
Exploring Symmetric Cryptography for Secure Network Reprogramming ∗

Donnie H. Kim
Information Networking Institute

Carnegie Mellon University
donniekim@cmu.edu

Rajeev Gandhi
ECE Department

Carnegie Mellon University
rgandhi@ece.cmu.edu

Priya Narasimhan
ECE Department

Carnegie Mellon University
priya@cs.cmu.edu

Abstract

Recent secure code-update protocols for sensor networks
have been based on asymmetric-crypto primitives such as
digital signatures. Our approach, Castor, explores the fea-
sibility of securing an existing code-update protocol, Del-
uge, using symmetric-crypto mechanisms that are more
suited to the resource constraints of sensor nodes. Castor
involves a synergistic combination of a one-way hash-chain,
a one-way key-chain, and a sequence of MACs with delayed
key-disclosure to enable sensor nodes to verify the update’s
authenticity. We guarantee that no correct node will ever
install or forward a compromised part of an update, while
addressing the performance issues related to delayed key-
disclosure.

1 Introduction

Wireless sensor networks generally operate in deeply em-
bedded environments. Given the long-lived characteristic of
these networks, the need to automatically update the code
running on previously installed sensors during their life-
times is obvious. A number of network-reprogramming (or
code-update) protocols (Deluge [4], MNP [7], Infuse [6],
etc.) have emerged to support the reliable and efficient dis-
semination of a code-update (or program image) in sensor
networks. These protocols employ the radio, the sensor’s
primary communication channel, and are, thus, referred to
as “over-the-air” updates.

The propagation of fragments of a code-update’s image
is typically done in an epidemic fashion, i.e., sensors prop-
agate received fragments to their immediate neighbors that,
in turn, propagate them to their neighbors, and so on, until
all of the sensors in the network have been reached. Pre-
venting compromised anonymous nodes from disseminat-
ing arbitrary code to the entire network is critical, particu-
larly because an adversary can hijack this epidemic propa-

∗Funded by ARO grant DAAD19-02-1-0389 to the Center for Com-
puter and Communications Security at CMU.

gation (through the injection of a corrupt code-update im-
age) to adversely impact the entire network’s functionality.

Recent research efforts ([1, 2] and our own previous
work, Sluice [9]) on secure network-reprogramming pro-
tocols have leaned towards employing asymmetric cryp-
tography, which comes with its associated computational
costs. We seek to investigate whether we can exploit sym-
metric cryptography to provide for lower end-to-end up-
date latencies and lower computation/resource costs for up-
date dissemination in sensor networks (as compared to the
use of asymmetric cryptography)? While it is well known
that symmetric cryptosystems are computationally less ex-
pensive (and, therefore, possibly more suited to resource-
constrained sensor networks) than asymmetric ones, there
is more to their usage than this. With symmetric cryptog-
raphy, a sender and receiver must set up a shared key in
advance; an adversary that subverts even a single node can
obtain access to the secret key and effectively compromise
the entire code-update process and all of the innocent nodes.
Thus, we need a way to be able to use symmetric cryptogra-
phy in network reprogramming, without worrying about the
exposure of the keys to an adversary due to compromised
nodes in the network.

Our secure code-update protocol, Castor, leverages
symmetric-crypto mechanisms that are likely to be more
suited to the resource constraints of sensor nodes. Castor in-
volves a synergistic combination of a one-way hash-chain,
a one-way key-chain, and a sequence of MACs with the de-
layed disclosure of symmetric keys, to enable untrusted sen-
sor nodes to verify the update’s authenticity. We guarantee
that no correct node will ever install or forward a compro-
mised part of an update, while simultaneously addressing
the performance issues related to delayed key-disclosure.

2 Background

• Network-reprogramming protocols. Deluge is dis-
tributed as a part of the popular TinyOS environment [11],
and is currently the most widely available code-update pro-
tocol for sensor networks. In our implementation of Castor,

1

we build upon Deluge primarily because of its wide avail-
ability – thus, this section describes Deluge’s operation in
detail. However, we emphasize that our approach can be
easily extended to any network reprogramming protocol.

