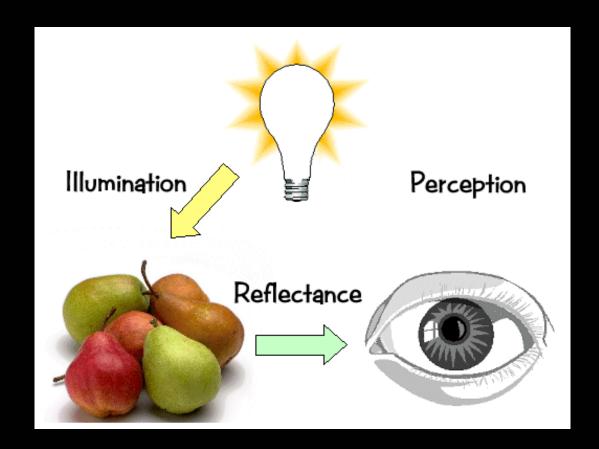
15-462 Computer Graphics I Lecture 7

Lighting and Shading

Properties of Light
Light Sources
Phong Illumination Model
Normal Vectors
[Angel, Ch. 6.1-6.4]


September 16, 2003

Doug James
Carnegie Mellon University

Announcements

- Programming assignment #1 due today
 - Electronic handin by midnight
- Written assignment #1 due Thursday
 - Handin at beginning of class
- Programming assignment #2 out Thursday
 - Due in 2 weeks

Light Transport

Lighting and Shading


- Approximate physical reality
- Ray tracing:
 - Follow light rays through a scene
 - Accurate, but expensive (off-line)
- Radiosity:
 - Calculate surface inter-reflection approximately
 - Accurate, especially interiors, but expensive (off-line)
- Phong Illumination model (this lecture):
 - Approximate only interaction light, surface, viewer
 - Relatively fast (on-line), supported in OpenGL

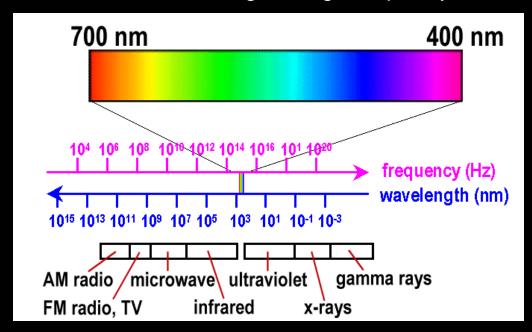
Radiosity Example

Restaurant Interior. Guillermo Leal, Evolucion Visual

Raytracing Example

Martin Moeck, Siemens Lighting

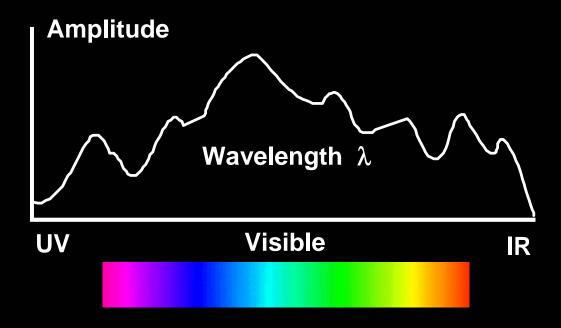
Outline

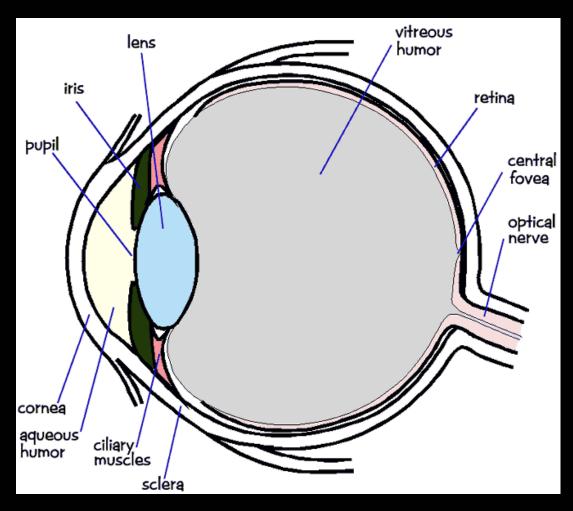

- Properties of Light
- Light Sources
- Phong Illumination Model
- Normal Vectors

