
1Computer Graphics 1 15-462

Announcements

Assignment 1 due Friday at midnight

Written Assignment 1 out Thursday on the web

Questions on Assignment 1?

Hierarchical Modeling

A lesson in stick person anatomy.
or

Choosing the right parameters.
Hierarchical transformations.
The matrix stack.

See Angel 9.1-9.7

A lesson in stick person anatomy.
or

Choosing the right parameters.
Hierarchical transformations.
The matrix stack.

See Angel 9.1-9.7

COMPUTER GRAPHICS 1

15-462
13 Sept 2001

3Computer Graphics 1 15-462

Staying Oriented (in the course)

Render

Manipulate image

The framework for
the topics we’re covering

raster ops,
paint

transformations,
hierarchies

Animate Geometry

Specify Model

Build Geometry

time dependent
transformations

4Computer Graphics 1 15-462

Modeling with Transformations

• You’ve learned everything you
need to know to make a stick
person out of cubes.

• Just translate, rotate, and scale
each one to get the right size,
shape, position, and
orientation.

• Looks great--until you try to
make it move.

5Computer Graphics 1 15-462

The Right Control Knobs

• As soon as you want to change
something, the model falls apart

• Reason: the thing you’re modeling is
constrained but your model doesn’t know it

• What we need:
– some sort of representation of structure
– a set of “control knobs” (parameters) that make

it easy to move our stick person through legal
configurations

• This kind of control is convenient for static
models, and vital for animation!

• Key is to structure the transformations in
the right way: using a hierarchy

6Computer Graphics 1 15-462

Hierarchical Modeling Example

"Number One" Playgroup - Duran Duboi
Issue 141: SIGGRAPH 2002 Electronic Theater Program

7Computer Graphics 1 15-462

Making an Articulated Model

• A minimal 2-D jointed object:
–Two pieces, A (“forearm”) and B (“upper arm”)
–Attach point q on B to point r on A (“elbow”)
–Desired control knobs:

» T: shoulder position (point at which p winds up)
» u: shoulder angle (A and B rotate together about p)
» v: elbow angle (A rotates about r, which stays attached to q)

AAr BB qp
BB

p
AAr

q

8Computer Graphics 1 15-462

Making an Arm, step 1

• Start with A and B in their untransformed configurations
(B is hiding behind A)

• First apply a series of transformations to A, leaving B
where it is…

AAr

9Computer Graphics 1 15-462

Making an Arm, step 2

• Translate by -r, bringing r to the origin
• You can now see B peeking out from behind A

BB qp
AAr

AAr

10Computer Graphics 1 15-462

Making an Arm, step 3

• Next, we rotate A by v (the “elbow” angle)

BB qpAA
r

BB qp
AAr

11Computer Graphics 1 15-462

Making an Arm, step 4

• Translate A by q, bringing r and q together to form the
elbow joint

• We can regard q as the origin of the lower arm
coordinate system, and regard A as being in this
coordinate system.

BB qp AArBB qpAA
r

12Computer Graphics 1 15-462

Making an Arm, step 5

• From now on, each transformation applies to
both A and B (This is important!)

• First, translate by -p, bringing p to the origin
• A and B both move together, so the elbow

doesn’t separate!

BB qp AArBB qp AAr

13Computer Graphics 1 15-462

Making an Arm, step 6

• Then, we rotate by u, the “shoulder”
angle

• Again, A and B rotate together

BB
p

AAr

BB qp AAr

14Computer Graphics 1 15-462

Making an Arm, step 7

• Finally, translate by T, bringing the arm where we want it
• p is at origin of upper arm coordinate system

BB
q

p

AAr

BB
q

p

AAr

15Computer Graphics 1 15-462

So What Have We Done?

• Seems more complicated than just translating and
rotating each piece separately

• But the model is easy to modify/animate:
–Remember the transformation sequence, and the

parameters you used—they’re part of the model.
–Whenever the parameters change, reapply all of the

transformations and draw the result
»The model will not fall apart!!!

• Note:
–u, v, and T are parameters of the model.
–but p, q, and r are structural constants.
–Changing u,v, or T wiggles the arm
–Changing p,q, or r dismembers it (useful only in video

games!)

16Computer Graphics 1 15-462

Transformation Hierarchies

• This is the build-an-arm sequence,
represented as a tree

• Interpretation:
–Leaves are geometric primitives
–Internal nodes are transformations
–Transformations apply to everything

under them—start at the bottom and
work your way up

• You can build a wide range of models
this way

Trans -rTrans -r

Rot vRot v

Trans qTrans q

AA

Trans -pTrans -p

Rot uRot u

Trans TTrans T

BB

Control Knob

Primitive

Structural

17Computer Graphics 1 15-462

Transformation Hierarchies

• Another point of view:
• The shoulder coordinate

transformation moves everything
below it with respect to the shoulder:
–B
–A and its transformation

• The elbow coordinate transformation
moves A with respect to the shoulder
coordinate transform