Deluge splits the code-update’s binary image into fixed-
size chunks called pages. Each page is further split into
fixed-size transmission units called packets. Deluge uses
pipelining or spatial multiplexing to reduce the end-to-end
propagation latency, thereby making the update process
more efficient. With pipelining, nodes are allowed to for-
ward pages that they have already received without need-
ing to wait to receive the entire set of pages that form
the entire code-update image. Pages must be received se-
quentially, i.e., a node may not begin forwarding page N
until it has first received pages 0, 1 . . . , N − 1, inclusive.
This constraint reduces the amount of state information that
each sensor must maintain regarding the extent to which the
code-update image has been locally received/transmitted.

• One-way hash/key chains. Lamport first proposed one-
way chains [8] as a means of generating one-time pass-
words. The concept is based upon a one-way function F ()
that is easy to compute, but that is computationally difficult
to invert. A one-way chain {a0, a1,, am−1} of length
m is generated by repeatedly applying the function F () to
the last element, am, to generate a sequence where ele-
ment aj = F (aj+1). The chain is generated in the order
am−1, am−2,, a1, a0, but revealed in the reverse order.
The head of the one-way chain, a0, must be a trusted value
because it serves as a commitment to the entire chain.

Due to the one-way chain property, (i) it is possible for
every node to verify whether a received ai is the ith ele-
ment of the one-way chain by examining whether F i(a0)
equals ai, (ii) it is not possible for a compromised node to
derive ai+1 from ai, for any i > 0, and (iii) even if interme-
diate elements are missing, they can be derived using later
elements of the chain. Thus, a node that has access to an
authentic a0 can recursively verify the authenticity of the
remaining elements of the chain.

Castor leverages the concept of one-way chains in two
ways: (i) where F () is a hash function, H(), and the ele-
ments of the chain are hashes, thereby producing a one-way
hash chain, and (ii) where F () is a pseudo-random func-
tion, K(), and the elements of the chain are symmetric keys,
thereby producing a one-way key chain.

• Symmetric-crypto authenticated broadcast. Au-
thenticated broadcast protocols (e.g., TESLA [17],
µTESLA [18]) use symmetric keys to authenticate the
sender of a message in the face of node compromise. The
protocols involve a one-way key chain, {k0, k1,, km},
whose elements are used by a trusted sender to compute
MAC over data, which is then broadcast (along with the
MACs) to all of the nodes in the system. Upon the trusted
entity’s subsequent disclosure of the keys, the receivers can

verify the received data. Disclosed keys are verified against
k0, the initial commitment to the key-chain, through the
iterative application of a pseudo-random function. k0, is
assumed to be securely distributed to all of the receivers as
a part of system initialization. In TESLA, k0 is digitally
signed by the sender and broadcast to all of the the receivers
during bootstrapping. In µTESLA, the sender unicasts k0

to each recipient using pair-wise symmetric keys, with
one key between the sender and each receiver. Recent
work [12] has attempted to overcome this scalability issue
through the use of broadcast messages.

For a receiver to be able to verify a message’s authen-
ticity, it must receive the authenticated message before the
corresponding key (i.e., the key with which the MAC is
computed) is disclosed by the sender. The security of this
delayed key-disclosure mechanism hinges upon loose time
synchronization across the network, i.e., all of the receivers
have an upper bound on the sender’s local time and the
sender knows when to divulge a key based on a priori
knowledge of the worst-case end-to-end propagation time
of a message from the sender to every node in the system.

We avoided using authenticated broadcast in Sluice1 be-
cause of the intricacies involved in determining the proper
key-disclosure interval for Deluge. Deluge ensures that the
new code-update image will be reliably disseminated to all
the nodes in the sensor network, but does not place a bound
on the amount of time taken to disseminate the image to all
of the nodes of the network. Without a bound on the end-to-
end update latency, it is hard (as explained in Section 4.1) to
choose the appropriate key-disclosure interval. Castor over-
comes these problems and demonstrates the feasibility of
symmetric-crypto authenticated broadcast for secure code
updates.