Outline

- Properties of Light
 - Real light
 - How humans see light
 - How computers trick humans into thinking they're seeing light
- Light Sources
- Phong Illumination Model
- Normal Vectors

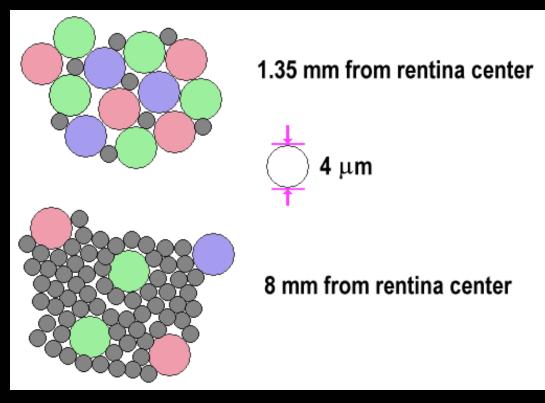
Physics of Light and Color


- It's all electromagnetic (EM) radiation
 - Different colors correspond to different wavelengths λ
 - Intensity of each wavelength specified by amplitude
 - Frequency $v = 2 \pi / \lambda$
 - long wavelength is low frequency
 - short wavelength is high frequency

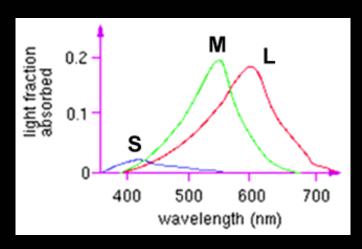

We perceive EM radiation with λ in the 400-700 nm range

Color: What's There vs. What We See

- Human eyes respond to "visible light"
 - tiny piece of spectrum between infra-red and ultraviolet
- Color defined by emission spectrum of light source
 - amplitude vs wavelength (or frequency) plot

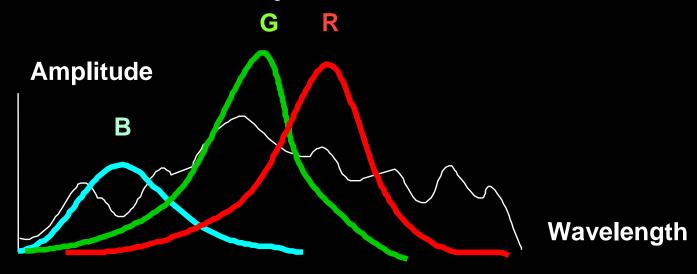


The Eye



- The image is formed on the retina
- Retina contains two types of cells: rods and cones
- Cones measure color (red, green, blue)
- Rods responsible for monochrome night-vision

The Fovea


Cones are most densely packed within a region of the retina called the *fovea*

- Three types of cones: S,M,L
 Corresponds to 3 visual pigments
- Roughly speaking:
 - S responds to blue
 - M responds to green
 - L responds to red
- Note that these are not uniform
 - more sensitive to green than red
- Colorblindness
 - deficiency of one cone/pigment type

Color Filters

- Rods and cones can be thought of as filters
 - Cones detect red, green or blue parts of spectrum
 - Rods detect average intensity across spectrum
- To get the output of a filter
 - Multiply its response curve by the spectrum, integrate over all wavelengths
- A physical spectrum is a complex function of wavelength
 - But what we see can be described by just 3 numbers—the color filter outputs
 - How can we encode a whole function with just 3 numbers?
 - A: we can't! We can't distinguish certain colors--metamers

Vision and Thought are One

- The retina is part of the central nervous system
- 2 million fibers from retina to LGN, 10 million from there to brain.
- Primary connection is Primary Visual Cortex or V1, 2 cm² on back of brain
 - Hypothesis: V1 gets used as a sort of image buffer for higher processing in the rest of the brain

Steps:

- 1. Saccade ends
- 2. Retina accumulates image
- 3. LGN opens connections, image gets written to V1
- 4. Rest of brain accesses that info
- 5. Meanwhile, a point of interest is being generated for next saccade
- 6. Next saccade happens perhaps 250ms later; go back to step 1
- All very automatic; that's why pointing with eyes doesn't work for user interfaces.

