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Abstract

Towards the goal of realizing a generic automatic human
activity recognition system, a new formalism is proposed.
Activities are described by a chained hierarchical represen-
tation using three type of entities: image features, mobile
object properties and scenarios. Taking image features of
tracked moving regions from an image sequence as input,
mobile object properties are first computed by specific meth-
ods while noise is suppressed by statistical methods. Sce-
narios are recognized from mobile object properties based
on Bayesian analysis. A sequential occurrence several sce-
narios are recognized by an algorithm using a probabilistic
finite-state automaton (a variant of structured HMM). The
demonstration of the optimality of these recognition method
is discussed. Finally, the validity and the effectiveness of our
approach is demonstrated on both real-world and perturbed
data.

1 Introduction
Automatic or semi-automatic recognition of human ac-

tivity is gaining attention in computer vision research com-
munity due to the needs of many applications such as
surveillance for security and for human-computer interac-
tion. Automatic human activity recognition by computer in-
volves, firstly, detecting and tracking mobile objects from
the image sequence captured from the domain of interest.
The activities are then recognized from the characteristics
of these tracked mobile objects. One of the major tasks in
this process is concerned with how to link the gap between
numerical pixel level data and a high level abstract activity
(verbal) description. This leads to a spectrum of approaches,
which interprets this task as a matching process between a
sequence of image features to a set of activity models. The
best matched models are then selected based on some crite-
ria and their matching degree. The differences among these
approaches are 1) whether image features are computed au-
tomatically and independently of input image sequences, 2)
whether the activity representation is generic and expres-
sive enough to model a variety of activities but yet power-

ful enough to discriminate between similar activities (e.g.
sitting andsquatting), and 3) whether the matching is per-
formed optimally (if so, what are the underlined optimality
criteria and assumptions).

In a previous paper [5, 4], we introduced an activity
recognition framework that allows a flexible and extendible
representation of activities using a hierarchical model and
demonstrated it on different applications such as monitoring
pedestrians at a road block and cars on a freeway. In this
framework, image features are linked explicitly to a sym-
bolic notion of activity through several layers of more ab-
stract activity descriptions combined by a variety of meth-
ods. The goal of this paper is to present a recognition algo-
rithm that effectively recognizes image sequences that cor-
respond to a particular scenario model.

This paper is organized as follows. Related work is dis-
cussed in section 2. Section 3 describes our formalism con-
cerned with the activity modeling and recognition methods.
An algorithm for optimally recognizing scenarios based on
Bayesian analysis and finite-state automaton are described
in detail in section 4 together with the optimality criteria.
Experimental results are presented in section 5.

2 Related Work
Activity recognition systems that have been developed in

the recent past mostly provide a representation and recogni-
tion techniques for one particular type of action in a particu-
lar domain and sometimes under a constrained environment.
Many of these methods are targeted atsimple events defined
as events that can be detected by itself (i.e. context-free) re-
gardless of other events. For example,“sitting” or “walk-
ing” can be detected independently whilecomplex events
such as“approaching another person, handing an object,
then walking away”, are composed of three sub-events with
a constraint on the sequential occurrence of them (hence, is
context-sensitive).

In [7], simple periodic events (e.g. walking) are rec-
ognized by constructing dynamic models of periodic pat-
tern of people’s movements and is dependent on the robust-
ness of tracking. Inspired by a similar application to speech
recognition,Hidden Markov Model(HMM) has also been
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Figure 1: Overview of the system

applied to activity recognition. In [10], an HMM is used as
a representation of simple events which are recognized by
computing the probability that the model produces the vi-
sual observation sequence. Parameterized-HMM [11] and
coupled-HMM [3] are introduced to recognize more com-
plex events such as an interaction of two mobile objects.
In [2], stochastic context-free grammar parsing algorithm is
used to compute the probability of a temporally consistent
sequence of primitive actions recognized by HMMs. Even
though HMMs are robust against various temporal segmen-
tations of events, the structure and probability distributions
are not transparent to human and need to be learned using
iterative methods. For complex events (e.g. a combination
of sub-events) such networks and their parameter space may
become prohibitively large.

