Announcements

Assignment 1 due Friday at midnight

Written Assignment 1 out Thursday on the web

Questions on Assignment 17

Computer Graphics 1 15-462

Hierarchical Modeling

A lesson In stick person anatomy.
or

Choosing the right parameters.

Hierarchical transformations.

The matrix stack.

See Angel 9.1-9.7

COMPUTER GRAPHICS 1
15-462

13 Sept 2001

Staying Oriented (in the course)

Specify Model

Build Geometry

Animate Geometry

Render

Manipulate image

The framework for
the topics we’re covering

transformations,
hierarchies

time dependent
transformations

raster ops,
paint

Computer Graphics 1 15-462

Modeling with Transformations

e You've learned everything you
need to know to make a stick
person out of cubes.

e Just translate, rotate, and scale
each one to get the right size,
shape, position, and
orientation.

* Looks great--until you try to
make It move.

Computer Graphics 1 15-462

The Right Control Knobs

)

As soon as you want to change
something, the model falls apart

Reason: the thing you’re modeling is
constrained but your model doesn’t know it
What we need:

— some sort of representation of structure

— a set of “control knobs” (parameters) that make
It easy to move our stick person through legal
configurations

This kind of control Is convenient for static
models, and vital for animation!

Key is to structure the transformations in
the right way: using a hierarchy

Computer Graphics 1 15-462

Hierarchical Modeling Example

"Number One" Playgroup - Duran Duboi
Issue 141: SIGGRAPH 2002 Electronic Theater Program

Computer Graphics 1 15-462

Making an Articulated Model

A

-

« A minimal 2-D jointed object:
—Two pieces, A (“forearm”) and B (“upper arm”)
—Attach point g on B to pointr on A (“elbow™)

—Desired control knobs:
» T: shoulder position (point at which p winds up)
» U: shoulder angle (A and B rotate together about p)
» V. elbow angle (A rotates about r, which stays attached to q)

Computer Graphics 1 15-462

Making an Arm, step 1

[
»

o Start with A and B in their untransformed configurations
(B Is hiding behind A)

» First apply a series of transformations to A, leaving B
where it is...

Computer Graphics 1 15-462

Making an Arm, step 2

-

| »
»

e Translate by -r, bringing r to the origin
* You can now see B peeking out from behind A

Computer Graphics 1 15-462

Making an Arm, step 3

-

<}

 Next, we rotate A by v (the “elbow” angle)

Computer Graphics 1 15-462

Making an Arm, step 4

e Translate A by q, bringing r and g together to form the
elbow joint

* We can regard g as the origin of the lower arm
coordinate system, and regard A as being in this
coordinate system.

Computer Graphics 1 15-462

Making an Arm, step 5

-

N\
r¢
0 B

}3

~rom now on, each transformation applies to
poth A and B (This is important!)

e First, translate by -p, bringing p to the origin

* A and B both move together, so the elbow
doesn’t separate!

Computer Graphics 1 15-462

Making an Arm, step 6

-

* Then, we rotate by u, the “shoulder”
angle

e Again, A and B rotate together

Computer Graphics 1 15-462 13

Making an Arm, step 7/

e Finally, translate by T, bringing the arm where we want it
e pis at origin of upper arm coordinate system

Computer Graphics 1 15-462 14

So What Have We Done?

« Seems more complicated than just translating and
rotating each piece separately

e But the model is easy to modify/animate:

—Remember the transformation sequence, and the
parameters you used—they’re part of the model.

—Whenever the parameters change, reapply all of the
transformations and draw the result

» The model will not fall apart!!!
* Note:

—Uu, v, and T are parameters of the model.
—but p, g, and r are structural constants.
—Changing u,v, or T wiggles the arm

—Changing p,q, or r dismembers it (useful only in video
games!)