3 Problem Statement

Castor aims to enhance existing code-update protocols
with security, while upholding their efficiency mecha-
nisms. Having first-hand experience with developing both
an asymmetric-crypto (Sluice [9]) and a symmetric-crypto
secure code-update protocol (Castor, described in this pa-
per), we are uniquely positioned to compare our use of sym-
metric vs. asymmetric cryptosystems for securing code up-
dates, and to evaluate their relative overheads.

3.1 System Model

We assume that individual sensor nodes are connected via
an insecure wireless medium and are susceptible to compro-
mise. An adversary can subvert an arbitrary number of sen-
sor nodes in the system, and can gain control of their crypto-
graphic material. Castor’s design covers different kinds of

1Other research has independently followed a similar train of thought.

2

adversarial behavior, e.g., an adversary can inject an arbi-
trary number of corrupt packets or code-update images into
the system, can withhold/delay/modify an arbitrary number
of packets or images, and can eavesdrop on the communica-
tion of other sensors in the system. We place no restrictions
on the number of malicious sensors, their locations, and the
degree of connectivity or collusion between them.

We assume that there is a single trusted sender (i.e., a
base station) that is the source of the code update. We as-
sume that the base station and every sensor node is boot-
strapped with the values of T (the key-disclosure interval)
and k0 (the head of Castor’s key-chain) , and knows the
one-way key function K(), in addition to the one-way hash
function H().

Because we exploit symmetric-crypto authenticated
broadcast in Castor, we assume that the base station and
the nodes in the network are loosely and securely time
synchronized [3, 13, 19]. If the sensor-network applica-
tion already uses time synchronization for its own purposes
(e.g., TDMA-based applications, shooter localization), Cas-
tor can simply exploit this facility.

We do not currently address the confidentiality of an
update, and threats (e.g., battery-drain attacks, denial-of-
service) that can drain the memory buffers at each node.

3.2 Objectives

From a security viewpoint, we require that every node be
able to verify whether a code-update image originates from
the trusted source (authenticity property) and that this im-
age is unmodified (data-integrity property). Furthermore,
no uncompromised node should ever install or propagate
any part of an unverified code-update image.

From a performance viewpoint, we desire that nodes per-
form the verification of the image incrementally, to start
propagating pages that have been verified as correct and to
halt pages that have been detected to be corrupt. Nodes
should be permitted to leverage existing efficiency mecha-
nisms, such as pipelining. We also desire our security en-
hancements to be sensitive to the resource constraints of
sensor nodes and result in low computation and commu-
nication overheads with respect to the underlying insecure
code-update protocol. We aim for the ideal “no-node-left-
behind” condition, where every node in the network re-
ceives the appropriate cryptographic material in time to en-
able it to verify the authenticity of a code-update image.

4 Castor’s Approach

Castor exploits a synergistic combination of multiple
building-blocks: a one-way hash chain, a sequence of
MACs, a one-way key chain, and delayed key-disclosure.

Because Castor is currently built on top of the Deluge code-
update protocol, we borrow terminology and concepts from
Deluge in our description.

From Section 2, we recall that Deluge splits the code-
update image (referred to as the “payload” because this is
the data that is desired to be transmitted over the network)
into fixed-size pages, and each page into fixed-size packets.
Using Castor, the trusted base station (i) constructs a one-
way key chain, (ii) constructs a one-way hash chain over the
pages of the code-update image, (iii) computes a sequence
of MACs, each of which is a MAC of the hash of the first
page using a unique key from the one-way key chain, (iv)
disseminates all of the MACs to the sensor nodes before
starting the update process, (v) disseminates the pages of
the image to the sensor nodes, and finally, (vi) discloses
the keys, one by one, at predetermined intervals. The keys
are disclosed one by one, in a delayed manner, to enable the
untrusted nodes to verify the received MACs, and therefore,
the code-update image. We describe the details of Castor’s
approach below.

4.1 Details of Approach

The trusted base station generates a one-way key-chain
(containing p self-authenticating elements) by selecting
key kp at random and repeatedly applying a pseudo-
random function K() to kp to generate the earlier keys
kp−1, kp−2,, k1, k0, in that order. The base station di-
vides time into fixed intervals of length T seconds each.
We denote the ith such time interval by Ii, and the start of
this interval by ti for i = 1, 2, ..., where ti = (i−1)T , with
the Castor protocol starting at time t = 0.

