Learning Dialogue Strategies with a Simulated User

Jost Schatzmann and Steve Young

Cambridge University Engineering Department
Trumpington Street, Cambridge CB21PZ, UK
{js532, sjy}@eng.cam.ac.uk

Dialog on Dialogs Meeting
Carnegie Mellon University, 19 August 2005
User Simulation-Based Learning

- Learn dialogue strategies through trial-and-error interaction with a simulated user.

Diagram:
- Simulated User
- Dialogue Manager
- Strategy
- Reinforcement Learning
- Supervised Learning
- Dialogue Corpus
Agenda

- Work on Evaluation: Experiments and Results
- Agenda-based User Modelling
Research Questions

- How good are the currently available simulation techniques? Can they...
 - produce human-like behaviour?
 - cover the variety of real user behaviour?

- What is the effect of the user model on the learned strategy?
 - Influence on strategy performance?
 - Influence on strategy characteristics?
 - Are the strategies merely fitted to a particular UM?
 - Can we find UM-independent forms of strategy evaluation?

SIGdial paper

ASRU paper
User Modelling Techniques

State of the art in intention-level modelling:

- **Bigram model:** $p(a_u|a_s)$
- **Levin model:** $p(\text{yes_answer}|\text{expl_conf})$
- **Pietquin model:** $p(\text{yes_answer}|\text{expl_conf}, \text{goal})$

UMs typically not trained on real data

Standard evaluation practice is to test learned strategy on the user model used for learning
Experiments

- **Training**
 - Corpus
 - Bigram Model
 - Levin Model
 - Pietquin Model

- **Learning**
 - DM
 - Bigram Model
 - Bigram Strategy
 - Levin Model
 - Levin Strategy
 - Pietquin Model
 - Pietquin Strategy

- **Testing**
 - Bigram Model
 - Levin Model
 - Pietquin Model
Comparative Evaluation

- Performance of the learned strategy depends on the quality of the UM.

![Bar chart showing performance comparison between real dialogue data and simulated dialogues]

- Real dialogue data
- Simulated dialogues
Strategies learned with a poor UM can fail when tested on a better UM.
Learned strategies exploit weaknesses in UMs
UM-independent Evaluation

- Techniques for evaluating new strategies on real dialogue data would be helpful

![Graph showing similarity to learned strategy against dialogue reward](image)
Agenda

- Work on Evaluation: Experiments and Results
- Agenda-based User Modelling
Motivation

- Currently have drastically different levels of sophistication for DM and UM

- Fail to model context which extends beyond the previous dialogue turn

User: I want to go from Boston to London.
System: Going from Austin to London. And when do you want to fly?
User: No, from Boston to London.
System: From Boston to London, is that correct?
User: Yes. And I’m flying on March 15th.
Agenda-based User Model

- **Idea**: MDP User Model with agenda-based state representation

 - Combines user state and user goal representation
 - Naturally encodes dialogue history
 - Allows delayed user responses (priority of actions)
Agenda-based User Model

- Assume cooperative user behaviour to label dialogues
- Learn output probabilities to model user behaviour

- Potential scope for modelling uncertainty about true state of user agenda (‘Hidden Agendas’)
Summary

- Current lack of solid user models and reliable evaluation standards is a major roadblock to simulation-based strategy learning.

- Work on agenda-based user models may help to enhance our model of the user state and improve simulation quality.
Thank you!

js532@cam.ac.uk
http://mi.eng.cam.ac.uk/~js532/

The rest of this slide deck is only a backup for further questions.
Need to deviate from known strategies to explore new and potentially better ones

System: Where are you flying from, where are you flying to, on what date are you flying, when is your preferred time, do you have a preferred airline and would you like a window-seat?

Sim. User: Flying from Boston to London on March 15 at 9am with Delta Airlines. Window seat please.

Real User: ??????
Strategy Confidence Scores (2/3)

- **Idea:** System designer needs a confidence measure indicating how reliable the learned strategy is

- Define strategy confidence as function of the likelihood of the user response in the given context

\[
\text{conf}(\pi) = \frac{1}{N} \sum_{i=0}^{N} \frac{1}{N_i} \sum_{t=0}^{N_i} \text{conf}(a_{u,t,i}, a_{s,t,i}, s_{t,i})
\]

\[
\text{conf}(a_u, a_s, s) = p(a_u | a_s) p(a_s | s)
\]
Reliability score can be integrated into the learning process by weighting the reward. Good strategy with respect to performance and reliability.