Computer Graphics 1 15-462

Transformation Hierarchies

e This is the build-an-arm sequence,
represented as a tree

* Interpretation:
—Leaves are geometric primitives
—Internal nodes are transformations

—Transformations apply to everything

under them—start at the bottom and
work your way up

* You can build a wide range of models
this way

Control Knob

Primitive
Structural

Computer Graphics 1 15-462

Transformation Hierarchies

* Another point of view:

 The shoulder coordinate
transformation moves everything
below it with respect to the shoulder:

—B
—A and its transformation

e The elbow coordinate transformation
moves A with respect to the shoulder
coordinate transform

Shoulder coordinate xfor
Elbow coordinate xform
Primitive

Computer Graphics 1 15-462

-

| |
o IE3 (TR

m m e
Em Em

A Schematic Humanoid

Each node represents
—rotation(s)
—geometric primitive(s)
—struct. transformations

The root can be anywhere.
We chose the hip (can re-
folo]

Control knob for each joint
angle, plus global position
and orientation

A realistic human would
be much more complex

Computer Graphics 1 15-462

Directed Acyclic Graph

This is a graph, so you can re-
root it (make head the root)

It's directed, rendering
traversal only follows links
one way.

It’s acyclic, to avoid infinite
loops in rendering.

|
Mepd Not necessarily a tree.

e.g. l.arm2 and r.arm2
primitives might be two
Instantiations (one mirrored) of

the same geometry

Computer Graphics 1 15-462

What Hierarchies Can and Can’t Do

 Advantages.:
—Reasonable control knobs
—Maintains structural constraints

» Disadvantages:

—Doesn’t always give the “right” control knobs trivially
» e.g. hand or foot position - re-rooting may help

—Can’t do closed kinematic chains easily (keep hand
on hip)

—Missing other constraints: do not walk through walls

e Hierarchies are a vital tool for modeling and
animation

Computer Graphics 1 15-462

So What Have We Done?

e Forward Kinematics

— Given the model and the joint angles, where is the end
effector?

» In graphics compute this so you know where to draw
» In robotics compute this to know how to control the end effector

e Inverse Kinematics
—Given a desired location of the end effector, what are

the required joint angles to put it there.

» In robotics, required to place the end effector near to objects Iin
real world

Inverse Kinematics is useful in animation as well

Kinematics is easy, IK is hard because of redundanc .

Computer Graphics 1 15-462

Implementing Hierarchies

Building block: a matrix stack that you can push/pop

Recursive algorithm that descends your model tree,
doing transformations, pushing, popping, and drawmg

Tailored to OpenGL'’s state machine architecture (or vice
versa)

Nuts-and-bolts issues:
nat kind of nodes should | put in my hierarchy?

nat kind of interface should | use to construct and
It hierarchical models?

Extensions:
—expressions, languages.

Computer Graphics 1 15-462

The Matrix Stack

 |dea of Matrix Stack:
— LIFO stack of matrices with push and pop operations
— current transformation matrix (product of all transformations on stack)
— transformations modify matrix at the top of the stack

e Recursive algorithm:
— load the identity matrix

— for each internal node:
» push a new matrix onto the stack
» concatenate transformations onto current transformation matrix
» recursively descend tree
» pop matrix off of stack

— for each leaf node:
» draw the geometric primitive using the current transformation matrix

Computer Graphics 1 15-462

Relevant OpenGL routines

glPushMatrix(), glPopMatrix()
push and pop the stack. push leaves a copy ottinent
matrix on top of the stack

glLoadldentity(), glLoadMatrixd(M)

load the Identity matrix, or an arbitrary matrixnto top of the stack
glMultMatrixd(M)

multiply the matrix C on top of stack by M. C = CM
glOrtho (x0,y0,x1,y1,z0,z1)

set up parallel projection matrix
glRotatef(theta,x,y,z), glRotated(...)

axis/angle rotate. “f” and “d” take floats and dous, respectively
glTranslatef(x,y,z), glScalef(x,y,z)

translate, rotate. (also exist in “d” versions.)

Computer Graphics 1 15-462

Two-link arm, revisited, in OpenGL

Trace of Opengl calls
glLoadldentity();
glOrtho(...);
glPushMatrix();
glTranslatef(Tx,Ty,0);

glRotatef(u,0,0,1); m
glTranslatef(-px,-py,0);
|

glRotatef(v,0,0,1);
glTranslatef(-rx,-ry,0);

i)

glPopMatrix(); |

Draw(B);

glPopMatrix();

glPushMatrix();
glTranslatef(gx,qy,0);

Computer Graphics 1 15-462

Building and Editing Hierarchies

Three approaches:
« Edit the boxes-and-arrows diagram
+easy to use
—hard to visualize effect of a change
 Edit the picture (select and group)
+easy to visualize (WYSIWYG)
—confusing, no view of the graph, limited control
e Textual description (declarative or code)
+precise
+easy to implement
—hard to visualize, unintuitive

Computer Graphics 1 15-462 26

Building and Editing, continued

Two aspects to a model
—structure: nodes, connectivity, primitives
—parameters: trans, rot, scale, primitive attributes...