Color Models

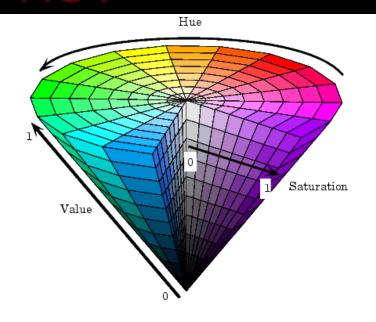
- Okay, so our visual system is quite limited
- But maybe this is good news...
- We can avoid computing and reproducing the full color spectrum since people only have 3 color channels
 - —TV would be much more complex if we perceived the full spectrum
 - transmission would require much higher bandwidths
 - display would require much more complex methods
 - -real-time color 3D graphics is feasible
 - any scheme for describing color requires only three values
 - lots of different color spaces--related by 3x3 matrix transformations

Color Spaces

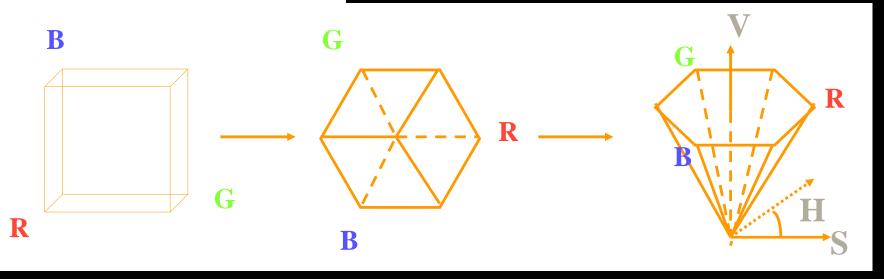
- There are many ways to describe color
 - -Spectrum
 - allows any radiation (visible or invisible) to be described
 - usually unnecessary and impractical

-RGB

- convenient for display (CRT uses red, green, and blue phosphors)
- not very intuitive


-HSV

- an intuitive color space
- H is hue what color is it? S is saturation or purity how nongray is it? V is value - how bright is it?
- H is cyclic therefore it is a non-linear transformation of RGB

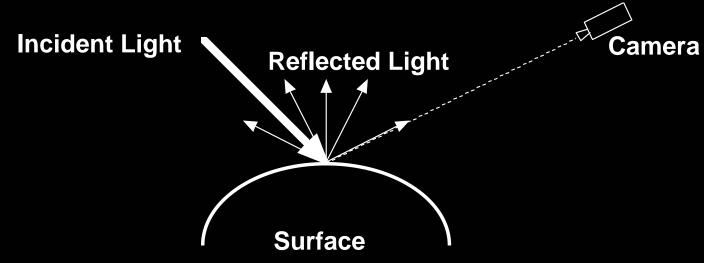

-CIE XYZ

a linear transform of RGB used by color scientists

HSV

From mathworks

Additive vs. Subtractive Color


- Working with light: additive primaries
 - Red, green and blue components are added by the superposition property of electromagnetism
 - Conceptually: start with black, primaries add light
- Working with pigments: subtractive primaries
 - Typical inks (CMYK): cyan, magenta, yellow, black
 - Conceptually: start with white, pigments filter out light
 - The pigments remove parts of the spectrum

dye color	absorbs	reflects
cyan	red	blue and green
magenta	green	blue and red
yellow	blue	red and green
black	all	none

- Inks interact in nonlinear ways--makes converting from monitor color to printer color a challenging problem
- Black ink (K) used to ensure a high quality black can be printed

Surface Reflection

- When light hits an opaque surface some is absorbed, the rest is reflected (some can be transmitted too--but never mind for now)
- The reflected light is what we see
- Reflection is not simple and varies with material
 - the surface's micro structure define the details of reflection
 - variations produce anything from bright specular reflection (mirrors) to dull matte finish (chalk)

Units of Light and Color

Quantity

Dimension

Units

solid angle

solid angle

[steradian]

a two-dimensional angle (proportional to area on a sphere)

power

energy/time

[watt]=[joule/sec]

area

radius

1 unit

1 unit square

~ 1 steradian

photons per second; radiance integrated over incoming directions, over a finite area.

irradiance (intensity)

power/area

[watt/m²]

Brightness of light hitting the surface (or image) at this point (incident light)

radiance (intensity)

power/(area*solid angle) [watt/(m2*steradian)]

Brightness of light reflected at this point along this direction (reflected light)

reflectance

unitless

[1]

what fraction of the light is reflected by a material? typically between 0 and 1.

