Challenges for Dialog in Human-Robot Interaction

Dialogs on Dialogs Meeting
October 7th 2005

Hartwig Holzapfel
About me

• Studied Computer Science in Karlsruhe (Germany)
• Minor field of study Computational Linguistics Stuttgart (Germany)
• Diploma Thesis on Emotion-Sensitive Dialogue at ISL, Prof. Waibel
• Scientific employee/PhD student at Karlsruhe/Prof. Waibel since 2003
• Recent Projects
 – SFB 588: collaborative research effort at Karlsruhe on Humanoid Robots
• Research (within above projects):
 – Multimodal (speech+pointing synchronous and fleximodal)
 – Multilingual Aspects
 – ASR in dialogue context
 – Current: Cognitive Architecture for Robots and Learning
Outline

• Robots

• SFB588: The humanoid-Robots project
 • The Robot „Armar“
 • Interaction scenarios

• Multimodal Interaction
 • Multilingual Speech Processing
 • Cognitive Architectures

• Open Tasks
Humanoid Robots

• Why humanoid:
 – Humanoid body facilitates acting in a world designed for humans
 – Use Tools designed for humans
 – Interaction with humans
 – Intuitive multimodal communication
 – Other aspects like understand human intelligence

• Kind of Humanoid Robots
 – Service Robots
 – Assistants
 – Space
 – Help for elderly persons
Humanoid Robots (some examples)

- Cog
- ASIMO
- QRIO
- GuRoo
- Kismet
- Nursebot
- PINO Open Plattform
- HOAP 2
- Sarcos Robot
- Robonaut
- ARMAR
SFB588 - the humanoid Robot Project

- Started 2001
- 2nd phase started 2004 targeting for an integrated system
- Current robot-platform ARMAR
- New platform in development
- Goals: Household and Kitchen scenarios
Selected Interaction Scenarios

- Loading and unloading the dishwasher
- Proactive behaviour: coffee service
- „Bring me something“
Bring me something

- Interaction:
 - Detect persons
 - Detect person visually
 - Respond to person
 - Initiate Interaction (what can I do for you?)
 - Recognize speech (distant?) and gestures (bring me this cup)
 - Locate objects, update environment model
 - Find, go to, grasp, and bring object to person
 - Recover from error states
Challenges for Dialog in Human-Robot Interaction

Hartwig Holzapfel

SFB 588

Challenges

- Multimodal communication
- Multilingual (our Robot lives in Germany)
- Uncertain information about environment
- Distant speech
- New words, new objects and new actions
 - Semantic description
 - Attributes
 - Visual features
 - Task description
- Introducing new persons
 - Name, Hobbies, ..
 - Visual ID
 - Voice ID
- Floating domain-boundaries
Multimodal Interaction with A humanoid robot

• **Visual Perception of the user**
 – Person Tracking
 – Gaze / Head orientation
 – Gesture Recognition

• **Speech Recognition**
 – Distant microphones
 – Spontaneous speech

• **Dialog Manager**
 – Multimodal Parsing

“Which cup do you want me to take?”

This one!

Take the cup!
Multimodal Fusion

Fusing utterance 1 and G1 G2: false positive

Temporal correlation between Speech and pointing gesture

Δt

Speech
Utterance 1

Gesture
G1
G2

-1.00 -0.76 -0.52 -0.27 -0.03 0.21 0.45 0.70

0 2 4 6 8 10 12 14

sec
Fusing Speech and Pointing Gestures

Resolve gesture target

N-best list of objects

[act_switchOn
OBJ [obj_lamp
NAME ["lamp one"]
ID [lamp001]
]]
Multimodal Parsing

- Pool of semantic tokens
- Parsing rules for fusion of tokens
Experiments and Evaluation

- Fusion for n-best Lists

<table>
<thead>
<tr>
<th>Gesture Detection (rt)</th>
<th>Gesture Recognizer (rt, relative errors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td>First Hypo</td>
</tr>
<tr>
<td>87%</td>
<td>44%</td>
</tr>
<tr>
<td>Precision</td>
<td>N-best</td>
</tr>
<tr>
<td>47%</td>
<td>94%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speech Recognition (0.8*rt)</th>
<th>Fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WER</td>
<td>Speech + Nbest G</td>
</tr>
<tr>
<td>24%</td>
<td>74%</td>
</tr>
<tr>
<td>SER</td>
<td>Nbest S + nbest G</td>
</tr>
<tr>
<td>33%</td>
<td>76%</td>
</tr>
</tbody>
</table>
Multilingual Speech Processing

• Why?
 – German lab,
 – To get native speakers we need to build a German system
 – However, best ASR system is English
 – International Visitors
Designing a multilingual system

Dialogue Manager (DM)

Language A
- ASR
- NLU
- TTS
- Generation

Language B
- ASR
- NLU
- TTS
- Generation

Language A
- ASR
- NLU
- TTS
- Generation

Language B
- ASR
- NLU
- TTS
- Generation
Input Grammar - Rule Interfaces

- Software engineering offers principles for programming languages
- Usage of Interfaces for common functionality
- Rule interfaces define
 - Common semantic information
 - Abstract grammar nodes
Multilingual information from databases – semantic grammars

- Proper nouns are read from databases
 - Syntactic phrase structure
 - Imported nouns form construct rules

Speaker,N,EN -> 'name1': 'name2': 'name3';
Experiences of using these concepts

- FAME demonstrator (http://isl.ira.uka.de/fame)
 - 5 persons working on grammars: 2 English, 2 Spanish, 1 German, only English as output
 - English and Spanish developed in parallel roughly same amount of time, German developed afterwards by using rule interfaces and grammar porting
- SFB humanoid robots (German research effort http://sfb588.uni-karlsruhe.de)
 - 3 persons working on grammars and generation:
 2 English (experts) - developing, 1 German (student) - translating
 - German application works reliably (grammars and generation)
Cognitive Architecture

- Integrate dialogue into complete system architecture
- Distribution of cognitive abilities:
 - Simple dialogue manager with intelligent controller architecture
 - vs. Cognitive abilities in dialogue control
- Both approaches already exist
 - Dialog centered systems with control of background application
 - Vs. Intelligent architecture and adding speech commands
- Our current approach tries to model the complete architecture for a robot, dialogue only as a component
 - Competing Model of input by the user and current robot tasks
 - Conflicting resource access
Cognitive Architecture
Communication Models

• Interpret and forward User commands to the platform
 – Test if actions are possible
• Receive information by the platform to resolve information => query user
 – Request new information
 – Recover from errors
• Maintain user’s goal model, update according to system and task state
 – Request information from system model
 – (When is the goal fulfilled)
 – Challenge: Interpret input by the user in the right context
• Request output channels (speech/multimodal)
• Request resources to receive input by the user
Open Tasks

- Initiate Interaction: detect persons, obtain attention and start dialog
- Attention modelling
- Learn new objects
 - Detect unknown words referencing objects
 - Introduce words, semantic meaning
 - Get visual “understanding” of these objects
- Learn about persons
 - ID: voice and vision
 - Names: new words
 - Social relations: what is this person doing here?
- Learn new actions
 - New sentence constructions
 - Relate semantics to robot actions