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Abstract

Towardsthe goal of realizing a generic automatic human
activity recognition system, a new formalismis proposed.
Activitiesare described by a chained hierarchical represen-
tation using three type of entities. image features, mobile
object properties and scenarios. Taking image features of
tracked moving regions from an image sequence as input,
mobile object propertiesare first computed by specific meth-
ods while noise is suppressed by statistical methods. Sce-
narios are recognized from mobile object properties based
on Bayesian analysis. A sequential occurrence several sce-
narios are recognized by an algorithmusing a probabilistic
finite-state automaton (a variant of structured HMM). The
demonstration of the optimality of these recognition method
isdiscussed. Finally, thevalidity and the effectiveness of our
approach isdemonstrated on both real-world and perturbed
data.

1 Introduction

Automatic or semi-automatic recognition of human ac-
tivity is gaining attention in computer vision research com-

ful enough to discriminate between similar activities (e.g.
sitting and squatting), and 3) whether the matching is per-

formed optimally (if so, what are the underlined optimality
criteria and assumptions).

In a previous paper [5, 4], we introduced an activity
recognition framework that allows a flexible and extendible
representation of activities using a hierarchical model and
demonstrated it on different applications such as monitoring
pedestrians at a road block and cars on a freeway. In this
framework, image features are linked explicitly to a sym-
bolic notion of activity through several layers of more ab-
stract activity descriptions combined by a variety of meth-
ods. The goal of this paper is to present a recognition algo-
rithm that effectively recognizes image sequences that cor-
respond to a particular scenario model.

This paper is organized as follows. Related work is dis-
cussed in section 2. Section 3 describes our formalism con-
cerned with the activity modeling and recognition methods.
An algorithm for optimally recognizing scenarios based on
Bayesian analysis and finite-state automaton are described
in detail in section 4 together with the optimality criteria.
Experimental results are presented in section 5.

munity due to the needs of many applications such as2 Related Work

surveillance for security and for human-computer interac-

Activity recognition systems that have been developed in

tion. Automatic human activity recognition by computerin- the recent past mostly provide a representation arafjrée
volves, firstly, detecting and tracking mobile objects from tiontechniques for one particular type of action in a particu-
the image sequence captured from the domain of interestlar domain and sometimes under a constrained environment.
The activities are then recognized from the characteristicsMany of these methods are targetediatiple events defined

of these tracked mobile objects. One of the major tasks inas events that can be detected by itself (i.e. context-free) re-
this process is concerned with how to link the gap betweengardless of other events. For examglsitting” or “ walk-
numerical pixel level data and a high level abstract activity ing” can be detected independently whileamplex events
(verbal) description. This leads to a spectrum of approachessuch as' approaching another person, handing an object,
which interprets this task as a matching process between ahenwalking away” , are composed of three sub-events with
sequence of image features to a set of activity models. Thea constraint on the sequential occurrence of them (hence, is
best matched models are then selected based on some criteontext-sensitive).

ria and their matching degree. The differences among these In [7], simple periodic events (e.g. walking) are rec-
approaches are 1) whether image features are computed awgnized by constructing dynamic models of periodic pat-
tomatically and independently of input image sequences, 2)tern of people’s movements and is dependent on the robust-
whether the activity representation is generic and expres-ness of tracking. Inspired by a similar application to speech
sive enough to model a variety of activities but yet power- recognition,Hidden Markov Model(HMM) has also been
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applied to activity recognition. In [10], an HMM isused as
a representation of simple events which are recognized by
computing the probability that the mode produces the vi-
sual observation sequence. Parameterized-HMM [11] and
coupled-HMM [3] are introduced to recognize more com-
plex events such as an interaction of two mobile objects.
In[2], stochastic context-free grammar parsing algorithmis
used to compute the probability of atemporally consistent
sequence of primitive actions recognized by HMMs. Even
though HMMs are robust against varioustempora segmen-
tations of events, the structure and probability distributions
are not transparent to human and need to be learned using
iterative methods. For complex events (e.g. a combination
of sub-events) such networksand their parameter space may
become prohibitively large.

