Announcements

Programming assignment 1 due tomorrow (am/pm)
Written assignment 1 posted later today
3D Viewing & Clipping

Where do geometries come from?
Pin-hole camera
Perspective projection
Viewing transformation
Clipping lines & polygons

Angel Chapter 5

COMPUTER GRAPHICS 15-462

11 Sept 2003
Getting Geometry on the Screen

Given geometry in the world coordinate system, how do we get it to the display?

- Transform to camera coordinate system
- Transform (warp) into canonical view volume
- Clip
- Project to display coordinates
- (Rasterize)
Figure 3-2 Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, you construct a 4×4 matrix M, which is then multiplied by the coordinates of each vertex v in the scene to accomplish the transformation.
Vertex Transformation Pipeline

To specify viewing, modeling, and projection transformations, you construct a 4×4 matrix M, which is then multiplied by the coordinates of each vertex v in the scene to accomplish the transformation.

Figure 3-2 Stages of Vertex Transformation
OpenGL Transformation Overview

```c
void glMatrixMode(GLenum mode);
void gluLookAt(GLdouble xeye, GLdouble yeye, GLdouble zeye,  
               GLdouble xat,  GLdouble yat,  GLdouble zat,  
               GLdouble xup);  

void glMatrixMode(GLenum mode);
void glFrustum(GLdouble left, GLdouble right,  
               GLdouble bottom, GLdouble top,  
               GLdouble near, GLdouble far);  

void glMatrixMode(GLenum mode);
void gluPerspective(GLdouble fovy, GLdouble aspect,  
                    GLdouble zNear, GLdouble zFar);  

void glMatrixMode(GLenum mode);
void glOrtho(GLdouble left, GLdouble right,  
             GLdouble bottom, GLdouble top,  
             GLdouble near, GLdouble far);  

void glViewport(int x, int y, int width, int height);
```
Viewing and Projection

• Our eyes collapse 3-D world to 2-D retinal image (brain then has to reconstruct 3D)
• In CG, this process occurs by *projection*
• Projection has two parts:
 – *Viewing transformations*: camera position and direction
 – *Perspective/orthographic transformation*: reduces 3-D to 2-D
• Use homogeneous transformations
• As you learned in Assignment 1, camera can be animated by changing these transformations—the root of the hierarchy
Image Formation

- Projecting a shape
 - project each point onto the image plane
 - lines are projected by projecting end points only

Note: Since we don't want the image to be inverted, from now on we'll put \(F \) behind the image plane.
Orthographic Projection

- when the focal point is at infinity the rays are parallel and orthogonal to the image plane
- good model for telephoto lens. No perspective effects.
- when xy-plane is the image plane $(x,y,z) \rightarrow (x,y,0)$
 front orthographic view
A Simple Perspective Camera

- Canonical case:
 - camera looks along the z-axis
 - focal point is the origin
 - image plane is parallel to the xy-plane at distance d
 - (We call d the focal length, mainly for historical reasons)
– \textit{vup}: a vector that is pointing straight up in the image usually want world “up” direction

- Diagram shows \textit{y}-coordinate, \textit{x}-coordinate is similar
- Using similar triangles
 – point \([x, y, z]\) projects to \([(d/z)x, (d/z)y, d]\)
A Perspective Projection Matrix

- Projection using homogeneous coordinates:
 - transform \([x, y, z]\) to \([(d/z)x, (d/z)y, d]\)

\[
\begin{bmatrix}
 d & 0 & 0 & 0 \\
 0 & d & 0 & 0 \\
 0 & 0 & d & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
dx \\
dy \\
dz \\
z
\end{bmatrix} \Rightarrow
\begin{bmatrix}
d & d \\
z & z
\end{bmatrix} \begin{bmatrix}
x \\
y \\
d
\end{bmatrix}
\]

Divide by 4th coordinate (the “w” coordinate)

- 2-D image point:
 - discard third coordinate
 - apply viewport transformation to obtain physical pixel coordinates
Wait, there’s more!

Perspective transformation can also

• map rectangle in the image plane to the viewport
• specify near and far clipping planes
 – instead of mapping z to d, transform z between z_{near} and z_{far} on to a fixed range
 – used for z-buffer hidden surface removal
• specify field-of-view (fov) angle
The View Volume

- Pyramid in space defined by focal point and window in the image plane (assume window mapped to viewport)
- Defines visible region of space
- Pyramid edges are clipping planes
- *Frustum* = truncated pyramid with near and far clipping planes
 - Why near plane? Prevent points behind the camera being seen
 - Why far plane? Allows z to be scaled to a limited fixed-point value (z-buffering)
But wait...

- What if we want the camera somewhere other than the canonical location?
- Alternative #1: derive a general projection matrix. (hard)
- Alternative #2: transform the world so that the camera is in canonical position and orientation (much simpler)
- These transformations are viewing transformations
- They can be specified in many ways - some more sensible than others (beware of Foley, Angel and Watt are ok)
Camera Control Values

• All we need is a single translation and angle-axis rotation (orientation), but...