Spectrum of strategies with increasing reliability.
Idea: Produce acoustic-level output and optimize strategy for system-specific error conditions

- Combine high-level user model with statistical NLG and TTS for strategy learning
- No need to simulate recognition and understanding errors
User Studies (1/1)

- Evaluate performance of new user models using real users
 - Test simulation quality using listening tests
 - Test strategy performance using questionnaires
 - Test usefulness of reliability scores
Summary

- Work on Evaluation (January to July 2005)
 - Experiments and Results

- Project Proposals (Summer 2005 to Summer 2007)
 - Introduction of strategy confidence scores
 - Agenda-based User Models
 - Strategy learning under system-specific error conditions
 - User studies
Experiments

- Implemented a handcrafted DM and trained three different UMs
 - Bigram model: \(p(a_u|a_s) \)
 - Levin model: \(p(\text{yes_answer}|\text{expl_conf}) \)
 - Pietquin model: \(p(\text{yes_answer}|\text{expl_conf}, \text{goal}) \)

- Implemented Q-Learning DM, learned strategies with each UM and compared performance and characteristics
- Cross-model evaluation of strategies
- Investigated user-model independent techniques for testing learned strategies
Phase II: New User Models (2/3)

- **Idea 2**: Use clustering to construct networks of user behaviour.
- **Motivation**: Networks are well-suited for encoding dialogue context, but their manual construction is expensive.
- Represent each dialogue as follows:

```
SD1 -> ASI -> SU -> AU -> SD2
```

- We want to cluster user states, but the user state can never be fully observed or captured.
- However, we can cluster user actions and assume that similar actions imply similar contexts.

```
SD1 -> ASI -> C1 -> AU -> SD2
```
Phase II: New User Models (3/3)

- **Idea 2, contd.:** Overlay all dialogue sequences to obtain a network
- **Use frequency counts to obtain transition probabilities**

Clustered User States represent common nodes in the network – similar to “choice points” used by Scheffler and Young.

Transition probabilities can be derived from number of dialogues that contain each path

System dialogue states are also clustered to pool training data

Diagram:

- s_{d1}
- s_{d2}
- c_1
- s_{d3}
- s_{d4}

Transitions:

- a_{si}
- a_{sj}
- a_{sh}
- a_u
Backup Slides for Sigdial paper
Evaluation must cover two aspects

- Can the model produce human-like behaviour?
 - Does it produce user responses that a real user might have given in the same dialogue context?

1. Need to compare real and simulated user responses!

- Can the model reproduce the variety of human behaviour?
 - Does it represent the whole user population?

2. Need to compare real and simulated dialogue corpora!
- Split the corpus into training and testing data

- Evaluate how well the model can predict the user responses in the test data
 - Feed in all information about dialogue history and user goal
 - Compare simulated user turn and real user turn
 - Use Precision and Recall to measure how closely the predicted turn matches the real user turn
Use of Precision and Recall

Evaluate turn by turn:

Dialogue in the test set:

Sys: greeting
 instructions
 request_info orig_city

Usr: unknown
 provide_info orig_city london

Sys: implicit_conf orig_city london
 request_info dest_city

Usr: no_answer
 provide_info orig_city boston

Simulated user responses:

P=100%, R=50%

Usr: provide_info orig_city london

P=0%, R=0%

Usr: yes_answer
 provide_info dest_city paris

- P = Correctly predicted actions / All predicted actions
- R = Correctly predicted actions / All actions in real response
Results: Precision and Recall

- Precision and Recall

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bigram</td>
<td>17.83</td>
<td>21.66</td>
</tr>
<tr>
<td>Levin</td>
<td>37.98</td>
<td>31.57</td>
</tr>
<tr>
<td>Pietquin</td>
<td>40.16</td>
<td>33.38</td>
</tr>
</tbody>
</table>

- What do the results mean?
- Is this analysis sufficient?
Simulated vs. real corpora

- We need to evaluate if the model can reproduce the variety of user behaviour in the training data
 - Generate a whole corpus through interaction between the sim. user and the DM
 - Use statistical metrics to compare the simulated corpus to the real one
Statistical metrics

- High-level dialogue features
 - Dialogue length (in number of turns)
 - Turn length (in number of actions)
 - Proportion of user vs system talk

- Dialogue Style and Cooperativeness
 - Frequency of different user and system speech acts (average number of occurrences per dialogue)
 - Proportion of goal-directed actions vs. Grounding actions vs dialogue formalities vs. Unrecognised actions
 - Number of times information is requested, provided, re-requested, re-provided

- Dialogue Success and Efficiency
 - Average goal / subgoal achievement rate
 - Goal completion time
Results: Goal completion rates / times

- Goal completion rates and times
Project overview

- **Phase I**
 - Evaluation of the current state of the art
 - Re-assessment of standard evaluation practices
 - Introduction of strategy confidence scores

- **Phase II**
 - Development of new user models
 - Separation of user and error model

- **Phase III**
 - Acoustic-level simulation
 - Strategy learning under system-specific error conditions