Bayesian networks have been adopted in activity recog-
nition in the recent years mostly to represent simple events
[6, 1, 8]. To effectively apply Bayesian networks in ac-
tivity recognition, we need the correct structure and condi-
tional probabilitiesassociated with thelinksin the network.
In [9], a Bayesian network is used to recognize the action
“ditting” by making an assumptionthat thisactionisrelated
with only the change of location of human head (which is
manually tracked) across time. This assumption simplifies
the network structure and parameters but the network may
fail to discriminate between “ sitting” and other similar ac-
tions (e.g. “bending over”) in area application. In [8],
a more complicated Bayesian network is defined together
with specific functionsto evaluate some temporal relation-
ship among events (e.g. before and around) to recognize ac-
tions involving multiple agents in a football match. How-
ever, thetracking of football playersisperformed manually.

3 A Formalism for Human Activity Recogni-
tion

Figure 1 shows schematically how mobile objects and

their behavior may be recognized among alarge number of
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potential scenarios from input visual data (image segquence)
and available context. Context consists of associated infor-
mation, other than the sensed data, that is useful for activity
recognition such as aspatial map and prior activity expecta
tion. A hierarchy of entities, which consist of three levels:
imagefeature, mobileobject property, and scenarioisde-
fined. Figure 2 shows an example of activity representation
based on this hierarchy. At the lowest layer, image features
are theinput to the system. Several layers of mobile object
propertiesand scenarios are then defined to describe amore
complex and abstract activity shown at the highest layer.

From input image sequence, moving regionsare detected
and tracked, and several 2D (and, if available, 3D) image
features are computed for these regions. Image features
correspond to uninterpreted instantaneous data of amoving
region (e.g. shape and |l ocation measurements) computed by
some lower level image processing routines. These values
are used as primitiveinput to the higher mobile object prop-
erty level.

At this level, mobile objects are hypothesized as being
composed of one or more tracked moving regions and sev-
eral layers of spatia and tempora mobile object proper-
ties are computed over a few frames. Some of them can
be generic and elementary such as width, height, color his-
togram or texture while the others can be complex (e.g. a
graph description for the shape of an object). Propertiescan
also be defined with regard to the context (e.g. some short
events such as “ entering the security area” ).

The links between a mobile object property at a higher
layer to aset of propertiesat thelower layersrepresent some
relations between them (eg. taking a ratio of width and
height propertiesto compute the aspect ratio of the shape of
mobile objects). A filtering function and a mean function
that compute a mean val ue based on the multi-Gaussiandis-
tribution of the property values collected over time are also
available to minimize the errors caused by environmenta
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and sensor noise.

Scenarios correspond to long-term activities of mobile
objects such as “ a person walks towards another person,
hands in an object, then walks away”. Two types of sce-
narios (i.e. single-state scenario and multi-state scenario)
are defined based on the type of the temporal combination
of their composite sub-scenarios at lower levels.

Single-state scenarios are defined by a concurrent log-
ical constraint on a set of sub-scenarios or mobile object
properties. This constraint is verified at every frame to de-
terminewhether or not the single-state scenario has occurred
at that instance. For example, scenario ” mobile object A is
walking toward mobile object B” represents alogical con-
straint of two mobile object properties. “ the distance be-
tween A and B” and “ thedirection of A” . If the distance de-
creases and the direction of A istoward B, then the scenario
issaid to be recognized.

Multi-state scenarios correspond to a tempora se-
guence of sub-scenarios (or a sequence of states, where
states refer to sub-scenarios) and is verified over along se-
guence of frames. For example, in figure 2, scenario “ con-
tactl” explained as " mobile object A makes contact with
mobile object B and rushes away” represents a sequential
occurrence of three sub-scenarios. ” A slows down towards
B”,then” A isincontact withB” andthen” A turnsaround
and goes away from B”. Multi-state scenarios are repre-
sented by afinite-state automaton where the states of the au-
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tomaton correspond to the composite sub-scenarios.

Scenarios can be organized into alibrary and triggered as
needed. Scenarios have a confidence value (or a probability
distribution) attached to them based on statistical anaysis.
In thisrepresentation, the links from image features to high
level activitiesare explicit and can be constructed naturally
by users.