The Meaning of "Color"

- What's an image?
 - Irradiance: each pixel measures the incident light at a point on the film
 - Proportional to integral of scene radiance hitting that point
- What's Color?
 - Refers to radiance or irradiance measured at 3 wavelengths
 - Scene color: radiance coming off of surface (for illumination)
 - Image color: irradiance (for rendering)
 - These quantities have different units and should not be confused

Outline

- Properties of Light
- Light Sources
- Phong Illumination Model
- Normal Vectors

Light Sources and Material Properties

- Appearance depends on
 - Light sources, their locations and properties
 - Material (surface) properties
 - Viewer position
- Ray tracing: from viewer into scene
- Radiosity: between surface patches
- Phong Model: at material, from light to viewer

Common Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
 - Cut-off angle defines a cone of light
 - Attenuation function (brighter in center)
- Light source described by a luminance
 - Each color is described separately
 - $\overline{-I = [I_r \ I_g \ I_b]^T}$ (I for intensity)
 - Sometimes calculate generically (applies to r, g, b)

Ambient Light

- Global ambient light
 - Independent of light source
 - Lights entire scene
- Local ambient light
 - Contributed by additional light sources
 - Can be different for each light and primary color
- Computationally inexpensive

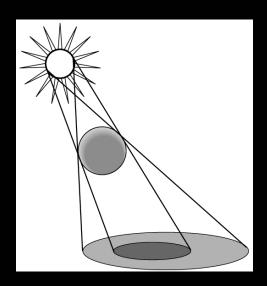
$$\mathbf{I}_a = \left[egin{array}{c} I_{ar} \ I_{ag} \ I_{ab} \end{array}
ight]$$

Point Source

- Given by a point p₀
- Light emitted equally in all directions

$$\mathbf{I}(\mathbf{p}_0) = \left[egin{array}{l} I_r(\mathbf{p}_0) \ I_g(\mathbf{p}_0) \ I_b(\mathbf{p}_0) \end{array}
ight]$$

Intensity decreases with square of distance

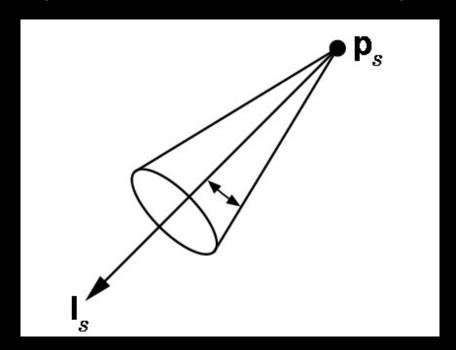

$$I(p, p_0) = \frac{1}{|p - p_0|^2} I(p_0)$$

Limitations of Point Sources

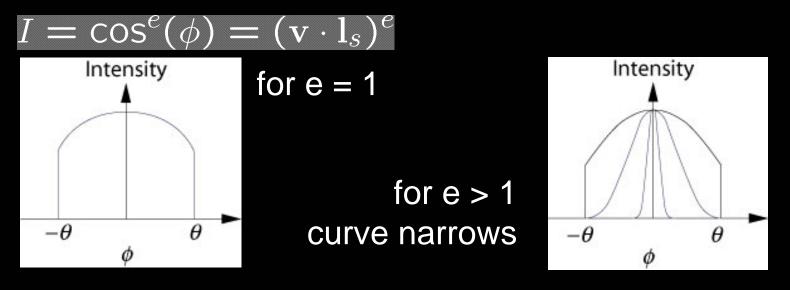
- Shading and shadows inaccurate
- Example: penumbra (partial "soft" shadow)
- Similar problems with highlights
- Compensate with attenuation

$$\frac{1}{(a+bd+cd^2)} \quad \text{d = distance } |\mathbf{p}-\mathbf{p}_0|$$
a, b, c constants

- Softens lighting
- Better with ray tracing
- Better with radiosity


Distant Light Source

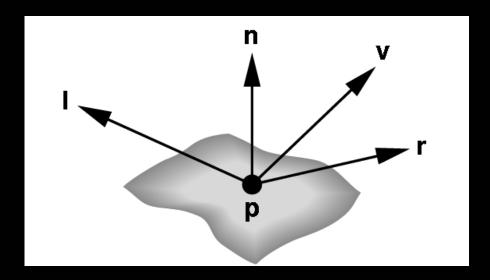
- Given by a vector v
- Simplifies some calculations
- In OpenGL:
 - Point source $[x \ y \ z \ 1]^T$
 - Distant source [x y z 0]^T


