Announcements

• Is your account working yet?
 – Watch out for \^M and missing newlines
• Assignment 1 is due next Friday at midnight
• Check the webpage and bboards for answers to questions about the assignment

• Questions on Assignment 1?
Transformations

Vectors, bases, and matrices
Translation, rotation, scaling
Postscript Examples
Homogeneous coordinates
3D transformations
3D rotations
Transforming normals
Nonlinear deformations

Angel, Chapter 4
Uses of Transformations

• Modeling transformations
 – build complex models by positioning simple components
 – transform from object coordinates to world coordinates

• Viewing transformations
 – placing the virtual camera in the world
 – i.e. specifying transformation from world coordinates to camera coordinates

• Animation
 – vary transformations over time to create motion
General Transformations

\[Q = T(P) \] for points
\[V = R(u) \] for vectors
Rigid Body Transformations

Rotation angle and line about which to rotate
Non-rigid Body Transformations
Background Math: Linear Combinations of Vectors

• Given two vectors, A and B, walk any distance you like in the A direction, then walk any distance you like in the B direction.

• The set of all the places (vectors) you can get to this way is the set of *linear combinations* of A and B.

• A set of vectors is said to be *linearly independent* if none of them is a linear combination of the others.

$$V = v_1 A + v_2 B, \ (v_1, v_2) \in \mathbb{R}$$
Bases

- A *basis* is a linearly independent set of vectors whose combinations will get you anywhere within a space, i.e. *span* the space
- n vectors are required to span an n-dimensional space
- If the basis vectors are normalized and mutually orthogonal the basis is orthonormal
- There are *lots* of possible bases for a given vector space; there’s nothing special about a particular basis—but our favorite is probably one of these.
Vectors Represented in a Basis

• Every vector has a unique representation in a given basis
 –the multiples of the basis vectors are the vector’s *components* or *coordinates*
 –changing the basis changes the components, but not the vector
 –\(\mathbf{V} = v_1 \mathbf{E}_1 + v_2 \mathbf{E}_2 + \ldots + v_n \mathbf{E}_n \)

The vectors \(\{\mathbf{E}_1, \mathbf{E}_2, \ldots, \mathbf{E}_n\} \) are the *basis*

The scalars \((v_1, v_2, \ldots, v_n) \) are the *components* of \(\mathbf{V} \) with respect to that basis
Rotation and Translation of a Basis
Linear and Affine Maps

- A function (or map, or transformation) F is *linear* if

 $F(A+B) = F(A) + F(B)$

 $F(kA) = kF(A)$

 for all vectors A and B, and all scalars k.

- Any linear map is *completely specified* by its effect on a set of basis vectors:

 \[
 V = v_1 E_1 + v_2 E_2 + v_3 E_3
 \]

 \[
 F(V) = F(v_1 E_1 + v_2 E_2 + v_3 E_3)
 = F(v_1 E_1) + F(v_2 E_2) + F(v_3 E_3)
 = v_1 F(E_1) + v_2 F(E_2) + v_3 F(E_3)
 \]

- A function F is *affine* if it is linear plus a translation

 - Thus the 1-D transformation $y = mx + b$ is not linear, but affine

 - Similarly for a translation and rotation of a coordinate system

 - Affine transformations preserve lines
Transforming a Vector

• The coordinates of the transformed basis vector (in terms of the original basis vectors):

\[
\begin{align*}
F(E_1) &= f_{11}E_1 + f_{21}E_2 + f_{31}E_3 \\
F(E_2) &= f_{12}E_1 + f_{22}E_2 + f_{32}E_3 \\
F(E_3) &= f_{13}E_1 + f_{23}E_2 + f_{33}E_3
\end{align*}
\]