4 Optimal Activity Recognition

Given a set of scenario models defined by our proposed
representation (S = scenarioy, scenarios,..., scenarioy)
and an observation sequence of mobile object properties
(O = 01,1y = 010,...0;, where O, iscomposed of aset of
mobileobject properties), wewish to computethelikelihood
of the scenarios that have occurred. The optimal criteria
here isto find the scenario model that is most likely to pro-
duce the sequence of observations. We consider a scenario
ashavingabinary distribution(i.e. whether it occursor does
not occur). We want to compute Vi, P(scenario;|O1 1)),
and find the one with the maximal value.

P(scenariolO( ), can be computed by inferring the
distribution of sub-scenario values at the lower layers and
propagating them towards the top layer. We describein this
section the methods that we use to infer these values.

4.1 Single-state Scenario Recognition
To infer whether or not a single-state scenario occurs at
any frame from the observed distributionsof sub-scenarios,



we apply Bayesian methods. In Bayesian terms, the input
entities are viewed as providing the evidence variables and
thetask isto compute the probability distribution of an out-
put entity hypothesis. Bayesian methods are optimal pro-
vided that thejoint probability distributionsneeded to carry
out the computations are known. If the entities to be com-
bined are statistically independent (given the scenario), a
simplenaive Bayesclassifier can beused to computethedis-
tribution of the combined result. When the entities are not
conditionally independent, Bayesian networks offer an ef-
ficient representation that can represent dependence by de-
composing the network into conditionally independent com-
ponents.

Weapply Bayesian networksin our formalismasfollows.
The structure of the network and many probabilitiesare de-
rived by heuristic means from the knowledge about the do-
main. For example, in our hierarchical representation, log-
ical constraints of sub-scenarios that represent the recogni-
tion of aparticul ar scenario areastrongindication of causal-
ity between them. Each layer inthe hierarchy can beviewed
as being composed of several naive Bayesian classifiers(one
classifier per each scenario). That is, each scenario in the
layer becomes a parent node of a naive Bayesian classifier
which links to other sub-scenarios (child nodes) at lower
layers. Belief propagation (inference process) is performed
in one direction from the bottom layer to the top layer.

Two layers of naive Bayesian classifiers are defined for
the representation in figure 2. At the top layer, as a sub-
scenario 1 of the automaton, “ slowing down toward ob-
ject of reference” , (called parent scenario) from three other
sub-scenarios: “ direction istoward the object of reference”
(e1), “dlowing down” (e5), and “ distance is decreasing”
(e3) (called child scenarios). These child scenariosforman-
other layer of three naive Bayesian classifiers (e.g. e; be-
comes a parent of “angle;” and “angles”). The distri-
bution over the parent scenario values in Bayesian classi-
fiers are inferred from the distribution of sub-scenario val-
ues and the conditional probabilitiesof sub-scenarios given
the values of parent scenario (i.e. P(ey|H), P(ez|H), and
P(es|H)). In some cases, these probabilities can be deter-
mined heuristically (e.g. strictly logical functionssuch as H
istrueif ey, es, and e3 aretrue). Inthe case wherethese can-
not be determined heuristically, they can belearned from ob-
served exampl es by simply making a histogram of observed
values of the evidence variables, e, e3, e3, given the value
of agivenhypothesis, H, i.e. tocomputethe probability dis-
tribution P(e;| ) and P(e;|—H). By taking advantage of
the fact that the nodes of the network are transparent (e.g.
we can observe whether the object is moving towards an-
other object or whether it is dowing down), this parameter
learning process becomes simple.
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4.2 Multi-state Scenario Recognition

The structureof an automaton (i.e. states and transitions)
that represents a multi-state scenario can be easily obtained
by forming a sequence of DA Gsof composite sub-scenarios
(51, Sa, ..., Sny) where S; refers to sub-scenario i (or state
7). Theinter -temporal relationship between sub -scenarios
is modeled by atransition. In our case, state : either ad-
vancesto state: -+ 1, remainsin the same state, or goes back
to the initial state. A multi-state scenario is said to occur
when its sub-scenarios are recogni zed consecutively. Given
the observation sequence, the question we ask is when is
the most likely transition time from one state to the next so
that thewhol e state sequenceiscompleted (i.e. we are inter-
ested in the transitiontiming that maximizes the probability
of the sequence having occurred). We define the probabil-
ity of such an event as P(M S*|0): the probability that the
complete automaton state sequence of M .S occurs with the
most likely state transition timing given the sequence of ob-
servations O = Oy ). Thiscan be computed as follows:

P(MS*|0) =
max P(Sl(tl,

V(t1,t2,.tN)

to—1) S2(t2,t3—1) "'SN(tN,t) |O)7 )
wheret; refersto thetime that thetransitionto state : from
statei — 1 occursand S;, a1 means that scenario i oc-
cursduring¢; and ¢;44 - 1.

Tobeconcise, let.S7Y beSi, .., 2. v 1) SN0
The computation of P (57 |O) can then be decomposed into
the recognition results of sub-scenarios as.

Qii—1 P(Si(tl,tl+1—1) |O(tutz+1_1))

P(S7 |0, 1)) = .
' 1§1i_£N P(Si(tl,tl+1—1)) (2)
where tx41 = ¢, and a; ;1 is the a priori probability

of the transition from state : — 1 to state ¢ at time ¢; (i.e.
P(Si(twtl“_l) |Si—1, _,)) which is assumed to be constant
fpr al scenarios. [Ticicn P(Si(twtm_l) ). isa characteris-
tic of the scenario and can be learned from image sequences
or provided as context. In the case where we consider sim-
ilar or competing scenarios, we can make a fair assumption
that thisproduct is a constant.

Eq. 2 can be derived as follows. For compactness, we
drop the timing notation symbols in the proof. Let S; be

Si(tw%l_l) and O; be O, 1,,,-1)- Wehavethat,
P(S1"]0) = P(Sy, 57 " |On, 07 ") ©)
= P(S) 7 Sn, 07 7 On)P(Sn| OY 7, On)
@
= P(S7 7" [Sx, 01 T )P(Sw|Ow) ®)
_ P(Sy| S L OY T P(SY T O T P(Sh|Ow)
- P(Sx| 077 6)
_ P(Sv|ON)P(Sx| ST~ P(ST O ) %

P(s5w)



Eg. 4 and 6 is achieved from the conditiona probabil-
ity axiom, while eg. 5 is achieved from the fact that given
On, Sy isindependent of O{V‘l and viceversa. Eq. 7 is
achieved from the assumption that S and O{V‘l areinde-
pendent of each other. By making aMarkov assumption that
the probability of stayingin state: at timet only dependson
thelikelihood of being in state: — 1 at timet — 1, we have
that

P(Sn| ST ™) = P(Sny [Sn—1,, ) =ann-1.  (8)

We can recursively apply eq. 7to P(S5 1 | O ~1) and fi-
nally get eq. 2. By substitute eg. 2 into eqg. 1, we have:
P(MS*|0) =

Qii—1 P(Si(tl,tl+1—1) |O(t,,t,+1—1))

Vi) 11 P(S ©)

.....

i(tz’tt-l—l_l))

We describe next the algorithm to find the values of
1,12, ..., ty that maximize P(M S*|O).

Multi-state Scenario Recognition Algorithm

The direct computation of P(A/.5*|0O) at timeT using eg. 9
involves an operation of O(7%) complexity since there are
O(TN) combination of values of ¢,,t5, ..., ty. However a
more efficient recursive algorithm based on dynamic pro-
gramming can be applied. This agorithm is an adaptation
of the Viterbi algorithmused in HMM to our finite-state au-
tomaton. Let R;(¢) bethelikelihoodthat /.S occupies state
1 a time ¢t with the most likely transition timing between

states given the observation sequence Oy, ;). That is,
Ri(t) = V(tlr,rtlga:.).(.,t,) P(Sl(tl,t2—1)52(t2,t3—1)"' uer ,t)|0(t17t))
H a]d—lP(SJ(t i1 1)| (t5,t541— 1))
= max (10)
V(81,20 rt4) 1<% P(Sﬂ(tj,tj+1—1))

The solution for eg. 1 is, therefore, equivaent to Ry (t).
R;(t) can be derived from previously recognized state: — 1
asfollows. For short, let A; be the term on the right hand
side of the product.