Bayesian networks have been adopted in activity recog-
nition in the recent years mostly to represent simple events
[6, 1, 8]. To effectively apply Bayesian networks in ac-
tivity recognition, we need the correct structure and condi-
tional probabilities associated with the links in the network.
In [9], a Bayesian network is used to recognize the action
“sitting” by making an assumption that this action is related
with only the change of location of human head (which is
manually tracked) across time. This assumption simplifies
the network structure and parameters but the network may
fail to discriminate between “sitting” and other similar ac-
tions (e.g. “bending over”) in a real application. In [8],
a more complicated Bayesian network is defined together
with specific functions to evaluate some temporal relation-
ship among events (e.g. before and around) to recognize ac-
tions involving multiple agents in a football match. How-
ever, the tracking of football players is performed manually.

3 A Formalism for Human Activity Recogni-
tion

Figure 1 shows schematically how mobile objects and
their behavior may be recognized among a large number of

potential scenarios from input visual data (image sequence)
and available context. Context consists of associated infor-
mation, other than the sensed data, that is useful for activity
recognition such as a spatial map and prior activity expecta-
tion. A hierarchy of entities, which consist of three levels:
image feature, mobile object property, and scenario is de-
fined. Figure 2 shows an example of activity representation
based on this hierarchy. At the lowest layer, image features
are the input to the system. Several layers of mobile object
properties and scenarios are then defined to describe a more
complex and abstract activity shown at the highest layer.

From input image sequence, moving regions are detected
and tracked, and several 2D (and, if available, 3D) image
features are computed for these regions. Image features
correspond to uninterpreted instantaneous data of a moving
region (e.g. shape and location measurements) computed by
some lower level image processing routines. These values
are used as primitive input to the higher mobile object prop-
erty level.

At this level, mobile objects are hypothesized as being
composed of one or more tracked moving regions and sev-
eral layers of spatial and temporal mobile object proper-
ties are computed over a few frames. Some of them can
be generic and elementary such as width, height, color his-
togram or texture while the others can be complex (e.g. a
graph description for the shape of an object). Properties can
also be defined with regard to the context (e.g. some short
events such as “entering the security area”).

The links between a mobile object property at a higher
layer to a set of properties at the lower layers represent some
relations between them (e.g. taking a ratio of width and
height properties to compute the aspect ratio of the shape of
mobile objects). A filtering function and a mean function
that compute a mean value based on the multi-Gaussian dis-
tribution of the property values collected over time are also
available to minimize the errors caused by environmental
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Figure 2: Representation of activity “contact1” defined as a person walks towards another person, makes contact with, turns
around and walks away. Image features are shown in oval, mobile object properties in rectangular, scenarios in rectangular
with round corners, and context in dotted rectangular.

and sensor noise.

Scenarios correspond to long-term activities of mobile
objects such as “a person walks towards another person,
hands in an object, then walks away”. Two types of sce-
narios (i.e. single-state scenario and multi-state scenario)
are defined based on the type of the temporal combination
of their composite sub-scenarios at lower levels.

Single-state scenarios are defined by a concurrent log-
ical constraint on a set of sub-scenarios or mobile object
properties. This constraint is verified at every frame to de-
termine whether or not the single-state scenario has occurred
at that instance. For example, scenario ”mobile object A is
walking toward mobile object B” represents a logical con-
straint of two mobile object properties: “the distance be-
tween A and B” and “the direction of A”. If the distance de-
creases and the direction of A is toward B, then the scenario
is said to be recognized.

Multi-state scenarios correspond to a temporal se-
quence of sub-scenarios (or a sequence of states, where
states refer to sub-scenarios) and is verified over a long se-
quence of frames. For example, in figure 2, scenario “con-
tact1” explained as ”mobile object A makes contact with
mobile object B and rushes away” represents a sequential
occurrence of three sub-scenarios: ”A slows down towards
B”, then ”A is in contact with B” and then ”A turns around
and goes away from B”. Multi-state scenarios are repre-
sented by a finite-state automaton where the states of the au-

tomaton correspond to the composite sub-scenarios.
Scenarios can be organized into a library and triggered as

needed. Scenarios have a confidence value (or a probability
distribution) attached to them based on statistical analysis.
In this representation, the links from image features to high
level activities are explicit and can be constructed naturally
by users.