• The transformed general vector \(V \) becomes:

\[
F(V) = v_1F(E_1) + v_2F(E_2) + v_3F(E_3)
= (f_{11}E_1 + f_{21}E_2 + f_{31}E_3)v_1 + (f_{12}E_1 + f_{22}E_2 + f_{32}E_3)v_2 + (f_{13}E_1 + f_{23}E_2 + f_{33}E_3)v_3
= (f_{11}v_1 + f_{12}v_2 + f_{13}v_3)E_1 + (f_{21}v_1 + f_{22}v_2 + f_{23}v_3)E_2 + (f_{31}v_1 + f_{32}v_2 + f_{33}v_3)E_3
\]

and its coordinates (still w.r.t. \(E \)) are

\[
\hat{v}_1 = (f_{11}v_1 + f_{12}v_2 + f_{13}v_3) \\
\hat{v}_2 = (f_{21}v_1 + f_{22}v_2 + f_{23}v_3) \\
\hat{v}_3 = (f_{31}v_1 + f_{32}v_2 + f_{33}v_3)
\]

or just \(v_i = \sum f_{ij}v_j \) The matrix multiplication formula!
Matrices to the Rescue

• An nxn matrix F represents a linear function in n dimensions
 – i-th column shows what the function does to the corresponding basis vector
• Transformation = linear combination of columns of F
 – first component of the input vector scales first column of the matrix
 – accumulate into output vector
 – repeat for each column and component
• Usually compute it a different way:
 – dot row i with input vector to get component i of output vector

\[
\left\{ \vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \right\} = \left\{ \begin{array}{ccc} 11 & 12 & 13 \\ 21 & 22 & 23 \\ 31 & 32 & 33 \end{array} \right\} \left\{ \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right\} \quad \vec{v}_i = \sum_j f_{ij}v_j\]
Basic 2D Transformations

Translate
\[x' = x + t_x \]
\[y' = y + t_y \]
\[\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix} \]
\[x' = x + t \]

Scale
\[x' = s_x x \]
\[y' = s_y y \]
\[\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]
\[x' = Sx \]

Rotate
\[x' = x \cos \theta - y \sin \theta \]
\[y' = x \sin \theta + y \cos \theta \]
\[\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]
\[x' = Rx \]

Parameters \(t \), \(s \), and \(\theta \) are the “control knobs”
Compound Transformations

- Build *compound* transformations by stringing basic ones together, e.g.
 - “*translate p to the origin, rotate, then translate back*”
 can also be described as a rotation about p
- Any sequence of linear transformations can be collapsed into a single matrix formed by multiplying the individual matrices together
 \[v_i = \sum_j f_{ij} \left(\sum_k g_{jk} v_k \right) \]
 \[= \sum_k \left(\sum_j f_{ij} g_{jk} \right) v_k \]
 \[m_{ij} = \sum_j f_{ij} g_{jk} \]
- This is good: can apply a whole sequence of transformation at once

Translate to the origin, rotate, then translate back.
Postscript (Interlude)

• Postscript is a language designed for
 – Printed page description
 – Electronic documents

• A full programming language, with variables, procedures, scope, looping, …
 – Stack based, i.e. instead of “1+2” you say “1 2 add”
 – Portable Document Format (PDF) is a semi-compiled version of it (straight line code)

• We’ll briefly look at graphics in Postscript
 – elegant handling of 2-D affine transformations and simple 2-D graphics
2D Transformations in Postscript, 1

0 0 moveto 1 0 translate 30 rotate
(test) show 0 0 moveto 0 0 moveto
(test) show (test) show (test) show

test

test

test
2D Transformations in Postscript, 2

1 2 scale
0 0 moveto
(test) show

1 0 translate
30 rotate
0 0 moveto
(test) show

30 rotate
1 0 translate
0 0 moveto
(test) show

(test) show

(test) show

(test) show
2D Transformations in Postscript, 3

30 rotate
1 2 scale
0 0 moveto
(test) show

1 2 scale
30 rotate
0 0 moveto
(test) show

-1 1 scale
0 0 moveto
(test) show

(test) show

(test) show

(test) show
Homogeneous Coordinates

• Translation is not linear--how to represent as a matrix?
• Trick: add extra coordinate to each vector

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

• This extra coordinate is the \textit{homogeneous} coordinate, or \(w \)
• When extra coordinate is used, vector is said to be represented in \textit{homogeneous coordinates}
• Drop extra coordinate after transformation (project to \(w=1 \))
• We call these matrices \textit{Homogeneous Transformations}
W!? Where did that come from?

