
COMBINING MIXTURE WEIGHT PRUNING AND QUANTIZATION FOR
SMALL-FOOTPRINT SPEECH RECOGNITION

David Huggins-Daines and Alexander I. Rudnicky

Carnegie Mellon University
Language Technologies Institute

Pittsburgh, PA, USA

ABSTRACT

Semi-continuous acoustic models, where the output distri-

butions for all Hidden Markov Model states share a common

codebook of Gaussian density functions, are a well-known

and proven technique for reducing computation in automatic

speech recognition. However, the size of the parameter files,

and thus their memory footprint at runtime, can be very large.

We demonstrate how non-linear quantization can be com-

bined with a mixture weight distribution pruning technique

to halve the size of the models with minimal performance

overhead and no increase in error rate.

Index Terms— Speech recognition, Quantization, Data

compression

1. INTRODUCTION

In large-vocabulary continuous speech recognition, the com-

putational load is typically evenly divided between acoustic

model evaluation and large-vocabulary search. The speed of

the recognizer is directly proportional to, on the one hand,

the number of basic acoustic models (typically Gaussian or

Laplacian densities) which are evaluated per frame of input,

and on the other hand, the number of arcs (word or phone

models) in the search graph which are active per frame.

A well-known way to reduce the number of Gaussian den-

sities to be evaluated is to share a common codebook of den-

sities between some or all states in the acoustic model. If a

single codebook is shared between all states, this is known

as a semi-continauous acoustic model [1]. It is also common

to split the acoustic feature space into multiple independent

streams, with a separate codebook for each stream.

In the PocketSphinx system [2], four codebooks of 256

Gaussians, modeling 12 MFCC coefficients, their first and

second time derivatives, and the power coefficients, are shared

between all states of the acoustic model. Each tied output dis-

tribution, or senone, is represented by four arrays of 256 mix-

ture weights, corresponding to the 1024 shared Gaussians.

Therefore, although the amount of Gaussian computation is

greatly reduced, the mixture weight parameter arrays can be

quite large, containing 1024 parameters for each senone in

the model. Furthermore, to compensate for the small number

of Gaussian densities, it is common to use a large number of

senones in order to take advantage of large training data sets.

Despite the size of the mixture weight arrays, in our expe-

rience, evaluation of semi-continuous models is more efficient

than evaluation of similar types of compact acoustic models,

such as subspace distribution clustered HMMs [3]. There are

two reasons for this. The first is that, as is typically the case in

mixture models, the vast majority of the probability mass for

any given observation falls on a small number of Gaussians

in each codebook. Since the codebook of Gaussians itself is

relatively small, most of the work in evaluating a set of semi-

continuous models lies in the calculation of mixture densities.

We can save a substantial amount of computation by using

only the top N Gaussians in calculating mixture densities, for

some small N , usually 4 in our system.

This is possible due to the stream independence property

of semi-continuous models. As shown in Equation 1, the

codebook density is contained inside a summation over all

weighted, normalized components for a given feature stream.

Therefore, if a density has been skipped and is presumed to

be zero, it simply does not contribute to the overall mixture

density.

PSC(o|qi) =
∏

j

∑

k

wijk
N(o; μijk, Σijk)∑
� N(o; μij�, Σij�)

(1)

By contrast, in a subspace-distribution model, shown in

Equation 2, the codebook densities are contained inside a

product over feature streams for a given mixture component.

A missing density here forces the entire component density to

zero. Also, since mixture densities are typically computed in

logarithmic form, the “sum” operation is considerably more

expensive than the “product” operation, and so there is no real

advantage to skipping densities.

PSDC(o|qi) =
∑

k

wik

∏

j

N(o; μijk, Σijk) (2)

The second reason for the efficiency of semi-continuous

models is that the direct mapping of GMM components to

4189978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

codebook Gaussians allows the mixture weights to be ar-

ranged in component-major order in memory. Since only

a few components are used in calculating scores, memory

accesses to the mixture weight array are localized to the con-

tiguous regions corresponding to these components. When

the mixture weights are stored in senone-major order, the

access pattern is much sparser, leading to frequent cache

misses.

In this paper, we examine the effect of combining mix-

ture weight pruning and compression in order to reduce the

memory footprint of semi-continuous models without com-

promising their efficiency of evaluation.