4 Optimal Activity Recognition
Given a set of scenario models defined by our proposed

representation (S = scenario1, scenario2,..., scenarioN )
and an observation sequence of mobile object properties
(O = O(1;t) = O1O2:::Ot, whereOi is composed of a set of
mobile object properties), we wish to compute the likelihood
of the scenarios that have occurred. The optimal criteria
here is to find the scenario model that is most likely to pro-
duce the sequence of observations. We consider a scenario
as having a binary distribution(i.e. whether it occurs or does
not occur). We want to compute 8i; P (scenarioijO(1;t)),
and find the one with the maximal value.

P (scenariojO(1;t)), can be computed by inferring the
distribution of sub-scenario values at the lower layers and
propagating them towards the top layer. We describe in this
section the methods that we use to infer these values.

4.1 Single-state Scenario Recognition
To infer whether or not a single-state scenario occurs at

any frame from the observed distributions of sub-scenarios,
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we apply Bayesian methods. In Bayesian terms, the input
entities are viewed as providing the evidence variables and
the task is to compute the probability distribution of an out-
put entity hypothesis. Bayesian methods are optimal pro-
vided that the joint probability distributions needed to carry
out the computations are known. If the entities to be com-
bined are statistically independent (given the scenario), a
simple naive Bayes classifier can be used to compute the dis-
tribution of the combined result. When the entities are not
conditionally independent, Bayesian networks offer an ef-
ficient representation that can represent dependence by de-
composing the network intoconditionally independent com-
ponents.

We apply Bayesian networks in our formalism as follows.
The structure of the network and many probabilities are de-
rived by heuristic means from the knowledge about the do-
main. For example, in our hierarchical representation, log-
ical constraints of sub-scenarios that represent the recogni-
tion of a particular scenario are a strong indication of causal-
ity between them. Each layer in the hierarchy can be viewed
as being composed of several naive Bayesian classifiers (one
classifier per each scenario). That is, each scenario in the
layer becomes a parent node of a naive Bayesian classifier
which links to other sub-scenarios (child nodes) at lower
layers. Belief propagation (inference process) is performed
in one direction from the bottom layer to the top layer.

Two layers of naive Bayesian classifiers are defined for
the representation in figure 2. At the top layer, as a sub-
scenario 1 of the automaton, “slowing down toward ob-
ject of reference”, (called parent scenario) from three other
sub-scenarios: “direction is toward the object of reference”
(e1), “slowing down”(e2), and “distance is decreasing”
(e3) (called child scenarios). These child scenarios form an-
other layer of three naive Bayesian classifiers (e.g. e1 be-
comes a parent of “angle1” and “angle2”). The distri-
bution over the parent scenario values in Bayesian classi-
fiers are inferred from the distribution of sub-scenario val-
ues and the conditional probabilities of sub-scenarios given
the values of parent scenario (i.e. P (e1jH), P (e2jH), and
P (e3jH)). In some cases, these probabilities can be deter-
mined heuristically (e.g. strictly logical functions such asH
is true if e1, e2, and e3 are true). In the case where these can-
not be determined heuristically, they can be learned from ob-
served examples by simply making a histogram of observed
values of the evidence variables, e1, e2, e3, given the value
of a given hypothesis,H, i.e. to compute the probabilitydis-
tribution P (eijH) and P (eij:H). By taking advantage of
the fact that the nodes of the network are transparent (e.g.
we can observe whether the object is moving towards an-
other object or whether it is slowing down), this parameter
learning process becomes simple.

4.2 Multi-state Scenario Recognition
The structure of an automaton (i.e. states and transitions)

that represents a multi-state scenario can be easily obtained
by forming a sequence of DAGs of composite sub-scenarios
(S1; S2; :::; SN) where Si refers to sub-scenario i (or state
i). The inter -temporal relationship between sub -scenarios
is modeled by a transition. In our case, state i either ad-
vances to state i+1, remains in the same state, or goes back
to the initial state. A multi-state scenario is said to occur
when its sub-scenarios are recognized consecutively. Given
the observation sequence, the question we ask is when is
the most likely transition time from one state to the next so
that the whole state sequence is completed (i.e. we are inter-
ested in the transition timing that maximizes the probability
of the sequence having occurred). We define the probabil-
ity of such an event as P (MS�jO): the probability that the
complete automaton state sequence of MS occurs with the
most likely state transition timing given the sequence of ob-
servations O = O(1;t). This can be computed as follows:

P (MS
�jO) =

max
8(t1;t2;:::;tN )

P (S1(t1;t2�1)S2(t2;t3�1) :::SN(tN;t) jO); (1)

where ti refers to the time that the transition to state i from
state i� 1 occurs and Si(ti;ti+1�1)

means that scenario i oc-
curs during ti and ti+1 - 1.

