
Bayesian Learning

• Bayes Theorem

• MAP, ML hypotheses

• MAP learners

• Minimum description length principle

• Bayes optimal classifier

• Naive Bayes learner

• Bayesian belief networks
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Two Roles for Bayesian Methods

Provides practical learning algorithms:

• Naive Bayes learning

• Bayesian belief network learning

• Combine prior knowledge (prior probabilities) with observed data

• Requires prior probabilities

Provides useful conceptual framework

• Provides “gold standard” for evaluating other learning algorithms

• Additional insight into Occam’s razor

2



Bayes Theorem

P (h|D) =
P (D|h)P (h)

P (D)

• P (h) = prior probability of hypothesish

• P (D) = prior probability of training dataD

• P (h|D) = probability ofh givenD

• P (D|h) = probability ofD givenh
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Choosing Hypotheses

P (h|D) =
P (D|h)P (h)

P (D)

Generally want the most probable hypothesis given the training data
Maximum a posteriorihypothesishMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)
P (D)

= arg max
h∈H

P (D|h)P (h)

If assumeP (hi) = P (hj) then can further simplify, and choose theMaximum likelihood(ML) hypothesis

hML = arg max
hi∈H

P (D|hi)
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Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in
only 98% of the cases in which the disease is actually present, and a correct negative result in only97%
of the cases in which the disease is not present. Furthermore,.008 of the entire population have this
cancer.

P (cancer) = P (¬cancer) =
P (+|cancer) = P (−|cancer) =

P (+|¬cancer) = P (−|¬cancer) =
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Basic Formulas for Probabilities

• Product Rule: probabilityP (A ∧B) of a conjunction of two events A and B:

P (A ∧B) = P (A|B)P (B) = P (B|A)P (A)

• Sum Rule: probability of a disjunction of two events A and B:

P (A ∨B) = P (A) + P (B)− P (A ∧B)

• Theorem of total probability: if eventsA1, . . . , An are mutually exclusive with
∑n

i=1 P (Ai) = 1, then

P (B) =
n∑

i=1

P (B|Ai)P (Ai)
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Brute Force MAP Hypothesis Learner

1. For each hypothesish in H, calculate the posterior probability

P (h|D) =
P (D|h)P (h)

P (D)

2. Output the hypothesishMAP with the highest posterior probability

hMAP = argmax
h∈H

P (h|D)
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Evolution of Posterior Probabilities

hypotheses hypotheses hypotheses

P(h|D1,D2)P(h|D1)P h )(

a( ) b( ) c( )
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Characterizing Learning Algorithms by
Equivalent MAP Learners

Inductive system

Output hypotheses

Output hypotheses

Brute force
MAP learner

Candidate
Elimination
Algorithm 

Prior assumptions
 made explicit

P(h) uniform
P(D|h) = 0 if inconsistent,
            = 1 if consistent

Equivalent Bayesian inference system

Training examples D

Hypothesis space H 

Hypothesis space H 

Training examples D
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Learning A Real Valued Function

hML

f

e

y

x

Consider any real-valued target functionf
Training examples〈xi, di〉, wheredi is noisy training value

• di = f(xi) + ei

• ei is random variable (noise) drawn independently for eachxi according to some Gaussian distribution with
mean=0

Then the maximum likelihood hypothesishML is the one that minimizes the sum of squared errors:

hML = arg min
h∈H

m∑

i=1

(di − h(xi))
2
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Learning A Real Valued Function

hML = argmax
h∈H

p(D|h)

= argmax
h∈H

m∏

i=1

p(di|h)

= argmax
h∈H

m∏

i=1

1√
2πσ2

e−
1
2 (

di−h(xi)
σ )2

Maximize natural log of this instead...

hML = argmax
h∈H

m∑

i=1

ln
1√

2πσ2
− 1

2

(
di − h(xi)

σ

)2

= argmax
h∈H

m∑

i=1

−1
2

(
di − h(xi)

