15-462 Computer Graphics I
Lecture 10

Curves and Surfaces

September 30, 2003
Doug James
Carnegie Mellon University

http://www.cs.cmu.edu/~djames/15-462/Fall03/
Goals

• How do we draw surfaces?
 – Approximate with polygons
 – Draw polygons

• How do we specify a surface?
 – Explicit, implicit, parametric

• How do we approximate a surface?
 – Interpolation (use only points)
 – Hermite (use points and tangents)
 – Bezier (use points, and more points for tangents)

• Next lecture: splines, realization in OpenGL
Explicit Representation

- Curve in 2D: $y = f(x)$
- Curve in 3D: $y = f(x), \ z = g(x)$
- Surface in 3D: $z = f(x,y)$
- Problems:
 - How about a vertical line $x = c$ as $y = f(x)$?
 - Circle $y = \pm (r^2 - x^2)^{1/2}$ two or zero values for x
- Too dependent on coordinate system
- Rarely used in computer graphics
Implicit Representation

- Curve in 2D: \(f(x,y) = 0 \)
 - Line: \(ax + by + c = 0 \)
 - Circle: \(x^2 + y^2 - r^2 = 0 \)
- Surface in 3D: \(f(x,y,z) = 0 \)
 - Plane: \(ax + by + cz + d = 0 \)
 - Sphere: \(x^2 + y^2 + z^2 - r^2 = 0 \)
- \(f(x,y,z) \) can describe 3D object:
 - Inside: \(f(x,y,z) < 0 \)
 - Surface: \(f(x,y,z) = 0 \)
 - Outside: \(f(x,y,z) > 0 \)
What Implicit Functions are Good For

Ray - Surface Intersection Test

Inside/Outside Test

\[F(X + kV) = 0 \]
Isosurfaces of Simulated Tornado
Constructive Solid Geometry (CSG)

Generate complex shapes with basic building blocks

machine an object - saw parts off, drill holes

This is sensible for objects that are actually made that way (human-made, particularly machined objects)
A CSG Train

Brian Wyvill & students, Univ. of Calgary
CSG: Negative Objects

• Use point-by-point boolean functions
 – remove a volume by using a negative object
 – e.g. drill a hole by subtracting a cylinder

Inside(BLOCK-CYL) = Inside(BLOCK) And Not(Inside(CYL))
CSG
Figure 20: Unions and differences of piecewise-smooth surfaces. The resulting surfaces have creases and corners.

Figure 21: Sequence of difference operations: Subtracting two boxes and a cylinder from a sphere. The result has convex and concave corners. The subdivision scheme that we use [4] represents these features explicitly.
Algebraic Surfaces

- Special case of implicit representation
- \(f(x,y,z) \) is polynomial in \(x, y, z \)
- **Quadrics**: degree of polynomial \(\leq 2 \)
- Render more efficiently than arbitrary surfaces
- Implicit form often used in computer graphics
- How do we represent curves implicitly?
Parametric Form for Curves

- Curves: single parameter u (e.g. time)
- $x = x(u)$, $y = y(u)$, $z = z(u)$
- Circle: $x = \cos(u)$, $y = \sin(u)$, $z = 0$
- Tangent described by derivative

$$p(u) = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix} \quad \frac{dp(u)}{du} = \begin{bmatrix} \frac{dx(u)}{du} \\ \frac{dy(u)}{du} \\ \frac{dz(u)}{du} \end{bmatrix}$$

- Magnitude is “velocity”
Parametric Form for Surfaces

- Use parameters u and v
- $x = x(u,v)$, $y = y(u,v)$, $z = z(u,v)$
- Describes surface as both u and v vary
- Partial derivatives describe tangent plane at each point $p(u,v) = [x(u,v) \ y(u,v) \ z(u,v)]^T$

\[
\frac{\partial p(u,v)}{\partial u} = \begin{bmatrix}
\frac{\partial x(u,v)}{\partial u} \\
\frac{\partial y(u,v)}{\partial u} \\
\frac{\partial z(u,v)}{\partial u}
\end{bmatrix}
\quad \frac{\partial p(u,v)}{\partial v} = \begin{bmatrix}
\frac{\partial x(u,v)}{\partial v} \\
\frac{\partial y(u,v)}{\partial v} \\
\frac{\partial z(u,v)}{\partial v}
\end{bmatrix}
\]
Assessment of Parametric Forms

