = 3(p_3 - p_2)$$

Equations for Bezier Curves

- Set up equations for cubic parametric curve
- Recall:

$$p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3$$

$$p'(u) = c_1 + 2c_2 u + 3c_3 u^2$$

Solve for c_k

$$p_0 = p(0) = c_0$$

 $p_3 = p(1) = c_0 + c_1 + c_2 + c_3$
 $p'(0) = 3p_1 - 3p_0 = c_1$
 $p'(1) = 3p_3 - 3p_2 = c_1 + 2c_2 + 3c_3$

Bezier Geometry Matrix

Calculate Bezier geometry matrix M_B

$$\begin{bmatrix} \mathbf{c}_0 \\ \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{bmatrix} = \mathbf{M}_B \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix} \text{ so } \mathbf{M}_B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

- Have C⁰ continuity, not C¹ continuity
- Have C¹ continuity with additional condition

Blending Polynomials

Determine contribution of each control point

$$\mathbf{b}(u) = \mathbf{M}_B^T \mathbf{u} = \begin{bmatrix} (1-u)^3 \\ 3u(1-u)^2 \\ 3u^2(1-u) \\ u^3 \end{bmatrix}$$

Smooth blending polynomials

Convex Hull Property

- Bezier curve contained entirely in convex hull of control points
- Determined choice of tangent coefficient (?)

Bezier Surface Patches

Specify Bezier patch with 4 × 4 control points

Bezier curves along the boundary

$$\mathbf{p}(0,0) = \mathbf{p}_{00}$$

 $\frac{\partial \mathbf{p}}{\partial u}(0,0) = 3(\mathbf{p}_{10} - \mathbf{p}_{00})$
 $\frac{\partial \mathbf{p}}{\partial v}(0,0) = 3(\mathbf{p}_{01} - \mathbf{p}_{00})$

Twist

Inner points determine twist at corner

$$\frac{\partial^2 \mathbf{p}}{\partial u \, \partial v}(0,0) = 9(\mathbf{p}_{00} - \mathbf{p}_{01} + p_{10} - p_{11})$$

- Flat means p_{00} , p_{10} , p_{01} , p_{11} in one plane
- $(\partial^2 p/\partial u \partial v)(0,0) = 0$

The Utah Teapot

The Utah Teapot

The Six Platonic Solids

(by Jim Arvo and Dave Kirk, from their '87 SIGGRAPH paper *Fast Ray Tracing by Ray Classification.*)

See

http://www.sjbaker.org/teapot/
for more history.