• Practical answer:
 – W is a clever algebraic trick.
 – Don’t worry about it too much. The w value will be 1.0 for the time being.
 – If w is not 1.0, divide all coordinates by w to make it so.

• Clever Academic Answer:
 – (x,y,w) coordinates form a 3D projective space.
 – All nonzero scalar multiples of (x,y,1) form an equivalence class of points that project to the same 2D Cartesian point (x,y).
 – For 3-D graphics, the 4D projective space point (x,y,z,w) maps to the 3D point (x,y,z) in the same way.
Homogeneous 2D Transformations

The basic 2D transformations become

Translate: \[
\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\]

Scale: \[
\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Rotate: \[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Any affine transformation can be expressed as a combination of these.

We can combine homogeneous transforms by multiplication.

Now any sequence of translate/scale/rotate operations can be collapsed into a single homogeneous matrix!
Sequences of Transformations

- Often the same transformations are applied to many points
- Calculation time for the matrices and combination is negligible compared to that of transforming the points
- Reduce the sequence to a single matrix, then transform
Collapsing a Chain of Matrices.

- Consider the composite function $ABCD$, i.e. $p' = ABCDp$
- Matrix multiplication isn’t commutative - the order is important
- But matrix multiplication is associative, so can calculate from right to left or left to right: $ABCD = (((AB) C) D) = (A (B (CD))))$.
- Iteratively replace \textit{either} the leading or the trailing pair by its product

\begin{array}{c|c|c}
M & M & M \\
\hline
\leftarrow & \leftarrow & \leftarrow \\
D & CM & BM \\
\hline
AM & MB & MC \\
\end{array}

Premultiply \hspace{1cm} or \hspace{1cm} Postmultiply

- \textit{Postmultiply: left-to-right} (reverse of function application.)
- \textit{Premultiply: right-to-left} (same as function application.)

both give the same result.
Implementing Transformation Sequences

• Calculate the matrices and cumulatively multiply them into a global
 Current Transformation Matrix

• Postmultiplication is more convenient in hierarchies -- multiplication
 is computed in the opposite order of function application

• The calculation of the transformation matrix, \(M \),
 - initialize \(M \) to the identity
 - in reverse order compute a basic transformation matrix, \(T \)
 - post-multiply \(T \) into the global matrix \(M \), \(M \leftarrow MT \)

• Example - to rotate by \(\theta \) around \([x,y]\):

  ```
  glLoadIdentity()  /* initialize M to identity mat.*/
  glTranslatef(x, y, 0)  /* LAST: undo translation */
  glRotatef(theta, 0, 0, 1)  /* rotate about z axis */
  glTranslatef(-x, -y, 0)  /* FIRST: move [x,y] to origin. */
  ```

• Remember the last \(T \) calculated is the first applied to the points
 - calculate the matrices in reverse order
Column Vector Convention

• The convention in the previous slides
 – transformation is by matrix times vector, \(Mv \)
 – textbook uses this convention, 90% of the world too

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 m_{11} & m_{12} & m_{13} \\
 m_{21} & m_{22} & m_{23} \\
 m_{31} & m_{32} & m_{33}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

• The composite function \(A(B(C(D(x)))) \) is the matrix-vector product \(ABCDx \)
Beware: Row Vector Convention

• The transpose is also possible

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\begin{bmatrix}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{bmatrix}
\]

• How does this change things?
 – all transformation matrices must be transposed
 – ABCDx transposed is \(x^T D^T C^T B^T A^T \)
 – pre- and post-multiply are reversed

• OpenGL uses transposed matrices!
 – You only notice this if you pass matrices as arguments to OpenGL subroutines, e.g. glLoadMatrix.
 – Most routines take only scalars or vectors as arguments.
Rigid Body Transformations

• A transformation matrix of the form

\[
\begin{bmatrix}
 x_x & x_y & t_x \\
 y_x & y_y & t_y \\
 0 & 0 & 1
\end{bmatrix}
\]

where the upper 2x2 submatrix is a rotation matrix and column 3 is a translation vector, is a rigid body transformation.