Spotlight

- Most complex light source in OpenGL
- Light still emanates from point
- Cut-off by cone determined by angle θ

Spotlight Attenuation

- Spotlight is brightest along I_s
- Intensity determined by cos φ
- Corresponds to projection of v onto I_s
- Spotlight exponent e determines rate


Outline

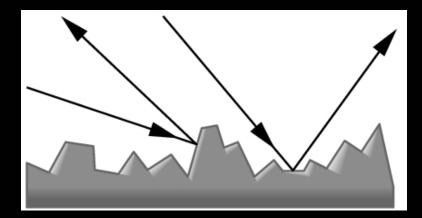
- Properties of Light
- Light Sources
- Phong Illumination Model
- Normal Vectors

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and I, n, v:

l = vector to light source
n = surface normal
v = vector to viewer
r = reflection of l at p
 (determined by l and n)

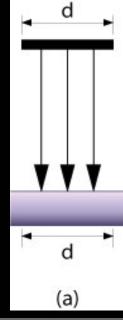
Basic Calculation

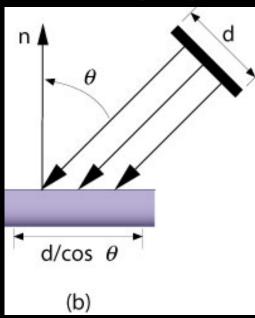

- Calculate each primary color separately
- Start with global ambient light
- Add reflections from each light source
- Clamp to [0, 1]
- Reflection decomposed into
 - Ambient reflection
 - Diffuse reflection
 - Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties

Ambient Reflection

- Intensity of ambient light uniform at every point
- Ambient reflection coefficient k_a , $0 \le k_a \le 1$
- May be different for every surface and r,g,b
- Determines reflected fraction of ambient light
- L_a = ambient component of light source
- Ambient intensity I_a = k_a L_a
- Note: L_a is not a physically meaningful quantity

Diffuse Reflection

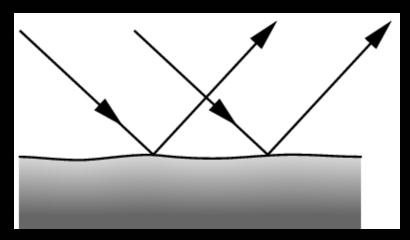

- Diffuse reflector scatters light
- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient k_d, 0 ≤ k_d ≤ 1
- Angle of incoming light still critical



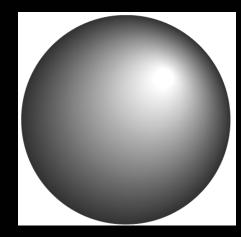
Lambert's Law

Intensity depends on angle of incoming light

- Recall
 - I = unit vector to light
 - n = unit surface normal
 - θ = angle to normal
- $\cos \theta = | \cdot n |$
- $I_d = k_n (I \cdot n) L_d$
- With attenuation:

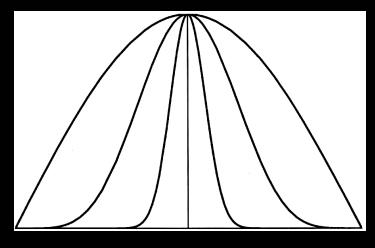


$$I_d = \frac{k_d}{a + bq + cq^2} (\mathbf{l} \cdot \mathbf{n}) L_d$$


q = distance to light source, $L_d = diffuse component of light$

Specular Reflection

- Specular reflection coefficient k_s , $0 \le k_s \le 1$
- Shiny surfaces have high specular coefficient
- Used to model specular highlights
- Do not get mirror effect (need other techniques)


specular reflection

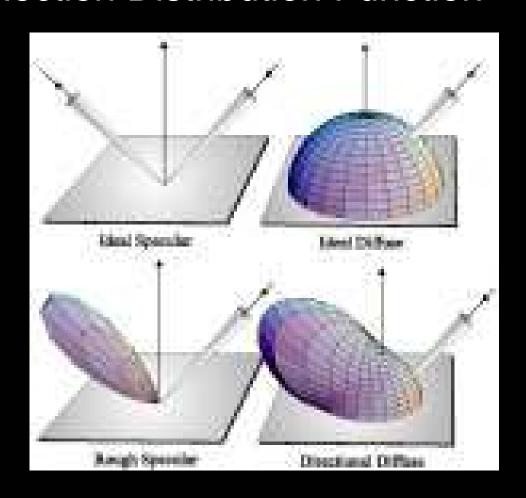
specular highlights

Shininess Coefficient

- L_s is specular component of light
- r is vector of perfect reflection of I about n
- v is vector to viewer
- \$\phi\$ is angle between v and r
- $I_s = k_s L_s \cos^{\alpha} \phi$
- α is shininess coefficient
- Requires |r| = |v| = 1
- Multiply distance term