- Parameters often have natural meaning
- Easy to define and calculate
 - Tangent and normal
 - Curves segments (for example, $0 \leq u \leq 1$)
 - Surface patches (for example, $0 \leq u,v \leq 1$)
Parametric Polynomial Curves

• Restrict \(x(u) \), \(y(u) \), \(z(u) \) to be polynomial in \(u \)

• Fix degree \(n \)

\[
p(u) = \sum_{k=0}^{n} c_k u^k
\]

• Each \(c_k \) is a column vector

\[
c_k = \begin{bmatrix} c_{xk} \\ c_{yk} \\ c_{zk} \end{bmatrix}
\]
Parametric Polynomial Surfaces

- Restrict \(x(u,v) \), \(y(u,v) \), \(z(u,v) \) to be polynomial of fixed degree \(n \)

\[
p(u, v) = \begin{bmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{bmatrix} = \sum_{i=0}^{n} \sum_{k=0}^{n} c_{ik} u^i v^k
\]

- Each \(c_{ik} \) is a 3-element column vector
- Restrict to simple case where \(0 \leq u, v \leq 1 \)
Approximating Surfaces

• Use parametric polynomial surfaces
• Important concepts:
 – Join points for segments and patches
 – Control points to interpolate
 – Tangents and smoothness
 – Blending functions to describe interpolation
• First curves, then surfaces
Outline

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces
Cubic Polynomial Form

- Degree 3 appears to be a useful compromise
- Curves:

\[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 = \sum_{k=0}^{3} c_k u^k \]

- Each \(c_k \) is a column vector \([c_{kx} \ c_{ky} \ c_{kz}]^T\)
- From control information (points, tangents) derive 12 values \(c_{kx}, c_{ky}, c_{kz} \) for \(0 \leq k \leq 3 \)
- These determine cubic polynomial form
- Later: how to render
Interpolation by Cubic Polynomials

• Simplest case, although rarely used
• Curves:
 – Given 4 control points p_0, p_1, p_2, p_3
 – All should lie on curve: 12 conditions, 12 unknowns
• Space $0 \leq u \leq 1$ evenly

$$p_0 = p(0), \ p_1 = p(1/3), \ p_2 = p(2/3), \ p_3 = p(1)$$
Equations to Determine c_k

- Plug in values for $u = 0, 1/3, 2/3, 1$

$$p_0 = p(0) = c_0$$

$$p_1 = p\left(\frac{1}{3}\right) = c_0 + \frac{1}{3}c_1 + \left(\frac{1}{3}\right)^2c_2 + \left(\frac{1}{3}\right)^3c_3$$

$$p_2 = p\left(\frac{2}{3}\right) = c_0 + \frac{2}{3}c_1 + \left(\frac{2}{3}\right)^2c_2 + \left(\frac{2}{3}\right)^3c_3$$

$$p_3 = p(1) = c_0 + c_1 + c_2 + c_3$$

$$\begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & \frac{1}{3} & \left(\frac{1}{3}\right)^2 & \left(\frac{1}{3}\right)^3 \\ 1 & \frac{2}{3} & \left(\frac{2}{3}\right)^2 & \left(\frac{2}{3}\right)^3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Note: p_k and c_k are vectors!
Interpolating Geometry Matrix

- Invert A to obtain interpolating geometry matrix

\[\mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -5.5 & 9 & -4.5 & 1 \\ 9 & -22.5 & 18 & 4.5 \\ -4.5 & 13.5 & -13.5 & 4.5 \end{bmatrix} \quad c = \mathbf{A}^{-1}p \]
Joining Interpolating Segments

• Do not solve degree n for n points
• Divide into overlap sequences of 4 points
• \(p_0, p_1, p_2, p_3 \) then \(p_3, p_4, p_5, p_6 \), etc.