Rit)= max ] 4
1<y<e
= max (A; max H 45)
tim1 <<t Y(t1,to,.tio1) 1<i<iot (11)
= max A Rz 1( ¢ 1)
ty_q1 <t; <t

By substitute A; back ineg. 11, we have that,
QAgi—1 P(Si(tl,t) |O(ti7 t))

R;(t) = max Rioi(t: =1
O e PSic0) ! 212)
aii=1 P(Si;, 10,
tiyesy = argmas 1 p(SFtM)| ¢ t))Rz 1(ti— 1)
ti_1 <t <t ( l(t,,t)) (13)
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At time ¢, starting from state 1 where Ry (t) is aways
1, eq. 12 are recursively processed until the fina state NV
is reached, where Ry (t) represents the probability of the
sequence of states occurs with optimal transition timing
Upesrr T20ets s UNpesr

Ineq. 12, P(S;,. , |0, +)) isthe probability that sub -
scenario ¢ (which can be either asingle - state or a multi -
state scenario) occurs given that we observe the observation
sequence from time ¢; to ¢;4; — 1. This can be computed
as atempora mean (expected value) of the distribution of

P(S;,|0;) collected from frame¢; to¢ as described below.

Temporal Mean Computation of P(S;, ,|O, )

The distribution of scenario values during any time period,
assuming that the noiseis random, should distribute around
either zero or one (i.e. occurring or not occurring). For
each candidate value of ¢;, we collect scenario values (i.e.
the probability that it occurs) during ¢; and ¢ and com-
pute the expected scenario value. The expected scenario
value represents the temporal mean of the distribution of
P(Si o|O,0)-

To find the optimal ¢; that maximizes R;(t), we would
have to investigate all possible values of each ¢;. However,
thereisacriteriato disregard many of these values as a can-
didate for ¢;,__,. Let ¢/ be a possible value of ¢;. Onein-
dicator for ¢} to be disregarded as a potential candidate for
t; isthe fact that the accumulative probability that scenario
i does not occur during ¢; and ¢ is greater than the accu-
mulative probability that scenario 7 does occur, which indi-
cates that scenario ¢ does not occur during ¢/ and ¢. In gen-
era, only a certain numbers, say k, of such ¢; candidates
(¥ = t;,,...,t;,) tha compute the highest R;(t) can be
mai ntai ned.

The algorithm for the computation of temporal mean is
summarized as follows. Let 1) S (¢/,¢) be the accumula
tive probability density of the scenario (above threshold &
whichisinversely proportionateto the degree of noiseinthe
image sequences) fromtimet! tot, 2) S (¢;, t) betheaccu-
mul ative probability density when the scenario isnot recog-
nized (i.e. under the threshold §) from time ¢/ to ¢, and 3)
E[Si](t/“t) be the expected recognition value during ¢; and
t.

e S (t,¢)and Sy (¢4,t) computation:

S;l—(t;,t) = Z P(Sij),
t<i<t,P(Si;)>6
Si(ti 1) = Y. (1=P(sy)

.
t1<j<t,P(S;;)<6

° E[Si](t’l,t)
If (57 (¢,

computation:

t) > ST (t, 1)),



_ste
then P(Si(t,l)t)|0(t’l,t)) =

dse.P(S;,, |0 ) =0andt; isdisregarded.

In term of complexity, if only a certain number & of ¢;
are maintained, we need to update £ number of tempora
means to compute R;(¢). Since this process is repeated for
all N states, multi-state scenario recognition algorithm re-
quiresO(NT') operations, whichisasefficient asthe Viterbi
algorithm used in the HMM approach. However, the con-
struction of the model, and the initidization and learning
of the parameters can be much easier in our case since the
nodes of the network are transparent.

5 Resaults

We validate the proposed formaism by anayzing ten
video streamsthat captureall activitiesintwo different park-
ing lot areas. The parameters of the network are learned
from sequences taken at the first parking lot. The training
data set is composed of 600 frames (containing half of pos-
itive and half of negative examples). We then test the net-
work on the sequences taken from the both parking lots;
the second lot has a different street structure (the streets are
of high curvature). We show results of two test sequences
called sequence A and B showninfigure3 (a) and 5 (a) taken
in the second parking lot.