- **Phase IV**
 - User studies

Work completed
Simple statistical metrics can distinguish simulated from real dialogue data.
Motivation

- Lack of a solid user model is currently a major roadblock to automatic DM design

- Lack of rigorous evaluation standards has led to uncertainty about the validity of simulation–based learning

- Goal is to develop user and error modelling techniques that enable us to learn strategies which outperform competing handcrafted strategies when tested on human users
Backup slides for simulation techniques
- Bigram model: $p(a_u|a_s)$
- Levin model: $p(\text{yes_answer}|\text{expl_conf})$
- Pietquin model: $p(\text{yes_answer}|\text{expl_conf, goal})$
Overview of simulation techniques

- User simulation for strategy learning is a young field of research:
 - Lin and Lee (2000)

- Closely related work on user simulation for SDS evaluation:
 - Lopez-Cozar et al. (2003)
 - Araki et al. (1997, 1998)

- Simulation on intention- rather than word- or acoustic level

- N-gram model for predicting the next user intention
 \[\hat{u}_t = \text{arg max} \ P(u_t|s_t) \]

- Simulated user responses often unrealistic and inconsistent

 System: What is your departure city?
 User: New York
 System: What is your destination?
 User: New York
Different approaches to user simulation

- Probabilistic:
 - Araki et al. (1997, 1998)
 - Lin and Lee (2000, 2001)
 - Lopez-Cozar et al. (2003)

- Deterministic:
 - PR
 - L00
 - L97

- Hand-crafted:
 - A
 - LL

- Data-driven:
 - SY
 - LC
 - LL
Levin, Pieraccini, Eckert (2000)

- Attempt to account for weaknesses of the n-gram model
- Assume a simple dialogue model and hand-select appropriate probabilities for predicting user responses

![Diagram showing the flow of dialogue and probabilities](image)

- $P(n|\text{greeting})$
- $P(\text{provide DATE} \mid \text{constrain DESTINATION})$
- $P(\text{yes} \mid \text{relax AIRLINE})$

User responses still not goal-consistent!
Scheffler and Young (1999 - 2002)

- User model includes user goal and user’s beliefs on current system status

<table>
<thead>
<tr>
<th>Goal field</th>
<th>Value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>GET_FILM_LIST</td>
<td>Specified</td>
</tr>
<tr>
<td>Film</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cinema</td>
<td>ARTS_PICT_HOUSE</td>
<td>Pending</td>
</tr>
<tr>
<td>Day</td>
<td>TODAY</td>
<td>Pending</td>
</tr>
</tbody>
</table>

- User acts according to the given goal until it is completed
- Frequencies of different goals are estimated from corpus
Utterance generation lattices, obtained by analysing possible dialogue path in existing prototype system.

Heavily task-dependent approach!

- Pietquin combines ideas from Scheffler’s and Levin’s work
- Probabilities are conditioned on user’s goal and memory

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
<th>Priority</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESSOR</td>
<td>Pentium</td>
<td>High</td>
<td>0</td>
</tr>
<tr>
<td>SPEED</td>
<td>800</td>
<td>High</td>
<td>0</td>
</tr>
<tr>
<td>RAM</td>
<td>256</td>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td>HDD</td>
<td>60</td>
<td>Low</td>
<td>0</td>
</tr>
</tbody>
</table>

- $P(n|\text{greeting,goal})$
- $P(\text{provide RAM | constrain HDD, goal, memory})$
- $P(\text{yes | relax RAM, goal})$
- $P(\text{close | asked for SPEED, goal, memory})$
Graph-based DM
I want to fly to London!

And when do you want to go?

prov_info
dest_city
london

requ_info
depart_date
Dialogue as a Markov Decision Process

- Describe dialogue in terms of states and actions
- View DM strategy as a mapping from states to actions

Dialogue State:
- orig_city confirmed
- dest_city known
- depart_date unknown
- depart_time unknown

System Action:
- <impl_conf, dest_city, london>
- <requ_info, depart_date>
Reinforcement Learning (1/2)

- Learning DM explores its environment through trial-and-error and receives a reward r_t at each time t.

- Aim is to maximise to the cumulative discounted reward over time $r_{(t)}$

$$ r_{(t)} = \gamma^{t+1} r_{t+2} + \gamma^{t+2} r_{t+3} + \ldots $$
Reinforcement Learning (2/2)

- Estimate value of taking action \(a \) in state \(s \)

\[
Q^\pi(s, a) = E_\pi(r(t) \mid s_t = s, a_t = a)
\]

- Define the optimal policy \(\pi^* \)

\[
\pi^*(s) = \arg \max_a Q^*(s, a)
\]
The Q-learning update rule

\[Q(s, a) := (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a')) \]