Trans -rTrans -r

Rot vRot v

Trans qTrans q

AA

Trans -pTrans -p

Rot uRot u

Trans TTrans T

BB

Shoulder coordinate xform

Elbow coordinate xform

Primitive

18Computer Graphics 1 15-462

A Schematic Humanoid

• Each node represents
–rotation(s)
–geometric primitive(s)
–struct. transformations

• The root can be anywhere.
We chose the hip (can re-
root)

• Control knob for each joint
angle, plus global position
and orientation

• A realistic human would
be much more complex

hiphip

torsotorso

headheadl. arm2l. arm2

l. arm1l. arm1 r. arm1r. arm1

r. arm2r. arm2

l. leg1l. leg1

l. leg2l. leg2

r. leg1r. leg1

r. leg 2r. leg 2shouldershoulder

neckneck

19Computer Graphics 1 15-462

Directed Acyclic Graph

This is a graph, so you can re-
root it (make head the root)

It’s directed, rendering
traversal only follows links
one way.

It’s acyclic, to avoid infinite
loops in rendering.

Not necessarily a tree.
e.g. l.arm2 and r.arm2
primitives might be two
instantiations (one mirrored) of
the same geometry

hiphip

torsotorso

headheadl. arm2l. arm2

l. arm1l. arm1 r. arm1r. arm1

r. arm2r. arm2

l. leg1l. leg1

l. leg2l. leg2

r. leg1r. leg1

r. leg 2r. leg 2shouldershoulder

neckneck

20Computer Graphics 1 15-462

What Hierarchies Can and Can’t Do

• Advantages:
–Reasonable control knobs
–Maintains structural constraints

• Disadvantages:
–Doesn’t always give the “right” control knobs trivially

» e.g. hand or foot position - re-rooting may help

–Can’t do closed kinematic chains easily (keep hand
on hip)

–Missing other constraints: do not walk through walls

• Hierarchies are a vital tool for modeling and
animation

21Computer Graphics 1 15-462

So What Have We Done?

• Forward Kinematics
– Given the model and the joint angles, where is the end

effector?
» In graphics compute this so you know where to draw
» In robotics compute this to know how to control the end effector

• Inverse Kinematics
–Given a desired location of the end effector, what are

the required joint angles to put it there.
» In robotics, required to place the end effector near to objects in

real world

Inverse Kinematics is useful in animation as well

Kinematics is easy, IK is hard because of redundanc y.

22Computer Graphics 1 15-462

Implementing Hierarchies

• Building block: a matrix stack that you can push/pop
• Recursive algorithm that descends your model tree,

doing transformations, pushing, popping, and drawing
• Tailored to OpenGL’s state machine architecture (or vice

versa)
• Nuts-and-bolts issues:

–What kind of nodes should I put in my hierarchy?
–What kind of interface should I use to construct and

edit hierarchical models?
• Extensions:

–expressions, languages.

23Computer Graphics 1 15-462

The Matrix Stack

• Idea of Matrix Stack:
– LIFO stack of matrices with push and pop operations
– current transformation matrix (product of all transformations on stack)
– transformations modify matrix at the top of the stack

• Recursive algorithm:
– load the identity matrix
– for each internal node:

» push a new matrix onto the stack
» concatenate transformations onto current transformation matrix

» recursively descend tree

» pop matrix off of stack

– for each leaf node:
» draw the geometric primitive using the current transformation matrix

24Computer Graphics 1 15-462

Relevant OpenGL routines
glPushMatrix(), glPopMatrix()

push and pop the stack. push leaves a copy of the current
matrix on top of the stack

glLoadIdentity(), glLoadMatrixd(M)

load the Identity matrix, or an arbitrary matrix, onto top of the stack
glMultMatrixd(M)

multiply the matrix C on top of stack by M. C = CM
glOrtho (x0,y0,x1,y1,z0,z1)

set up parallel projection matrix
glRotatef(theta,x,y,z), glRotated(…)

axis/angle rotate. “f” and “d” take floats and doubles, respectively
glTranslatef(x,y,z), glScalef(x,y,z)

translate, rotate. (also exist in “d” versions.)

25Computer Graphics 1 15-462

Two-link arm, revisited, in OpenGL

Trace of Opengl calls
glLoadIdentity();

glOrtho(…);

glPushMatrix();

glTranslatef(Tx,Ty,0);

glRotatef(u,0,0,1);

glTranslatef(-px,-py,0);

glPushMatrix();

glTranslatef(qx,qy,0);

glRotatef(v,0,0,1);

glTranslatef(-rx,-ry,0);

Draw(A);

glPopMatrix();

Draw(B);

glPopMatrix();

Trace of Opengl calls
glLoadIdentity();

glOrtho(…);

glPushMatrix();

glTranslatef(Tx,Ty,0);

glRotatef(u,0,0,1);

glTranslatef(-px,-py,0);

glPushMatrix();

glTranslatef(qx,qy,0);

glRotatef(v,0,0,1);

glTranslatef(-rx,-ry,0);

Draw(A);

glPopMatrix();