• Any series of rotations and translations results in a rotation and translation of this form
3D Transformations

- 3-D transformations are very similar to the 2-D case
- Homogeneous coordinate transforms require 4x4 matrices
- Scaling and translation matrices are simply:

\[
S = \begin{bmatrix}
 s_0 & 0 & 0 & 0 \\
 0 & s_1 & 0 & 0 \\
 0 & 0 & s_2 & 0 \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
T = \begin{bmatrix}
 1 & 0 & 0 & t_0 \\
 0 & 1 & 0 & t_1 \\
 0 & 0 & 1 & t_2 \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

- Rotation is a bit more complicated in 3-D
 - left- or right-handedness of coordinate system affects direction of rotation
 - different rotation axes
3-D Coordinate Systems

• Right-handed vs. left-handed

• Z-axis determined from X and Y by cross product: \(Z = X \times Y \)

\[
Z = X \times Y = \begin{bmatrix}
X_2 Y_3 - X_3 Y_2 \\
X_3 Y_1 - X_1 Y_3 \\
X_1 Y_2 - X_2 Y_1
\end{bmatrix}
\]

• Cross product follows right-hand rule in a right-handed coordinate system, and left-hand rule in left-handed system.
Aside: The *Dual* Matrix

• If \(v = [x, y, z] \) is a vector, the skew-symmetric matrix

\[
v^* = \begin{bmatrix}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{bmatrix}
\]

is the *dual matrix* of \(v \)

• Cross-product as a matrix multiply: \(v^* a = v \times a \)
 • helps define rotation about an arbitrary axis
 • angular velocity and rotation matrix time derivatives

• Geometric interpretation of \(v^* a \)
 • project \(a \) onto the plane normal to \(v \)
 • rotate \(a \) by \(90^\circ \) about \(v \)
 • resulting vector is perpendicular to \(v \) and \(a \)
Euler Angles for 3-D Rotations

• Euler angles - 3 rotations about each coordinate axis, however
 – angle interpolation for animation generates bizarre motions
 – rotations are order-dependent, and there are no conventions about
 the order to use

• Widely used anyway, because they're “simple”

• Coordinate axis rotations (right-handed coordinates):

\[R_x = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \cos\theta & -\sin\theta & 0 & 0 \\
0 & \sin\theta & \cos\theta & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} \]

\[R_y = \begin{bmatrix}
\cos\theta & 0 & \sin\theta & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-\sin\theta & 0 & \cos\theta & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} \]

\[R_z = \begin{bmatrix}
\cos\theta & -\sin\theta & 0 & 0 \\
\sin\theta & \cos\theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \]
Euler Angles for 3-D Rotations

Roll

Pitch

Yaw
Axis-angle rotation

The matrix R rotates by α about axis (unit) v:

$$R = vv^T + \cos \alpha (I - vv^T) + \sin \alpha v^*$$

- vv^T Project onto v
- $I - vv^T$ Project onto v's normal plane
- v^* Dual matrix. Project onto normal plane, flip by 90°
- $\cos \alpha, \sin \alpha$ Rotate by α in normal plane

(assumes v is unit.)
Quaternions

• Complex numbers can represent 2-D rotations
• Quaternions, a generalization of complex numbers, can represent 3-D rotations
• Quaternions represent 3-D rotations with 4 numbers:
 – 3 give the rotation axis - magnitude is $\sin \alpha/2$
 – 1 gives $\cos \alpha/2$
 – unit magnitude - points on a 4-D unit sphere

• Advantages:
 – no trigonometry required
 – multiplying quaternions gives another rotation (quaternion)
 – rotation matrices can be calculated from them
 – direct rotation (with no matrix)
 – no favored direction or axis

• See Angel 4.11
What is a Normal?