For each new code-update image (i.e., each new version
of the code or binary program image that is to run on ev-
ery sensor in the network), the base station constructs an
n-element one-way hash chain through page-level hashes,
h0, h1, h2, h3,, hn−1, where h0 (the head of the hash
chain) serves as the commitment to the entire hash chain.
Figure 1 shows the sequence of n pages that results from
this straightforward approach. The base station computes
each page’s hash using H(), and appends the generated
hash to the previous page’s payload, e.g., the hash hn−1 =
H(pn−1) is computed and appended to the payload of the
previous page, thereby forming page pn−2. The last page,
pn−1, does not contain a hash. The base station creates the
first page, p0, by concatenating the payload of p0 with the
hash, h1, of page p1. Since one of Castor’s objectives is
that a correct node should never forward an unverified code-
update image, we require that each node verify the authen-
ticity of p0 (and, recursively, the entire code-update image
through the one-way hash-chain property) before propagat-
ing p0 to (or requesting any other page from) the other nodes
of the network.

3

p0 p1

h1h0

k1
k0 k2 k3

h2
h3

hn-2 hn-1

p2 pn-3
pn-2 pn-1

.

.

.

.

hash H()

pseudo-random
function K()

MAC
(,)h0 k1

MAC
(,)h0 k2

MAC
(,)h0 k3

one-way hash chain

one-way key chain

MAC sequence

.

code-update image (payload)

page
Possible extra page
based on image size

Figure 1. Castor’s one-way key chain, one-way hash chain, and a sequence of MACs that together
verify the authenticity of the code-update image.

If the base station has a new program image to dissem-
inate in interval Ii, Castor enables a receiving node to au-
thenticate p0 by having the base station compute MAC(h0,
ki)), i.e., the MAC of that image’s h0 using the as-yet-
undisclosed key, ki, from the one-way key chain. The base
station then disseminates MAC(h0, ki), followed by the
pages of the image, throughout the sensor network. If a
node receives MAC(h0, ki) before the base station discloses
ki, then, that node can authenticate the source of h0 (and,
indirectly, the authenticity of the entire program image).

To accomplish this at every node in the network (i.e., the
“no-node-left-behind” condition), the key-disclosure inter-
val T must be appropriately selected by Castor. T should
be large enough so that every node can receive MAC(h0,
ki) before the base station discloses ki. Because Deluge
does not ensure the bounded end-to-end propagation time
of any packet (including that containing MAC(h0, ki)), T
will need to be a significantly large value. This, in turn,
increases the end-to-end update latency because each node
must wait T seconds to authenticate h0 before starting to
receive/propagate the rest of the update. On the other hand,
a small T might provide a lower end-to-end update latency,
but might “leave nodes behind”, i.e., some nodes might be
left unable to verify the authenticity of MAC(h0, ki) be-
cause they might not receive this MAC before the base sta-

tion discloses ki.
In Castor, we ensure that all of the nodes are able to

verify the MAC (i.e., the “no-node-left-behind” condition)
without adversely impacting the end-to-end update latency.
We accomplish this by having the base station compute
multiple MACs of h0, each MAC using a unique key of the
one-way key chain. For each fresh code-update image that
requires dissemination, the trusted base station constructs
the one-way page-level hash chain and the MAC sequence
using as-yet-undisclosed keys in the one-way key chain. If
the base station has a new image to disseminate in interval
Ii, then, Castor requires the base station to compute MACs
of h0 not only with ki, but also with some of ki’s succes-
sors2 (i.e., ki+1, ki+2,).

The base station releases all of these MACs simultane-
ously, before the page-dissemination or the key-disclosure
starts. The MACs then make their way through the network
to all of the sensor nodes. The base station then dissem-
inates pages p0, p1,, pn−1, in that order, to the sensor
network. The base station keeps ki secret until time Ti+1

(i.e., until the corresponding time interval, Ii, for key, ki,

2Just how many of ki’s successor keys are used to generate MACs for
a given code-update image is a tunable parameter that is set at deployment
time to ensure the desired “no-node-left-behind” property for that specific
sensor network. We discuss this further in our evaluation.