Draw(B);

glPopMatrix();

BB
q

p

AAr

Trans -rTrans -r

Rot vRot v

Trans qTrans q

AA

Trans -pTrans -p

Rot uRot u

Trans TTrans T

BB

26Computer Graphics 1 15-462

Building and Editing Hierarchies

Three approaches:
• Edit the boxes-and-arrows diagram

+easy to use
–hard to visualize effect of a change

• Edit the picture (select and group)
+easy to visualize (WYSIWYG)
–confusing, no view of the graph, limited control

• Textual description (declarative or code)
+precise
+easy to implement
–hard to visualize, unintuitive

27Computer Graphics 1 15-462

Building and Editing, continued

• Two aspects to a model
–structure: nodes, connectivity, primitives
–parameters: trans, rot, scale, primitive attributes…

• Hard to build model by point-and-click on a rendering of
the model (but point-and-click on a graph view is OK)

• Hard to set/edit parameters by typing in numbers
• Best: a hybrid (used by Maya and other anim packages)

–Build structure in a graph view
–Attach parameter values to sliders
–Render result to show effects of parameter changes

28Computer Graphics 1 15-462

Select-and-Group Interface

• A common method of building a hierarchy
–Select a set of objects (click on them)
–Group command creates a new top-level “group” node

with the objects as children
–Grouping groups forms a hierarchy

• Ungrouping a group makes all its children top-
level nodes

• Editing options are group, ungroup, delete

29Computer Graphics 1 15-462

What Should Transformation Nodes Do?

• Separate nodes for translation, rotation and
scale
+lots of flexibility
–many nodes making select-and-click difficult

• Nodes perform multiple transformations in hard-
wired sequence, e.g. rotate-translate-scale
+less complex tree
–hard-wired sequences are less flexible

30Computer Graphics 1 15-462

Hardwired Group Transformation Sequence

• Must select a good hard-wired sequence that
the user will think is intuitive
–Rule of thumb: scale before rotate

» avoid object shearing during rotation

–Rule of thumb: rotate before translate
» make sure rotation occurs about correct point

• Occasionally this sequence won’t be enough - a
more flexible scheme is required

31Computer Graphics 1 15-462

Group Parameters and Transformations
• Parameters (2D)

–(cx, cy): center of rotation and scaling
–(sx, sy): scaling
–theta: rotation
–(tx, ty): translation

• Full sequence of primitive transformations:
–trans(-cx, -cy) move center to origin
–scale(sx,sy) scale
–rot(theta) rotate
–trans(cx,cy) move center back
–trans(tx,ty) translate (can combine with

previous)

32Computer Graphics 1 15-462

Variables and Expressions

• Better control can come from the
transformation parameters being
functions of other variables

• Simple example:
– a clock with second, minute and

hour hands
– hands should rotate together
– express all the motions in terms of a

“seconds” variable
– whole clock is animated by varying

the seconds parameter

m =
s

60

h =
m

60

θ
s

=
2πs

60

θ
m

=
2πm

60

θh =
2πh

12Or arms and legs of a walking human figure

33Computer Graphics 1 15-462

Getting Expressions into Your Models
• Some commercial systems (e.g. Maya) have

expression-evaluating facilities.
• Some high-end systems (e.g. Pixar’s in-house system)

contain full-blown embedded interpreted languages —
most of their models are really programs.

• If you write your models in a general-purpose language,
interpreted or not, you get this for free.

• The trick is to avoid losing too much speed in the
process.

• The example on the next slide shows (very
schematically) how you might go about writing C code to
draw a complex hierarchical model.

34Computer Graphics 1 15-462

Models as Code: draw-a-bug.
void draw_bug(walk_phase_angle, xpos, ypos zpos){

pushmatrix
translate(xpos,ypos,zpos)
calculate all six sets of leg angles based on

walk phase angle.
draw bug body
for each leg:

pushmatrix
translate(leg pos relative to body)
draw_bug_leg(theta1 & theta2 for that leg)
popmatrix

popmatrix
}

void draw_bug_leg(float theta1, float theta2){
glPushMatrix();
glRotatef(theta1,0,0,1);
draw_leg_segment(SEGMENT1_LENGTH)
glTranslatef(SEGMENT1_LENGTH,0,0);
glRotatef(theta2,0,0,1);
draw_leg_segment(SEGMENT2_LENGTH)
glPopMatrix();

}

35Computer Graphics 1 15-462

Hard Examples

• A walking humanoid that swings its arms and bobs its
head, under control of a single variable, so it walks when
you “turn the crank.” (you’d have extra parameters for
walking style, of course.)

• In the figure below, what expression would you use to
calculate the arm’s rotation angle to keep the tip on the
star-shaped wheel as the wheel rotates???

• This gets arbitrarily hard. There’s got to be a better way
to do constraints. We’ll get back to this topic when we
do animation.

θ?

36Computer Graphics 1 15-462

Announcements

Assignment 1 due Friday at midnight

Written Assignment 1 out Thursday on the web

Questions on Assignment 1?