Hard to build model by point-and-click on a rendering of
the model (but point-and-click on a graph view is OK)

Hard to set/edit parameters by typing in numbers

Best: a hybrid (used by Maya and other anim packages)
—Build structure in a graph view
—Attach parameter values to sliders
—Render result to show effects of parameter changes

Computer Graphics 1 15-462

Select-and-Group Interface

« A common method of building a hierarchy
—Select a set of objects (click on them)

—Group command creates a new top-level “group” node
with the objects as children

—Grouping groups forms a hierarchy

« Ungrouping a group makes all its children top-

level nodes
 Editing options are group, ungroup, delete

Computer Graphics 1 15-462

What Should Transformation Nodes Do?

e Separate nodes for translation, rotation and
scale

+lots of flexibility
—many nodes making select-and-click difficult

* Nodes perform multiple transformations in hard-
wired sequence, e.g. rotate-translate-scale

+less complex tree
—hard-wired sequences are less flexible

Computer Graphics 1 15-462

Hardwired Group Transformation Sequence

* Must select a good hard-wired seguence that
the user will think Is intuitive

—Rule of thumb: scale before rotate
» avoid object shearing during rotation

—Rule of thumb: rotate before translate
» make sure rotation occurs about correct point

* Occasionally this sequence won'’t be enough - a
more flexible scheme is required

Computer Graphics 1 15-462

Group Parameters and Transformations

 Parameters (2D)
—(cX, cy): center of rotation and scaling
—(sX, sy): scaling
—theta: rotation
—(tx, ty): translation

 Full sequence of primitive transformations:

—trans(-cx, -cy) move center to origin
—scale(sx,sy) scale

—rot(theta) rotate

—trans(cx,cy) move center back

—trans(tx,ty) translate (can combine with
previous)

Computer Graphics 1 15-462

Variables and Expressions

e Better control can come from the
transformation parameters being
functions of other variables

e Simple example:

— a clock with second, minute and
hour hands

— hands should rotate together

— express all the motions in terms of a
“seconds” variable

—whole clock is animated by varying
the seconds parameter

Or arms and legs of a walking human figure

Computer Graphics 1 15-462 32

Getting Expressions into Your Models

Some commercial systems (e.g. Maya) have
expression-evaluating facilities.

Some high-end systems (e.g. Pixar’s in-house system)
contain full-blown embedded interpreted languages —
most of their models are really programs.

If you write your models in a general-purpose language,
Interpreted or not, you get this for free.

The trick is to avoid losing too much speed in the
process.

The example on the next slide shows (very
schematically) how you might go about writing C code to
draw a complex hierarchical model.

Computer Graphics 1 15-462

Models as Code: draw-a-bug.

void draw_bug(walk _phase angle, xpos, ypos zpos){

pushmatrix

translate(xpos,ypos,zpos)

calculate all six sets of leg angles based on
walk phase angle.

draw bug body

for each leg:
pushmatrix
translate(leg pos relative to body)
draw_bug_leg(thetal & theta2 for that leq)
popmatrix

popmatrix

void draw_bug_leg(float thetal, float theta2){
glPushMatrix();
glRotatef(thetal,0,0,1);
draw_leg segment(SEGMENT1 LENGTH)
glTranslatef(SEGMENT1 LENGTH,0,0);
glRotatef(theta2,0,0,1);
draw_leg segment(SEGMENTZ2_ LENGTH)
glPopMatrix();

}

Computer Graphics 1 15-462

Hard Examples

« A walking humanoid that swings its arms and bobs its
head, under control of a single variable, so it walks when
you “turn the crank.” (you'd have extra parameters for

walking style, of course.)

* In the figure below, what expression would you use to
calculate the arm’s rotation angle to keep the tip on the
star-shaped wheel as the wheel rotates???

* This gets arbitrarily hard. There’s got to be a better way
to do constraints. We’ll get back to this topic when we

do animation. \

07

Computer Graphics 1 15-462

Announcements

Assignment 1 due Friday at midnight

Written Assignment 1 out Thursday on the web

Questions on Assignment 17

Computer Graphics 1 15-462