To be concise, let SN1 be S1(t1;t2�1)
S2(t2;t3�1)

:::SN(tN;t)
.

The computation of P (SN1 jO) can then be decomposed into
the recognition results of sub-scenarios as:

P (SN
1 jO(t1;t)) =

Y

1�i�N

ai;i�1P (Si(ti;ti+1�1) jO(ti;ti+1�1))

P (Si(ti;ti+1�1) )
:

(2)

where tN+1 = t, and ai;i�1 is the a priori probability
of the transition from state i � 1 to state i at time ti (i.e.
P (Si(ti;ti+1�1)

jSi�1ti�1)) which is assumed to be constant
for all scenarios.

Q
1�i�N P (Si(ti;tt+1�1)

) is a characteris-
tic of the scenario and can be learned from image sequences
or provided as context. In the case where we consider sim-
ilar or competing scenarios, we can make a fair assumption
that this product is a constant.

Eq. 2 can be derived as follows. For compactness, we
drop the timing notation symbols in the proof. Let Si be
Si(ti;ti+1�1)

and Oi be O(ti;ti+1�1). We have that,

P (SN
1 jO) = P (SN ; S

N�1
1 jON ;O

N�1
1 ) (3)

= P (SN�1
1 jSN ;O

N�1
1 ;ON )P (SN jON�1

1 ;ON )
(4)

= P (SN�1
1 jSN ;O

N�1
1 )P (SN jON ) (5)

=
P (SN jSN�1

1 ;O
N�1
1 )P (SN�1

1 jON�1
1 )P (SN jON )

P (SN jON�1
1 ) (6)

=
P (SN jON)P (SN j SN�1

1 )P (SN�1
1 jON�1

1 )

P (SN )
(7)
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Eq. 4 and 6 is achieved from the conditional probabil-
ity axiom, while eq. 5 is achieved from the fact that given
ON , SN is independent of ON�1

1 and vice versa. Eq. 7 is
achieved from the assumption that SN and ON�1

1 are inde-
pendent of each other. By making a Markov assumption that
the probability of staying in state i at time t only depends on
the likelihood of being in state i � 1 at time t� 1, we have
that

P (SN jSN�1
1 ) = P (SNtN

jSN�1tN�1 ) = aN;N�1: (8)

We can recursively apply eq. 7 to P (SN�11 jON�1
1 ) and fi-

nally get eq. 2. By substitute eq. 2 into eq. 1, we have:

P (MS
�jO) =

max
8(t1;:::;tN )

Y

1�i�N

ai;i�1P (Si(ti;ti+1�1)
jO(ti;ti+1�1))

P (Si(ti;tt+1�1) )
:

(9)

We describe next the algorithm to find the values of
t1; t2; :::; tN that maximize P (MS�jO).

Multi-state Scenario Recognition Algorithm

The direct computation of P (MS�jO) at time T using eq. 9
involves an operation of O(TN ) complexity since there are
O(TN ) combination of values of t1; t2; :::; tN. However a
more efficient recursive algorithm based on dynamic pro-
gramming can be applied. This algorithm is an adaptation
of the Viterbi algorithm used in HMM to our finite-state au-
tomaton. LetRi(t) be the likelihood thatMS occupies state
i at time t with the most likely transition timing between
states given the observation sequence O(t1;t). That is,

Ri(t) = max
8(t1;t2;:::;ti )

P (S1(t1;t2�1)S2(t2;t3�1) :::Si(ti;t)
jO(t1;t))

= max
8(t1;t2;:::;ti )

Y

1�j�i

aj;j�1P (Sj(tj ;tj+1�1) jO(tj ;tj+1�1))

P (Sj(tj;tj+1�1) )
(10)

The solution for eq. 1 is, therefore, equivalent to RN (t).
Ri(t) can be derived from previously recognized state i� 1
as follows. For short, let Aj be the term on the right hand
side of the product.