4

elapses), at which point the base station discloses ki to all
of the nodes in the sensor network. Figure 1 illustrates Cas-
tor’s approach of using multiple MACs to verify the authen-
ticity of h0. Note that, even if intermediate keys are lost or
perhaps not disclosed by the base station (because the base
station did not generate any MACs during that time interval)
to reduce overheads, they can be recomputed (if needed) us-
ing later received elements of the one-way key chain.

With this scheme, not every node needs to use the same
MAC for verifying the code-update image. The purpose of
the MAC sequence is to allow nodes closer to the base sta-
tion to commence the update-verification process using an
earlier element in the MAC sequence; nodes further away
from the base station will wind up using later elements of
the MAC sequence. Also, once the nodes closer to the base
station have verified received pages, they can start to prop-
agate verified-to-be-correct pages further into the system.
Of course, the same rules apply as before: a node can use
MAC(h0, ki) for verifying the code-update image only if
it receives this MAC before the base station discloses ki.
We also assume that there are enough ki’s, and therefore,
enough MACs, in the one-way key chain to facilitate our de-
sired “no-node-left-behind” property. This scheme is simi-
lar to applying the technique described in [16] to the prob-
lem of securely disseminating code updates.

5 Implementation & Evaluation

We implemented Castor as an extension to Deluge, in order
to evaluate Castor against Deluge’s baseline performance.
In Castor, the size of a page is 1104 bytes (as in Deluge),
of which 20 bytes is reserved to encapsulate the hash of the
next page of the code-update image. The trusted base sta-
tion computes full 160-bit SHA1 digests [15] to construct
the one-way hash chain across the pages of the image. We
used 8-byte symmetric keys with the Matyas-Meyer-Oseas
hash compression function (based on the RC5 block ci-
pher) [14] as the pseudo-random function to generate the
one-way key chain. We used 4-byte MACs with the CBC-
MAC function (based on the RC5 block ciper) because the
RC5 block cipher is available in TinySec [5], which is in-
cluded in the TinyOS distribution.

We used TOSSIM [10] to assess Castor’s overheads by
determining the end-to-end latency of disseminating the se-
cure code-update image in a sensor network. We evalu-
ated the performance of Castor over grid topologies con-
sisting of NxN sensor nodes (N varying from 2 to 15)
spaced 15 feet apart. The grid topologies used for the em-
pirical measurements were generated by LossyBuilder,
which is provided with TOSSIM. We determined the end-
to-end latency of code update by disseminating a standard
24-page update in the sensor network. We used a key-
disclosure interval, T , of 60 seconds based on empirical ob-

2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e
(in

 s
ec

s)
 to

 c
om

pl
et

e
th

e
up

da
te

Grid Size

Deluge

Sluice

Castor

Figure 2. Comparing end-to-end update la-
tency of Deluge, Sluice and Castor for sensor
networks of different grid sizes.

servations that indicated the propagation time of the MAC
to most nodes to be less than 60 seconds. To ensure that the
“no-node-left-behind” condition is satisfied without undue
communication overhead (due to transmitting extra MACs
in the sequence), we restricted ourselves to disseminating
MACs generated with only the first and the second (“as-yet-
undisclosed-until-that-interval”) keys of the one-way key
chain in that interval; thus, there were two elements in the
MAC sequence.

Figure 2 shows Castor’s end-to-end update latency rel-
ative to that of Sluice and Deluge. Castor provides lower
update latency than Sluice because it uses a relatively in-
expensive MAC verification operation to authenticate the
update. Sluice requires a digital-signature verification op-
eration, which we have measured to be as much as 35 sec-
onds in our implementation of Sluice. Furthermore, this
signature-verification time is cumulative in Sluice because
each node has to verify the digital signature operation be-
fore it can disseminate the update further into the network.
In Castor, on the other hand, each node receives the MAC
packet within the end-to-end propagation time of any packet
leaving the base station. Then, each node waits for the cor-
responding key-disclosure interval to expire and waits to re-
ceive the key (i.e., the key propagation-time) to verify the
MAC. Castor, therefore, does not exhibit Sluice’s cumula-
tive effect of authenticating the first page of the update. We
are currently in the process of generating further empirical
results that benchmark the computational, communication
and energy consumption overheads of Castor and Sluice.