Indication of outward facing direction for lighting and shading

Order of definition of vertices in OpenGL

Right hand rule

Note: GL conventions…

```cpp
glFrontFace(GL_CCW)
glFrontFace(GL_CW)
```
Transforming Normals

- It’s tempting to think of normal vectors as being like porcupine quills, so they would transform like points.
- Alas, it’s not so, consider the 2D affine transformation below.
- We need a different rule to transform normals.
Normals Transform Like Planes

A plane \(ax + by + cz + d = 0 \) can be written
\[
n \cdot p = n^T p = 0,
\]
where \(n = [a \ b \ c \ d]^T \), \(p = [x \ y \ z \ 1]^T \)

\((a,b,c)\) is the plane normal, \(d \) is the offset.

If \(p \) is transformed, how should \(n \) transform?

To find the answer, do some magic:

\[
0 = n^T I p \quad \text{equation for point on plane in original space}
\]

\[
= n^T (M^{-1} M) p
\]

\[
= (n^T M^{-1})(Mp)
\]

\[
= n'^T p' \quad \text{equation for point on plane in transformed space}
\]

\(p' = Mp \) to transform point

\[
n' = (n^T M^{-1})^T = M^{-1^T} n \quad \text{to transform plane}
\]
Transforming Normals - Cases

- For general transformations M that include perspective, use full formula (M inverse transpose), use the right d
 d matters, because parallel planes do not transform to parallel planes in this case

- For affine transformations, d is irrelevant, can use $d=0$.

- For rotations only, M inverse transpose $= M$, can transform normals and points with same formula.
Spatial Deformations

- Linear transformations
 - Take any point \((x, y, z)\) to a new point \((x', y', z')\)
 - Non-rigid transformations such as shear are “deformations”

- Linear transformations aren’t the only types!
- A transformation is any rule for computing \((x’, y’, z’)\) as a function of \((x, y, z)\).

- Nonlinear transformations would enrich our modeling capabilities.
- Start with a simple object and deform it into a more complex one.
Bendy Twisties

• Method:
 – define a few simple shapes
 – define a few simple non-linear transformations (deformations e.g. bend/twist, taper)
 – make complex objects by applying a sequence of deformations to the basic objects

• Problem:
 – a sequence of non-linear transformations cannot be collapsed to a single function
 – every point must be transformed by every transformation
Bendy Twisties

Original objects

Tapering

Twisting

Bending
Example: Z-Taper

• Method:
 – align the simple object with the z-axis
 – apply the non-linear taper (scaling) function to alter its size as some function of the z-position

• Example:
 – applying a linear taper to a cylinder generates a cone

“Linear” taper:

\[
\begin{align*}
x' &= (k_1 z + k_2) x \\
y' &= (k_1 z + k_2) y \\
z' &= z
\end{align*}
\]

General taper (\(f\) is any function you want):

\[
\begin{align*}
x' &= f(z) x \\
y' &= f(z) y \\
z' &= z
\end{align*}
\]
Example: Z-twist

- Method:
 - Align simple object with the z-axis
 - Rotate the object about the z-axis as a function of z
- Define angle, θ, to be an arbitrary function $f(z)$
- Rotate the points at z by $\theta = f(z)$

“Linear” version: $f(z) = kz$

$$\theta = f(z)$$
$$x' = x \cos(\theta) - y \sin(\theta)$$
$$y' = x \sin(\theta) + y \cos(\theta)$$
$$z' = z$$
Extensions

• Incorporating deformations into a modeling system
 – How to handle UI issues?

• “Free-form deformations” for arbitrary warping of space
 – Use a 3-D lattice of control points to define Bezier cubics:
 \((x',y',z')\) are piecewise cubic functions of \((x,y,z)\)
 – Widely used in commercial animation systems

• Physically based deformations
 – Based on material properties
 – Reminiscent of finite element analysis
Announcements

• Is your account working yet?
 – Watch out for \^M and missing newlines
• Assignment 1 is due next Friday at midnight

• Questions on assignment 1?