2. EXPERIMENTAL SETUP

For our experiments in this paper, we used the Wall Street

Journal corpus of read speech [4]. Semi-continuous acoustic

models were trained on the full set of training data, including

the speaker independent and dependent sets and the “sponta-

neous” training data, for a total of approximately 190 hours of

speech. The traning data was downsampled to 8kHz to match

the input capabilities of typical mobile devices. We used the

PocketSphinx decoder, in single-pass recognition mode, with

acoustic features as described above. The language model

was the Lincoln Labs 5000-word closed vocabulary trigram

model with non-vocalized punctuation. Baseline results for

5000 and 10000 senone models on the 5000-word vocabulary

November ’92 development and test sets are shown in Ta-

ble 1. The real-time factors reported are for the development

set, and do not include acoustic feature extraction. The “x64”

system is an AMD Opteron 852 running at 2.6 GHz, while

the “ARM” system is a Nokia N800 tablet using a TI OMAP

2420 running at 400MHz.

Senones 5000 10000

%WER (devel) 11.85 11.01

%WER (test) 9.73 9.13

xRT (x64) 0.07 0.08

xRT (ARM) 1.18 1.35

Table 1. Baseline Results

In PocketSphinx, mixture weights are stored as logarith-

mic values with a small base (typically 1.0001) which are

converted to integers, negated, and linearly quantized such

that the sum of a log mixture weight and log acoustic den-

sity never exceeds 255. This allows the “addition” operation

in logarithmic space to be done using a small lookup table

indexed by the difference between two values. The normal-

ization of Gaussian densities, as shown in Equation 1, is very

important to this implementation, as it reduces their dynamic

range.

3. MIXTURE WEIGHT PRUNING

In general, for any given senone, a few components comprise

the majority of the a priori probability mass in the mixture

weight distribution. That is, the average entropy of the mix-

ture weight distribution is quite low. It was shown in [5] that

the stream independence property allows us to exploit this

fact by removing “irrelevant” mixture weights from the dis-

tribution. This is done by taking the average perplexity of the

unpruned mixture weight distributions and computing a scal-

ing factor between it and a desired average “target” number

t of non-zero weights per senone. This factor is applied to

the perplexity of each mixture weight distribution wi and the

resulting top ni, up to a minimum value k, values are retained:

ni = max(k,
t

1
N

∑N
i=0 pplx(wi)

pplx(wi)) (3)

This results in a substantial improvement in runtime per-

formance, as shown in Table 2 for the development set. The

performance gain with pruned mixtures does not come from

more efficient mixture density calculation, but rather from an

effect on the distribution of acoustic scores which causes out-

lier models to be removed from search earlier. This effect

is complimentary to beam pruning, as shown in the time-

accuracy curves in Figure 1.

Target t 32 48 64 96 128

%WER (10000) 13.17 12.13 11.35 11.07 11.15

xRT (10000) 0.04 0.05 0.06 0.07 0.08

%WER (5000) 15.24 13.45 12.27 11.72 11.68

xRT (5000) 0.03 0.04 0.05 0.05 0.06

xRT (5000, ARM) 1.03

Table 2. Mixture Weight Pruning (Nov ’92 devel 5k)

The problem with mixture weight pruning is that, in order

to preserve this improvement in performance, it is necessary

to preserve the size and structure of the mixture weight array.

That is, the “irrelevant” mixture weights are not actually re-

moved from the in-memory representation, but simply set to

zero (or, to be precise, the maximum allowable value, since

they are stored as negative log quantities). The component-

major access pattern described in Section 1, which is crucial

to fast evaluation, requires that all mixture weights for a given

Gaussian be stored contiguously in memory, and therefore we

cannot simply store the non-zero mixture weights for each

senone, though there may only be a few of them.