The Utah Teapot

The teapot is just cubic Bezier patches!

```
Rim:
  { 102, 103, 104, 105,
                                                 9, 10, 11, 12, 13, 14, 15}
Body:
  { 12, 13, 14, 15, 16, 17, 18, 19,
                                          20, 21,
                                                    22,
                                                         23,
                                                              24, 25,
                       29,
                           30, 31, 32,
                                          33, 34, 35, 36,
                                                             37, 38, 39, 40 }
        25, 26, 27,
Lid:
    96,
                   96, 97, 98, 99, 100, 101, 101, 101, 101, 0, 1, 2, 3 }
                    3, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117 }
Handle:
    41.
         42,
              43,
                   44,
                       45,
                            46,
                                47, 48,
                                          49,
                                               50,
                                                    51,
                                                         52,
                                                              53,
                                                                  54,
    53.
              55.
                   56.
                       57,
                            58.
                                 59, 60,
                                          61,
                                               62,
                                                    63,
                                                         64,
                                                              28,
                                                                  65,
Spout:
         69.
              70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
                                                              80, 81,
                                                                       82,
         81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 }
Vertices:
  { 0.2000, 0.0000, 2.70000 }, { 0.2000, -0.1120, 2.70000 }, { 0.1120, -0.2000, 2.70000 },
    0.0000, -0.2000, 2.70000 }, { 1.3375, 0.0000, 2.53125 }, { 1.3375, -0.7490, 2.53125 },
    0.7490, -1.3375, 2.53125}, { 0.0000, -1.3375, 2.53125}, { 1.4375, 0.0000, 2.53125},
    1.4375, -0.8050, 2.53125 }, { 0.8050, -1.4375, 2.53125 }, { 0.0000, -1.4375, 2.53125 },
    1.5000, 0.0000, 2.40000 }, { 1.5000, -0.8400, 2.40000 }, { 0.8400, -1.5000, 2.40000 },
    0.0000, -1.5000, 2.40000 }, { 1.7500, 0.0000, 1.87500 }, { 1.7500, -0.9800, 1.87500 },
    0.9800, -1.7500, 1.87500, { 0.0000, -1.7500, 1.87500}, { 2.0000, 0.0000, 1.35000},
    2.0000, -1.1200, 1.35000 }, { 1.1200, -2.0000, 1.35000 }, { 0.0000, -2.0000, 1.35000 },
    2.0000, 0.0000, 0.90000 }, { 2.0000, -1.1200, 0.90000 }, { 1.1200, -2.0000, 0.90000 },
    0.0000, -2.0000, 0.90000 }, { -2.0000, 0.0000, 0.90000 }, { 2.0000, 0.0000, 0.45000 },
    2.0000, -1.1200, 0.45000 }, { 1.1200, -2.0000, 0.45000 }, { 0.0000, -2.0000, 0.45000 },
  { 1.5000, 0.0000, 0.22500 }, { 1.5000, -0.8400, 0.22500 }, { 0.8400, -1.5000, 0.22500 },
    0.0000, -1.5000, 0.22500 }, { 1.5000, 0.0000, 0.15000 }, { 1.5000, -0.8400, 0.15000 },
  { 0.8400, -1.5000, 0.15000 }, { 0.0000, -1.5000, 0.15000 }, { -1.6000, 0.0000, 2.02500 },
  { -1.6000, -0.3000, 2.02500 }, { -1.5000, -0.3000, 2.25000 }, { -1.5000, 0.0000, 2.25000 },
  \{-2.3000, 0.0000, 2.02500\}, \{-2.3000, -0.3000, 2.02500\}, \{-2.5000, -0.3000, 2.25000\},
  { -2.5000, 0.0000, 2.25000 }, { -2.7000, 0.0000, 2.02500 }, { -2.7000, -0.3000, 2.02500 },
  { -3.0000, -0.3000, 2.25000 }, { -3.0000, 0.0000, 2.25000 }, { -2.7000, 0.0000, 1.80000 },
  { -2.7000, -0.3000, 1.80000 }, { -3.0000, -0.3000, 1.80000 }, { -3.0000, 0.0000, 1.80000 },
  \{-2.7000, 0.0000, 1.57500\}, \{-2.7000, -0.3000, 1.57500\}, \{-3.0000, -0.3000, 1.35000\},
  { -3.0000, 0.0000, 1.35000 }, { -2.5000, 0.0000, 1.12500 }, { -2.5000, -0.3000, 1.12500 },
  \{-2.6500, -0.3000, 0.93750\}, \{-2.6500, 0.0000, 0.93750\}, \{-2.0000, -0.3000, 0.90000\},
  { -1.9000, -0.3000, 0.60000 }, { -1.9000, 0.0000, 0.60000 }, { 1.7000, 0.0000, 1.42500 },
  { 1.7000, -0.6600, 1.42500 }, { 1.7000, -0.6600, 0.60000 }, { 1.7000, 0.0000, 0.60000 },
    2.6000, 0.0000, 1.42500 }, { 2.6000, -0.6600, 1.42500 }, { 3.1000, -0.6600, 0.82500 },
    3.1000, 0.0000, 0.82500 }, { 2.3000, 0.0000, 2.10000 }, { 2.3000, -0.2500, 2.10000 },
  { 2.4000, -0.2500, 2.02500 }, { 2.4000, 0.0000, 2.02500 }, { 2.7000, 0.0000, 2.40000 },
    2.7000, -0.2500, 2.40000 }, { 3.3000, -0.2500, 2.40000 }, { 3.3000, 0.0000, 2.40000 },
    2.8000, 0.0000, 2.47500 }, { 2.8000, -0.2500, 2.47500 }, { 3.5250, -0.2500, 2.49375 },
    3.5250, 0.0000, 2.49375 }, { 2.9000, 0.0000, 2.47500 }, { 2.9000, -0.1500, 2.47500 },
    3.4500, -0.1500, 2.51250 }, { 3.4500, 0.0000, 2.51250 }, { 2.8000, 0.0000, 2.40000 },
    2.8000, -0.1500, 2.40000 }, { 3.2000, -0.1500, 2.40000 }, { 3.2000, 0.0000, 2.40000 },
    0.0000, 0.0000, 3.15000 }, { 0.8000, 0.0000, 3.15000 }, { 0.8000, -0.4500, 3.15000 },
    0.4500, -0.8000, 3.15000 }, { 0.0000, -0.8000, 3.15000 }, { 0.0000, 0.0000, 2.85000 },
    1.4000, 0.0000, 2.40000 }, { 1.4000, -0.7840, 2.40000 }, { 0.7840, -1.4000, 2.40000 },
    0.0000, -1.4000, 2.40000 }, { 0.4000, 0.0000, 2.55000 }, { 0.4000, -0.2240, 2.55000 },
  { 0.2240, -0.4000, 2.55000 }, { 0.0000, -0.4000, 2.55000 }, { 1.3000, 0.0000, 2.55000 },
  { 1.3000, -0.7280, 2.55000 }, { 0.7280, -1.3000, 2.55000 }, { 0.0000, -1.3000, 2.55000 },
  \{1.3000, 0.0000, 2.40000\}, \{1.3000, -0.7280, 2.40000\}, \{0.7280, -1.3000, 2.40000\},
  { 0.0000, -1.3000, 2.40000 }, { 0.0000, 0.0000, 0.00000 },
```

Summary

- Parametric Representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces

Preview

- B-Splines: more continuity (C²)
- Non-uniform B-splines ("heavier" points)
- Non-uniform rational B-splines (NURBS)
 - Rational functions instead of polynomials
 - Based on homogeneous coordinates
- Rendering and recursive subdivision
- Curves and surfaces in OpenGL