• Good animation requires good camera control--we need better control knobs

• Translation knob - move to the \textit{lookfrom} point

• Orientation can be specified in several ways:
 – specify camera rotations
 – specify a \textit{lookat} point (solve for camera rotations)
A Popular View Specification Approach

• Focal length, image size/shape and clipping planes are in the perspective transformation

• In addition:
 – *lookfrom*: where the focal point (camera) is
 – *lookat*: the world point to be centered in the image

• Also specify camera orientation about the *lookat-lookfrom* axis
Implementation

Implementing the lookat/lookfrom/vup viewing scheme

1. Translate by -lookfrom, bring focal point to origin
2. Rotate lookat-lookfrom to the z-axis with matrix R:
 - v = (lookat-lookfrom) \text{(normalized)} \text{ and } z = [0,0,1]
 - rotation axis: \(a = (v \times z)/|v \times z| \)
 - rotation angle: \(\cos \theta = v \cdot z \text{ and } \sin \theta = |v \times z| \)

\[
\text{glRotate}(q, a_x, a_y, a_z)
\]
3. Rotate about z-axis to get vup parallel to the y-axis
The Whole Picture

LOOKFROM: Where the camera is
LOOKAT: A point that should be centered in the image
VUP: A vector that will be pointing straight up in the image
FOV: Field-of-view angle.
d: focal length
WORLD COORDINATES
It's not so complicated…

START HERE

Translate \text{LOOKFROM} to the origin

Rotate the view vector (\text{lookat} - \text{lookfrom}) onto the z-axis.

Multiply by the projection matrix and everything will be in the canonical camera position

Rotate about z to bring \text{vup} to y-axis
Clipping

- There is something missing between projection and viewing...
- Before projecting, we need to eliminate the portion of scene that is outside the viewing frustum

• Need to clip objects to the frustum (truncated pyramid)
• Now in a canonical position but it still seems kind of tricky...
Normalizing the Viewing Frustum

• Solution: transform frustum to a cube before clipping

• Converts perspective frustum to orthographic frustum
• This is yet another homogeneous transform!
Clipping to a Cube

- Determine which parts of the scene lie within cube
- We will consider the 2D version: clip to rectangle
- This has its own uses (viewport clipping)
- Two approaches:
 - clip during scan conversion (rasterization) - check per pixel or end-point
 - clip before scan conversion

- We will cover
 - clip to rectangular viewport before scan conversion
Line Clipping

- Modify endpoints of lines to lie in rectangle
- How to define “interior” of rectangle?
- Convenient definition: intersection of 4 half-planes
 - Nice way to decompose the problem
 - Generalizes easily to 3D (intersection of 6 half-planes)

\[
\text{interior} = y < y_{\text{max}} \cap \neg x < x_{\text{min}} \cap x > x_{\text{max}} \cap y > y_{\text{min}}
\]
Line Clipping

- Modify end points of lines to lie in rectangle

Method:
- Is end-point inside the clip region? - half-plane tests
- If outside, calculate intersection between the line and the clipping rectangle and make this the new end point

- Both endpoints inside: trivial accept
- One inside: find intersection and clip
- Both outside: either clip or reject (tricky case)
Cohen-Sutherland Algorithm

- Uses *outcodes* to encode the half-plane tests results

- **Rules:**
 - **Trivial accept**: outcode(end1) and outcode(end2) both zero
 - **Trivial reject**: outcode(end1) & (bitwise and) outcode(end2) nonzero
 - Else subdivide

- Bit 1: y>y_{max}
- Bit 2: y<y_{min}
- Bit 3: x>x_{max}
- Bit 4: x<x_{min}
Cohen-Sutherland Algorithm

- Uses *outcodes* to encode the half-plane tests results

 - **Rules:**
 - **Trivial accept:** outcode(end1) and outcode(end2) both zero
 - **Trivial reject:** outcode(end1) & (bitwise and) outcode(end2) nonzero
 - Else *subdivide*
Cohen-Sutherland Algorithm: Subdivision

• If neither trivial accept nor reject:
 – Pick an outside endpoint (with nonzero outcode)
 – Pick an edge that is crossed (nonzero bit of outcode)
 – Find line's intersection with that edge
 – Replace outside endpoint with intersection point
 – Repeat until trivial accept or reject

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>y > ymax</td>
</tr>
<tr>
<td>2</td>
<td>y < ymin</td>
</tr>
<tr>
<td>3</td>
<td>x > xmax</td>
</tr>
<tr>
<td>4</td>
<td>x < xmin</td>
</tr>
</tbody>
</table>
Polygon Clipping

Convert a polygon into one *or more* polygons that form the intersection of the original with the clip window.
Sutherland-Hodgman Polygon Clipping Algorithm

• Subproblem:
 – clip a polygon (vertex list) against a single clip plane
 – output the vertex list(s) for the resulting clipped polygon(s)

• Clip against all four planes
 – generalizes to 3D (6 planes)
 – generalizes to any convex clip polygon/polyhedron
Sutherland-Hodgman Polygon Clipping Algorithm (Cont.)

To clip vertex list against one half-plane:

- if first vertex is inside - output it
- loop through list testing inside/outside transition - output depends on transition:
 - in-to-in: output vertex
 - out-to-out: no output
 - in-to-out: output intersection
 - out-to-in: output intersection and vertex
Cleaning Up

• Post-processing is required when clipping creates multiple polygons
• As external vertices are clipped away, one is left with edges running along the boundary of the clip region.
• Sometimes those edges dead-end, hitting a vertex on the boundary and doubling back
 – Need to prune back those edges
• Sometimes the edges form infinitely-thin bridges between polygons
 – Need to cut those polygons apart