5

6 Future Work

For a single code-update image, with the desired “no-node-
left-behind” criterion in mind, Castor’s MAC-sequence
scheme can prove to be efficient and can result in lower
end-to-end update latencies, as compared to a single-MAC
scheme that likely uses a longer key-disclosure interval.
However, given that updates (by their very nature as on-
demand maintenance, rather than regular house-keeping,
activities) are likely to be infrequent/bursty in sensor net-
works, Castor’s scheme might be computationally ineffi-
cient across multiple distinct updates. For instance, sup-
pose that the trusted base station uses key k1 to compute the
MAC of the first page of update version 1.0. As time passes,
the base station generates keys k1, k2,, in that order,
for potential use in generating MACs for any code-update
images that are ready for dissemination. Assume that up-
date version 2.0 becomes available at time t = 999T sec-
onds. The base station now generates the MAC(h0, k1000)
(and also MACs with some of the successors of k1000) of
update version 2.0. However, by this time, the base sta-
tion would have generated keys k1 through k999 for gen-
erating secure code-update images, if needed. After the
base station discloses k1000, a receiving sensor node must
perform 999 computations of the pseudo-random one-way
function K() on the received k1000 to ascertain whether the
received k1000 is a legitimate element of the one-way key
chain whose head is k0.

Clearly, verifying successive distinct update images can
become computationally expensive, a major drawback in a
resource-constrained setting. To address this, we are cur-
rently designing and implementing a new version of Castor
that employs an additional one-way key-chain.

7 Related Work

Several secure-code update protocols have recently
emerged that use asymmetric cryptographic primitives to
achieve their goals. Sluice [9] uses a combination of a
one-way page-level hash chain and a digital signature to
authenticate the source of a code-update image. Sluice uses
a digital signature to authenticate the contents of the first
page and the remaining pages are verified recursively using
the page-level hashes embedded in the previous pages.
Sluice upholds existing efficiency mechanisms, such as
spatial multiplexing, and amortizes the cost of using a
digital signature over the entire code-update image.

Secure Deluge [2] also uses a combination of one-way
hash chains and a single digital signature amortized over
the entire code-update image. However, in Secure Deluge,
the one-way hash chain is created over packets rather than
pages. As in Sluice, the first packet is digitally signed. The
advantage of using a packet-level, rather than page-level,

hashes is that each packet can be verified as soon as it is
received. On the other hand, the spatial overhead of Secure-
Deluge is greater than that of Sluice and requires packets
(and not only pages) to be received in order.

Deng et al. [1] have proposed a similar protocol for se-
cure code dissemination in sensor networks. Their approach
uses a packet-level hashes similar to Secure Deluge, but al-
lows for out-of-order packet arrivals within a page. This
is accomplished by computing a hash tree of per-packet
hashes and embedding the root of the hash tree within the
corresponding page’s payload. A one-way hash chain over
pages is then computed similar to Sluice and Secure Del-
uge. The main advantage is that packets within a page can
be received out of order, while simultaneously enabling a
packet’s verification upon its receipt. On the other hand, the
spatial overhead of this scheme is greater than that of Sluice
and Secure Deluge.

8 Conclusion

Secure code-update protocols for sensor networks have
been based on asymmetric cryptographic primitives such as
digital signatures. Even with only one signature used over
an entire update image, these protocols exhibit high com-
putation costs, making their usage on resource-constrained
sensors undesirable.