Ri(t) = max
8(t1;t2;:::;ti )

Y

1�j�i

Aj

= max
ti�1�ti�t

(Ai max
8(t1;t2;:::;ti�1 )

Y

1�j�i�1

Aj)

= max
ti�1�ti�t

AiRi�1(ti � 1)

(11)

By substitute Ai back in eq. 11, we have that,

Ri(t) = max
ti�1�ti�t

ai;i�1P (Si(ti;t)
jO(ti; t))

P (Si(ti;t)
)

Ri�1(ti � 1)
(12)

tibest = argmax
ti�1�ti�t

ai;i�1P (Si(ti;t)
jO(ti;t))

P (Si(ti;t)
)

Ri�1(ti � 1)
(13)

At time t, starting from state 1 where R0(t) is always
1, eq. 12 are recursively processed until the final state N

is reached, where RN (t) represents the probability of the
sequence of states occurs with optimal transition timing
t1best; t2best; :::; tNbest

.
In eq. 12, P (Si(ti;t)jO(ti;t)) is the probability that sub -

scenario i (which can be either a single - state or a multi -
state scenario) occurs given that we observe the observation
sequence from time ti to ti+1 � 1. This can be computed
as a temporal mean (expected value) of the distribution of
P (Sit jOt) collected from frame ti to t as described below.

Temporal Mean Computation of P (Si(ti;t) jO(ti;t))

The distribution of scenario values during any time period,
assuming that the noise is random, should distribute around
either zero or one (i.e. occurring or not occurring). For
each candidate value of ti, we collect scenario values (i.e.
the probability that it occurs) during ti and t and com-
pute the expected scenario value. The expected scenario
value represents the temporal mean of the distribution of
P (Si(ti;t)jO(ti;t)).

To find the optimal ti that maximizes Ri(t), we would
have to investigate all possible values of each ti. However,
there is a criteria to disregard many of these values as a can-
didate for tibest . Let t0i be a possible value of ti. One in-
dicator for t0i to be disregarded as a potential candidate for
ti is the fact that the accumulative probability that scenario
i does not occur during t0i and t is greater than the accu-
mulative probability that scenario i does occur, which indi-
cates that scenario i does not occur during t0i and t. In gen-
eral, only a certain numbers, say k, of such ti candidates
(tki = ti1 ; :::; tik) that compute the highest Ri(t) can be
maintained.

The algorithm for the computation of temporal mean is
summarized as follows. Let 1) S+i (t0i; t) be the accumula-
tive probability density of the scenario (above threshold �

which is inversely proportionate to the degree of noise in the
image sequences) from time t0i to t, 2) S�i (t0i; t) be the accu-
mulative probability density when the scenario is not recog-
nized (i.e. under the threshold �) from time t0i to t, and 3)
E[Si](t0

i
;t) be the expected recognition value during t0i and

t.

� S+i (t0i; t) and S�i (t0i; t) computation:

S+i (t0i; t) =
X

t0
i
�j�t;P (Sij )>�

P (Sij );

S�i (t0i; t) =
X

t0
i
�j�t;P (Sij )��

(1� P (Sij ))

� E[Si](t0
i
;t) computation:

If (S+i (t0i; t) > S�i (t0i; t)),
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then P (Si(t0
i
;t)
jO(t0

i
;t)) = S

+
i
(t)

t�t0
i

else,P (Si(t0
i
;t)
jO(t0

i
;t)) = 0 and t0i is disregarded.

In term of complexity, if only a certain number k of ti
are maintained, we need to update k number of temporal
means to compute Ri(t). Since this process is repeated for
all N states, multi-state scenario recognition algorithm re-
quiresO(NT ) operations, which is as efficient as the Viterbi
algorithm used in the HMM approach. However, the con-
struction of the model, and the initialization and learning
of the parameters can be much easier in our case since the
nodes of the network are transparent.

5 Results
We validate the proposed formalism by analyzing ten

video streams that capture all activities in two different park-
ing lot areas. The parameters of the network are learned
from sequences taken at the first parking lot. The training
data set is composed of 600 frames (containing half of pos-
itive and half of negative examples). We then test the net-
work on the sequences taken from the both parking lots;
the second lot has a different street structure (the streets are
of high curvature). We show results of two test sequences
called sequence A and B shown in figure 3 (a) and 5 (a) taken
in the second parking lot.