Higher α is narrower

Summary of Phong Model


- Light components for each color:
 - Ambient (L_a), diffuse (L_d), specular (L_s)
- Material coefficients for each color:
 - Ambient (k_a), diffuse (k_d), specular (k_s)
- Distance q for surface point from light source

$$I = \frac{1}{a + bq + cq^2} (k_d L_d(\mathbf{l} \cdot \mathbf{n}) + k_s L_s(\mathbf{r} \cdot \mathbf{v})^{\alpha}) + k_a L_a$$

I = vector from light r = I reflected about n n = surface normal v = vector to viewer

BRDF

- Bidirectional Reflection Distribution Function
- Measure for materials
- Isotropic vs. anisotropic
- Mathematically complex
- Programmable pixel shading?

Outline

- Properties of Light
- Light Sources
- Phong Illumination Model
- Normal Vectors

Normal Vectors

Summarize Phong

$$I = \frac{1}{a + bq + cq^2} (k_d L_d(\mathbf{l} \cdot \mathbf{n}) + k_s L_s(\mathbf{r} \cdot \mathbf{v})^{\alpha}) + k_a L_a$$

- Surface normal n is critical
 - Calculate I · n
 - Calculate r and then r · v
- Must calculate and specify the normal vector
 - Even in OpenGL!
- Two examples: plane and sphere

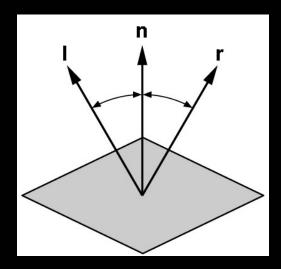
Normals of a Plane, Method I

- Method I: given by ax + by + cz + d = 0
- Let p₀ be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: u · v = 0 iff u orthogonal v
- $n \cdot (p p_0) = n \cdot p n \cdot p_0 = 0$
- Consequently n₀ = [a b c 0]^T
- Normalize to $n = n_0/|n_0|$

Normals of a Plane, Method II

- Method II: plane given by p₀, p₁, p₂
- Points must not be collinear
- Recall: u × v orthogonal to u and v
- $n_0 = (p_1 p_0) \times (p_2 p_0)$
- Order of cross product determines orientation
- Normalize to $n = n_0/|n_0|$

Normals of Sphere


- Implicit Equation $f(x, y, z) = x^2 + y^2 + z^2 1 = 0$
- Vector form: $f(p) = p \cdot p 1 = 0$
- Normal given by gradient vector

$$\mathbf{n}_{0} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix} = 2\mathbf{p}$$

• Normalize $n_0/|n_0| = 2p/2 = p$

Angle of Reflection

- Perfect reflection: angle of incident equals angle of reflection
- Also: I, n, and r lie in the same plane
- Assume |I| = |n| = 1, guarantee |r| = 1

$$\mathbf{l} \cdot \mathbf{n} = \cos \theta = \mathbf{n} \cdot \mathbf{r}$$

 $\mathbf{r} = \alpha \mathbf{l} + \beta \mathbf{n}$ Solution: $\alpha = -1$ and $\beta = 2 (\mathbf{l} \cdot \mathbf{n})$

$$r = 2(l \cdot n)n - l$$

Perhaps easier geometrically

Summary: Normal Vectors

- Critical for Phong model (diffuse and specular)
- Must calculate accurately (even in OpenGL)
- Pitfalls
 - Not unit length
 - How to set at surface boundary?
- Omitted
 - Refraction of transmitted light (Snell's law)
 - Halfway vector (yet another optimization)

Summary

- Properties of Light
- Light Sources
- Phong Illumination Model
- Normal Vectors

Preview

- Polygonal shading
- Lighting and shading in OpenGL

Announcements

- Programming assignment #1 due today
 - Electronic handin by midnight
- Written assignment #1 due Thursday
 - Handin at beginning of class
- Programming assignment #2 out Thursday
 - Due in 2 weeks