4. MIXTURE WEIGHT QUANTIZATION

Another option for compressing the mixture weight arrays,

implemented in the Microsoft Whisper system [6], which was

derived from the Sphinx-II system [7], which was succeeded

by PocketSphinx, is to use run-length encoding on the rows

4190

10 12 14 16 18 20 22 24 26

% WER

100

120

140

160

180

200

220

240

260

280

se
co

n
d

s
C

P
U

 t
im

e

48 mixtures
64 mixtures
96 mixtures
256 mixtures

Fig. 1. Time-Accuracy of Pruned Models (Nov ’92 devel 5k,

10000 senones)

of the component-major mixture weight arrays. For this to be

an effective form of compression, it must be combined with

quantization of the mixture weight values. As noted in Sec-

tion 2, the log-mixture weights in PocketSphinx are already

stored in a linearly quantized form. However, this format was

chosen specifically to make the log-addition operation com-

putationally efficient, and is not storage efficient. Although

the range of the mixture weights is 0 to 159, they are stored

as single bytes. As well, contrary to [6], we found that there

were very few runs of specific values long enough to achieve

significant space savings with RLE.

For this reason, we investigated non-linear quantization

of the mixture weight values. Using a Lloyd-Max quantizer,

we constructed codebooks from the original, unquantized

log mixture weights, excluding the “zero” probability val-

ues, which were represented by a fixed codeword. These

codebooks were then linearly quantized to the same 8-bit

representation required by the log-addition code. To inves-

tigate the effect on accuracy, we ran experiments where the

original mixture weights were simply replaced with the near-

est codeword. As shown in Table 3, there is little effect on

accuracy when using as few as 8 codewords, and no effect on

speed when using as few as 16 codewords. As well, when

mixture weight pruning is applied before quantization, there

is a smaller penalty in accuracy and speed.

The slowdown incurred with 8 codewords is similar to

the slowdown we experience when raising the mixture weight

floor, as described in [5]. Namely, it flattens the distribution

of acoustic scores, causing outlier models to be kept active in

search longer than necessary. The same pattern can be ob-

served in the test set; in fact, the performance of pruned and

quantized models (10000 senones, 96 mixtures and 16 code-

words) is equal to the baseline on the test set (9.11% WER

versus 9.13%).

Codewords 4 8 16 32 64

%WER (10000) 17.40 11.28 11.09 11.01 11.22

(96 mixtures) 14.23 11.04 11.72 11.17 11.19

xRT (10000) 0.18 0.09 0.08 0.08 0.08

(96 mixtures) 0.11 0.07 0.07 0.07 0.07

%WER (5000) 19.50 13.25 12.52 11.76 11.66

(96 mixtures) 13.89 12.28 11.31 11.75 11.79

xRT (5000) 0.17 0.09 0.08 0.07 0.07

(96 mixtures) 0.08 0.06 0.06 0.06 0.05

Table 3. Mixture Weight Quantization, Nov ’92 devel 5k

5. MIXTURE WEIGHT COMPRESSION

Since the performance of the recognizer using 16 codewords

is indistinguishable from that using the original mixture

weights, this allows us to immediately cut the size of the

mixture weight array in half by using a fixed width 4-bit

encoding for the codeword indices. In addition, the scaled

acoustic densities for the top N Gaussians can now be pre-

computed since there are only 16N distinct values, each of

which occupies a single byte.

Senones 5000 10000

Uncompressed 5,345,864 10,465,920

4-bit encoded 2,673,239 5,233,240

RLE (unpruned) 4,005,919 7,293,083

RLE (96 mixtures) 2,244,351 4,202,484

Table 4. Compressed Mixture Weight File Sizes (bytes)

We also implemented a run-length encoding scheme, us-

ing the top 4 bits of each byte in the mixture weight array

to store the run length, and the low 4 bits to store the code-

word index. As shown in Table 4, we found that this was only

effective by comparison with the fixed width encoding when

mixture weight pruning was first applied. The run-length en-

coding scheme also incurred a significant overhead in CPU

time, particularly on the ARM platform, as shown in Table 5.

This is most likely because it is necessary to scan the entire

mixture weight array to obtain codeword indices, even if the

set of active senones is sparse. This is a particular problem

for the ARM platform which has only a single 16 KiB data

cache and a much slower path to main memory.