Activity Description

We model two activities to be detected using our hier-
archica representation. First activity, “ Contactl” is de-
fined as amulti-state combination (automaton) of three sub-
scenarios. “two men approach each other, make contact,
turn around and leave” . These sub-scenarios are then de-
scribed by the network shown in figure 2. The second activ-
ity, “ Passing By” isdefined as* A man approaches another
man, walkspast the other, and thenleaves’ , and isdescribed
by a network similar to that for “Contact1”, but with differ-
ent sub-scenarios.

Activity Recognition

The analysis results for sequence A are shown in fig-
ure 3(b). Dotted, dashdot and solid lines show the likeli-
hood of the sub-scenarios which are derived using Bayesian
networks described in section 4.1. The “+” line shows
P(MS*|0O) computed based on our multi-state scenario
recognition agorithm. The results show that “Contact1” is
recognized with higher confidence (P (A/.5*|0) = 0.7) com-
pared to “Passing By” (P (M S*|0) = 0).

Tovalidatethe robustnessof our method against avariety
of temporal segmentation of activities and levels of noise,
we performed an experiment on four hundred perturbed
sequences.  Perturbed sequences were generated from se-
guence A by randomly inserting and deleting the tracked
mobileobjectsasfollows. A random number uniformly dis-
tributed between 1 and 20 isgenerated and used asatiming
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point where the sequence is perturbed. For each perturbed
sequence, three such random numbers are selected and used
as timing point to duplicate or delete a frame or to remove
the information on the tracked blobs. For example, if the
random number is 3, a frame may be inserted once in ev-
ery three frame and so on. The smaller the random number
is the more the sequence becomes perturbed. As a result,
mobile objects may appear to be static or lost from time to
time. The probabilities of scenario “Contactl” at the fina
frame of each processing are showninfigure4(a). It shows
that on average “ Contact1” is recognized with a probability
of 0.55 (with the highest value of 0.74 and lowest value of
0.21). Figure 4 (b) shows the result of recognition on a se-
guence where thetracked moving blobswere removed once
in every three frames. From the characteristics of the “+”
line(i.e. very stable), our method till infersthe correct sce-
nario.

Figure 5 (b) shows the analysis results for sequence B.
This sequence depicts scenario “Passing By” which is cor-
rectly recognized with probability of 0.6, whilethe scenario
“Contactl” is poorly recognized at the lower value of 0.2.

6 Conclusion

We presented anew formalism to recogni ze variouskinds
of activitiesand differentiate between similar ones. Thisfor-
malism contains a chained hierarchical representation that
describes scenarios from genera properties of the moving
objects. We claim that our proposed formalism is optimal
based on two reasons. Firgt, theformalism allowsusto take
advantage of any mobile object properties which are ob-
tained from the statistical processing of the output of image
processing routines. Second, these mobile object proper-
tiescan be combined in aprobabilisticframework (Bayesian
networks and probabilistic automaton) such that the sce-
nario with the maximum probability of occurrence can be
selected. Our experiments indicate the validity of our ap-
proach. We planto conduct more extensiveteststo establish
the generality of our approach.
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Contactl recognition results on simulated data Contactl
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(a) Results on perturbed sequences

(b) One exampl e of perturbed data sequence

Figure4: (a) “ Contactl” recognition values of 400 perturbed image sequences. (b) The recognition result on an example of
perturbed sequence with the loss of tracking on every three frames. The recognition of sub-scenarios becomes zero every time

the mobile object islost. Scenario “ CONTACTL”, however, is still correctly recognized.
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(a) Detection and tracking of moving regions for scenario “PASSING-BY”
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(b) Recognition results of two competing activities.

Figure5: (a) Input sequence B shows a multi-state scenario “ Passing By” : Object 1 walks past object 2. (b) “ Passing By” is
recognized with higher confidence (P (A S*|0) = 0.6) than * Contactl” (P (M S*|0O) = 0.2).
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