Activity Description
We model two activities to be detected using our hier-

archical representation. First activity, “Contact1” is de-
fined as a multi-state combination (automaton) of three sub-
scenarios: “two men approach each other, make contact,
turn around and leave”. These sub-scenarios are then de-
scribed by the network shown in figure 2. The second activ-
ity, “Passing By” is defined as “A man approaches another
man, walks past the other, and then leaves”, and is described
by a network similar to that for “Contact1” , but with differ-
ent sub-scenarios.

Activity Recognition
The analysis results for sequence A are shown in fig-

ure 3 (b). Dotted, dashdot and solid lines show the likeli-
hood of the sub-scenarios which are derived using Bayesian
networks described in section 4.1. The “+” line shows
P (MS�jO) computed based on our multi-state scenario
recognition algorithm. The results show that “Contact1” is
recognized with higher confidence (P (MS�jO)= 0.7) com-
pared to “Passing By” (P (MS�jO) = 0).

To validate the robustness of our method against a variety
of temporal segmentation of activities and levels of noise,
we performed an experiment on four hundred perturbed
sequences. Perturbed sequences were generated from se-
quence A by randomly inserting and deleting the tracked
mobile objects as follows. A random number uniformly dis-
tributed between 1 and 20 is generated and used as a timing

point where the sequence is perturbed. For each perturbed
sequence, three such random numbers are selected and used
as timing point to duplicate or delete a frame or to remove
the information on the tracked blobs. For example, if the
random number is 3, a frame may be inserted once in ev-
ery three frame and so on. The smaller the random number
is the more the sequence becomes perturbed. As a result,
mobile objects may appear to be static or lost from time to
time. The probabilities of scenario “Contact1” at the final
frame of each processing are shown in figure 4 (a). It shows
that on average “Contact1” is recognized with a probability
of 0.55 (with the highest value of 0.74 and lowest value of
0.21). Figure 4 (b) shows the result of recognition on a se-
quence where the tracked moving blobs were removed once
in every three frames. From the characteristics of the “+”
line (i.e. very stable), our method still infers the correct sce-
nario.

Figure 5 (b) shows the analysis results for sequence B.
This sequence depicts scenario “Passing By” which is cor-
rectly recognized with probability of 0.6, while the scenario
“Contact1” is poorly recognized at the lower value of 0.2.

6 Conclusion
We presented a new formalism to recognize various kinds

of activities and differentiate between similar ones. This for-
malism contains a chained hierarchical representation that
describes scenarios from general properties of the moving
objects. We claim that our proposed formalism is optimal
based on two reasons. First, the formalism allows us to take
advantage of any mobile object properties which are ob-
tained from the statistical processing of the output of image
processing routines. Second, these mobile object proper-
ties can be combined in a probabilistic framework (Bayesian
networks and probabilistic automaton) such that the sce-
nario with the maximum probability of occurrence can be
selected. Our experiments indicate the validity of our ap-
proach. We plan to conduct more extensive tests to establish
the generality of our approach.
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I) CONTACT1 II) PASSING BY
(b) Recognition results of two competing activities.

Figure 3: (a) Input sequence A shows a multi-state scenario “Contact1”. Object 1 (at the top) approaches object 2 (at the
bottom), makes contact (both objects have merged as they meet), turns around and leaves. (b) Scenario “Contact1” is rec-
ognized withP (MS�jO) = 0.7. On the other hand, scenario “Passing By” is recognized with lower probability (almost 0 at
the end) since sub-scenario “leaving without turning around” is not established.
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(a) Results on perturbed sequences (b) One example of perturbed data sequence

Figure 4: (a) “Contact1” recognition values of 400 perturbed image sequences. (b) The recognition result on an example of
perturbed sequence with the loss of tracking on every three frames. The recognition of sub-scenarios becomes zero every time
the mobile object is lost. Scenario “CONTACT1”, however, is still correctly recognized.

frame B.97 frame B.101 frame B.108 frame B.138
(a) Detection and tracking of moving regions for scenario “PASSING-BY”
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I) CONTACT1 II) PASSING BY
(b) Recognition results of two competing activities.

Figure 5: (a) Input sequence B shows a multi-state scenario “Passing By”:Object 1 walks past object 2. (b) “Passing By” is
recognized with higher confidence (P (MS�jO) = 0.6) than “Contact1”(P (MS�jO) = 0.2).
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