Conversely, the 4-bit encoding consistently decreases per-

formance by approximately 20% on x64, but behaves incon-

sistenly on ARM, decreasing performance by only 2% in the

best case and 26% in the worst case. This is most likely due to

better branch prediction on the x64 platform, since the extrac-

tion of the 4-bit codeword IDs from the mixture weight array

uses a parity test and branch to determine which half-byte to

extract. An alternative method is to implement the half-byte

indexing using a variable shift count calculated from the par-

ity bit. This proved to be less efficient on x64, and roughly

4191

Platform x64 ARM

Senones 5000 10000 5000 10000

unpruned 0.07 0.08 1.18 1.35

4-bit 0.10 0.10 1.49 1.39

RLE 0.11 0.13 1.71 1.87

96 mixtures 0.05 0.07 1.03 1.20

4-bit 0.06 0.09 1.05 1.35

RLE 0.07 0.11 1.21 1.66

Table 5. Performance of Compressed Mixture Weights (xRT)

the same on ARM.

Another efficient way to implement 4-bit encoding is to

activate and compute senones in even/odd pairs. Although

this leads to more senone scores being computed per frame,

the reduced overhead for indexing and unpacking half-byte

values causes it to be slightly faster on x64. Since the senone

score computation is more memory-bound on ARM, it has

little to no effect on that platform.

6. CONCLUSIONS AND FUTURE WORK

The combination of mixture weight distribution pruning and

non-linear quantization of mixture weight parameters can

reduce the memory and storage footprint of the decoder by

several megabytes for a typical acoustic model. While quan-

tization alone incurs a significant performance overhead, this

can be reduced or eliminated by combining it with pruning.

In addition, the run-length encoding scheme proposed in [6]

achieves much better compression and performance when

combined with mixture weight pruning.

Overall, the combination of a fixed 4-bit coding scheme

and mixture weight pruning was the most successful, achiev-

ing a 2.6 MB savings in model size and memory footprint

with a negligible impact on performance on the ARM plat-

form (1.05 xRT versus 1.03 xRT for the pruned, uncom-

pressed model and 1.18 xRT for the baseline model). As

well, the error rate for the 5000-senone pruned and com-

pressed model is actually lower on the development set than

the baseline model (11.31% versus 11.85%). This, or a

scheme similar to it, will be implemented in future ver-

sions of the PocketSphinx speech recognition system and re-

leased as open source code through the CMU Sphinx project

(http://cmusphinx.org).

Since the distribution of mixture weight codewords is far

from uniform, it may be possible in the future to achieve

better compression using Huffman coding or some other

variable-width code. This is particularly promising with

pruned mixture weight distributions since the effect of prun-

ing is to decrease the entropy of these distributions, and

more so their quantized representations. However, as with

run-length encoding, the additional overhead incurred by

scanning the compressed mixture arrays at runtime is likely

to offset any benefits resulting from the reduced memory

footprint. This overhead is likely to be greater on embedded

platforms due to their simpler and lower-performing memory

hierarchies.

7. REFERENCES

[1] X. D. Huang, Semi-continuous Hidden Markov Models
for Speech Recognition, Ph.D. thesis, University of Edin-

burgh, 1989.

[2] D. Huggins-Daines, M. Kumar, A. Chan, A. Black,

M. Ravishankar, and A. Rudnicky, “PocketSphinx: A

free, real-time continuous speech recognition system for

hand-held devices,” in Proceedings of ICASSP 2006,

Toulouse, France, 2006.

[3] E. Bocchieri and B. Mak, “Subspace distribution cluster-

ing hidden markov model,” IEEE Transactions on Speech
and Audio Processing, vol. 9, no. 3, pp. 264–275, 2001.

[4] D. Paul and J. Baker, “The design for the Wall Street

Journal based CSR corpus,” in Proceedings of the ACL
workshop on Speech and Natural Language, 1992.

[5] D. Huggins-Daines and A. Rudnicky, “Mixture pruning

and roughening for scalable acoustic models,” in Pro-
ceedings of ACL Workshop on Mobile Language Tech-
nologies, Columbus, OH, USA, 2008.

[6] X. D. Huang, A. Acero, F. Alleva, M. Hwang, L. Jiang,

and M. Mahajan, “From Sphinx-II to Whisper: Mak-

ing speech recognition usable,” in Automatic Speech and
Speaker Recognition: Advanced Topics, pp. 481–508.

Kluwer, 1996.

[7] X. D. Huang, F. Alleva, H. Hon, M. Hwang, and

R. Rosenfeld, “The Sphinx-II speech recognition system:

an overview,” Computer Speech and Language, vol. 7,

no. 2, pp. 137–148, 1993.

4192