• At join points
 – Will be continuous (\(C^0 \) continuity)
 – Derivatives will usually not match (no \(C^1 \) continuity)
Blending Functions

- Make explicit, how control points contribute
- Simplest example: straight line with control points \(p_0 \) and \(p_3 \)
- \(p(u) = (1 − u) \ p_0 + u \ p_3 \)
- \(b_0(u) = 1 − u, \ b_3(u) = u \)
Blending Polynomials for Interpolation

- Each blending polynomial is a cubic
- Solve (see [Angel, p. 427]):
 \[p(u) = b_0(u)p_0 + b_1(u)p_1 + b_2(u)p_2 + b_3(u)p_3 \]
Cubic Interpolation Patch

- Bicubic surface patch with 4×4 control points

$$p(u, v) = \sum_{i=0}^{3} \sum_{k=0}^{3} u^i v^k c_{ik}$$

Note: each c_{ik} is a 3-column vector (48 unknowns)

[Angel, Ch. 10.4.2]
Outline

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces
Hermite Curves

- Another cubic polynomial curve
- Specify two endpoints and their tangents
Deriving the Hermite Form

• As before

\[p(0) = p_0 = c_0 \]
\[p(1) = p_3 = c_0 + c_1 + c_2 + c_3 \]

• Calculate derivative

\[p'(u) = \begin{bmatrix} \frac{dx}{du} \\ \frac{dy}{du} \\ \frac{dz}{du} \end{bmatrix} = c_1 + 2uc_2 + 3u^2c_3 \]

• Yields

\[p'_0 = p'(0) = c_1 \]
\[p'_3 = p'(1) = c_1 + 2c_2 + 3c_3 \]
Summary of Hermite Equations

- Write in matrix form
- Remember \(p_k \) and \(p'_k \) and \(c_k \) are vectors!

\[
\begin{bmatrix}
 p_0 \\
p_3 \\
p'_0 \\
p'_3
\end{bmatrix}
=
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 1 & 1 & 1 & 1 \\
 0 & 1 & 1 & 1 \\
 0 & 1 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
 c_0 \\
c_1 \\
c_2 \\
c_3
\end{bmatrix}
\]

- Let \(q = [p_0 \ p_3 \ p'_0 \ p'_3]^T \) and invert to find Hermite geometry matrix \(M_H \) satisfying

\[
c = M_H q
\]
Blending Functions

• Explicit Hermite geometry matrix

\[\mathbf{M}_H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 3 & -2 & -1 \\ 2 & -2 & 1 & 1 \end{bmatrix} \]

• Blending functions for \(\mathbf{u} = [1 \quad u \quad u^2 \quad u^3]^T \)

\[\mathbf{b}(u) = \mathbf{M}_H^T \mathbf{u} = \begin{bmatrix} 2u^3 - 3u^2 + 1 \\ -2u^3 + 3u^2 \\ u^3 - 2u^2 + u \\ u^3 - u^2 \end{bmatrix} \]
Join Points for Hermite Curves

• Match points and tangents (derivatives)

\[p'(1) = q'(0) \]

• Much smoother than point interpolation
• How to obtain the tangents?
• Skip Hermite surface patch
• More widely used: Bezier curves and surfaces
Parametric Continuity

• Matching endpoints (C^0 parametric continuity)

\[p(1) = \begin{bmatrix} p_x(1) \\ p_y(1) \\ p_z(1) \end{bmatrix} = \begin{bmatrix} q_x(0) \\ q_y(0) \\ q_z(0) \end{bmatrix} = q(0) \]