Our new approach, Castor, uses symmetric crypto-
graphic mechanisms that are more suited to the resource
constraints of sensors. Castor involves a synergistic combi-
nation of a one-way hash-chain, a one-way key-chain, and
a sequence of MACs with delayed key-disclosure to enable
sensors to verify an update’s authenticity. We guarantee that
no correct node will ever install or forward a compromised
part of an update, while addressing the performance issues
related to delayed key-disclosure. We evaluate Castor’s ef-
fectiveness by securing an existing code-update protocol,
Deluge, running on the TinyOS platform, and benchmark-
ing Castor’s performance against that of Sluice, its counter-
part that uses asymmetric cryptography.

References

[1] J. Deng, R. Han, and S. Mishra. Secure code distri-
bution in dynamically programmable wireless sensor
networks. In Proc. International Symposium on In-
formation Processing in Sensor Networks, pages 292–
300, Nashville, TN, April 2006.

[2] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E.
Culler. Securing the Deluge network programming
system. In Proc. International Symposium on Infor-
mation Processing in Sensor Networks, pages 326–
333, Nashville, TN, April 2006.

6

[3] S. Ganeriwal, S. Capkun, C. Han, and M. B. Srivas-
tava. Secure time synchronization service for sensor
networks. In Proc. ACM Workshop on Wireless Secu-
rity, pages 97–106, 2005.

[4] J. W. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In Proc. ACM International Conference on
Embedded Networked Sensor Systems, pages 81–94,
Baltimore, MD, November 2004.

[5] C. Karlof, N. Sastry, and D. Wagner. TinySec: A
link layer security architecture for wireless sensor net-
works. In Proc. ACM International Conference on
Embedded Networked Sensor Systems, pages 162–
175, Baltimore, MD, November 2004.

[6] S. S. Kulkarni and M. Arumugam. Infuse: A TDMA
based data dissemination protocol for sensor net-
works. Technical Report MSU-CSE-04-46, Depart-
ment of Computer Science, Michigan State University,
2004.

[7] S. S. Kulkarni and L. Wang. MNP: Multihop network
reprogramming service for sensor networks. Tech-
nical Report MSU-CSE-04-19, Department of Com-
puter Science, Michigan State University, May 2004.

[8] L. Lamport. Password authentication with inse-
cure communication. Communications of the ACM,
24(11):770–772, November 1981.

[9] P. E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice:
Secure dissemination of code updates in sensor net-
works. In Proc. International Conference on Dis-
tributed Computing Systems, page 53, Lisbon, Portu-
gal, July 2006.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
Accurate and scalable simulation of entire TinyOS ap-
plications. In Proc. ACM International Conference
on Embedded Networked Sensor Systems, pages 126–
137, Los Angeles, CA, November 2003.

[11] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler. The emergence
of networking abstractions and techniques in TinyOS.
In Proc. Symposium on Networked System Design and
Implementation, pages 1–14, 2004.

[12] D. Liu and P. Ning. Multilevel µTESLA: Broad-
cast authentication for distributed sensor networks.
ACM Transactions on Embedded Computing Systems,
3(4):800–836, 2004.

[13] M. Manzo, T. Roosta, and S. Sastry. Time synchro-
nization attacks in sensor networks. In Proc. ACM

Workshop on Security of Ad Hoc and Sensor Net-
works, pages 107–116, Alexandria, VA, November
2005.

[14] S. Matyas, C. Meyer, and J. Oseas. Generating strong
one-way functions with cryptographic algorithm. IBM
Technical Disclosure Bulletin, 27:5658–5659, 1985.

[15] National Institute of Standards and Technology. Se-
cure hash standard, April 1997.

[16] A. Perrig, R. Canetti, D. Song, and D. Tygar. Effi-
cient and secure source authentication for multicast.
In Network and Distributed System Security Sympo-
sium, pages 35–46, San Diego, CA, February 2001.

[17] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The
TESLA broadcast authentication protocol. RSA Cryp-
toBytes, 5(Summer), 2002.

[18] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and
D. E. Culler. SPINS: Security protocols for sensor net-
works. Wireless Networks, 8(5):521–534, 2002.

[19] K. Sun, P. Ning, and C. Wang. TinySeRSync: Secure
and resilient time synchronization in wireless sensor
networks. In Proc. ACM Conference on Computer and
Communications Security, pages 264–277, Alexan-
dria, VA, October–November 2006.

7