• Matching derivatives (C^1 parametric continuity)

\[p'(1) = \begin{bmatrix} p'_x(1) \\ p'_y(1) \\ p'_z(1) \end{bmatrix} = \begin{bmatrix} q'_x(0) \\ q'_y(0) \\ q'_z(0) \end{bmatrix} = q'(0) \]
Geometric Continuity

- For matching tangents, less is required

\[
p'(1) = \begin{bmatrix} p'_x(1) \\ p'_y(1) \\ p'_z(1) \end{bmatrix} = k \begin{bmatrix} q'_x(0) \\ q'_y(0) \\ q'_z(0) \end{bmatrix} = kq'(0)
\]

- \(G^1\) geometric continuity
- Extends to higher derivatives
Outline

- Parametric Representations
- Cubic Polynomial Forms
- Hermite Curves
- Bezier Curves and Surfaces
Bezner Curves

- Widely used in computer graphics
- Approximate tangents by using control points

\[p'(0) = 3(p_1 - p_0) \]
\[p'(1) = 3(p_3 - p_2) \]
Equations for Bezier Curves

- Set up equations for cubic parametric curve
- Recall:

\[
p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3
\]
\[
p'(u) = c_1 + 2c_2 u + 3c_3 u^2
\]

- Solve for \(c_k\)

\[
p_0 = p(0) = c_0
\]
\[
p_3 = p(1) = c_0 + c_1 + c_2 + c_3
\]
\[
p'(0) = 3p_1 - 3p_0 = c_1
\]
\[
p'(1) = 3p_3 - 3p_2 = c_1 + 2c_2 + 3c_3
\]
Bezier Geometry Matrix

- Calculate Bezier geometry matrix M_B

$$
\begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3 \\
\end{bmatrix} = M_B \begin{bmatrix}
 p_0 \\
 p_1 \\
 p_2 \\
 p_3 \\
\end{bmatrix}
$$

so $M_B = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 -3 & 3 & 0 & 0 \\
 3 & -6 & 3 & 0 \\
 -1 & 3 & -3 & 1
\end{bmatrix}$

- Have C^0 continuity, not C^1 continuity
- Have C^1 continuity with additional condition
Blending Polynomials

- Determine contribution of each control point

\[b(u) = M_B^T u = \begin{bmatrix} (1 - u)^3 \\ 3u(1 - u)^2 \\ 3u^2(1 - u) \\ u^3 \end{bmatrix} \]

Smooth blending polynomials
Convex Hull Property

- Bezier curve contained entirely in convex hull of control points
- Determined choice of tangent coefficient (?)
Bezzer Surface Patches

• Specify Bezzer patch with 4×4 control points

• Bezzer curves along the boundary

\[
\begin{align*}
p(0, 0) &= p_{00} \\
\frac{\partial p}{\partial u}(0, 0) &= 3(p_{10} - p_{00}) \\
\frac{\partial p}{\partial v}(0, 0) &= 3(p_{01} - p_{00})
\end{align*}
\]
Twist

- Inner points determine twist at corner

\[\frac{\partial^2 p}{\partial u \partial v}(0, 0) = 9(p_{00} - p_{01} + p_{10} - p_{11}) \]

- Flat means \(p_{00}, p_{10}, p_{01}, p_{11} \) in one plane

- \((\partial^2 p/\partial u \partial v)(0,0) = 0\)
The Utah Teapot
The Utah Teapot

See http://www.sjbaker.org/teapot/ for more history.

The Six Platonic Solids
(by Jim Arvo and Dave Kirk, from their '87 SIGGRAPH paper Fast Ray Tracing by Ray Classification.)
The Utah Teapot
The teapot is just cubic Bezier patches!
Summary

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces
Preview

• B-Splines: more continuity (C^2)
• Non-uniform B-splines ("heavier" points)
• Non-uniform rational B-splines (NURBS)
 – Rational functions instead of polynomials
 – Based on homogeneous coordinates
• Rendering and recursive subdivision
• Curves and surfaces in OpenGL