σ

)2

= argmax
h∈H

m∑

i=1

− (di − h(xi))
2

= argmin
h∈H

m∑

i=1

(di − h(xi))
2
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Learning to Predict Probabilities

Consider predicting survival probability from patient data

Training examples〈xi, di〉, wheredi is 1 or 0

Want to train neural network to output aprobabilitygivenxi (not a 0 or 1)

In this case can show

hML = argmax
h∈H

m∑

i=1

di ln h(xi) + (1− di) ln(1− h(xi))

Weight update rule for a sigmoid unit:
wjk ← wjk + ∆wjk

where

∆wjk = η

m∑

i=1

(di − h(xi)) xijk
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Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis

MDL: prefer the hypothesish that minimizes

hMDL = argmin
h∈H

LC1(h) + LC2(D|h)

whereLC(x) is the description length ofx under encodingC

Example:H = decision trees,D = training data labels

• LC1(h) is # bits to describe treeh

• LC2(D|h) is # bits to describeD givenh

– NoteLC2(D|h) = 0 if examples classified perfectly byh. Need only describe exceptions

• HencehMDL trades off tree size for training errors
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Minimum Description Length Principle

hMAP = arg max
h∈H

P (D|h)P (h)

= arg max
h∈H

log2 P (D|h) + log2 P (h)

= arg min
h∈H

− log2 P (D|h)− log2 P (h) (1)

Interesting fact from information theory:

The optimal (shortest expected coding length) code for an event with probabilityp is− log2 p bits.

So interpret (1):

• − log2 P (h) is length ofh under optimal code

• − log2 P (D|h) is length ofD givenh under optimal code

→ prefer the hypothesis that minimizes

length(h) + length(misclassifications)
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Most Probable Classification of New Instances

So far we’ve sought the most probablehypothesisgiven the dataD (i.e.,hMAP )

Given new instancex, what is its most probableclassification?

• hMAP (x) is not the most probable classification!

Consider:

• Three possible hypotheses:

P (h1|D) = .4, P (h2|D) = .3, P (h3|D) = .3

• Given new instancex,

h1(x) = +, h2(x) = −, h3(x) = −
• What’s most probable classification ofx?

15



Bayes Optimal Classifier

Bayes optimal classification:

arg max
vj∈V

∑

hi∈H

P (vj |hi)P (hi|D)

Example:

P (h1|D) = .4, P (−|h1) = 0, P (+|h1) = 1
P (h2|D) = .3, P (−|h2) = 1, P (+|h2) = 0
P (h3|D) = .3, P (−|h3) = 1, P (+|h3) = 0

therefore
∑

hi∈H

P (+|hi)P (hi|D) = .4

∑

hi∈H

P (−|hi)P (hi|D) = .6

and

arg max
vj∈V

∑

hi∈H

P (vj |hi)P (hi|D) = −
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Gibbs Classifier

Bayes optimal classifier provides best result, but can be expensive if many hypotheses.
Gibbs algorithm:

1. Choose one hypothesis at random, according toP (h|D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at random fromH according to priors onH. Then:

E[errorGibbs] ≤ 2E[errorBayesOptimal]
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Naive Bayes Classifier

Along with decision trees, neural networks, nearest nbr, one of the most practical learning methods.

When to use

• Moderate or large training set available

• Attributes that describe instances are conditionally independent given classification

Successful applications:

• Diagnosis

• Classifying text documents
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Naive Bayes Classifier

Assume target functionf : X → V , where each instancex described by attributes〈a1, a2 . . . an〉.
Most probable value off(x) is:

vMAP = argmax
vj∈V

P (vj |a1, a2 . . . an)

vMAP = argmax
vj∈V

P (a1, a2 . . . an|vj)P (vj)
P (a1, a2 . . . an)

= argmax
vj∈V

P (a1, a2 . . . an|vj)P (vj)

Naive Bayes assumption:
P (a1, a2 . . . an|vj) =

∏

i

P (ai|vj)

which gives

Naive Bayes classifier:vNB = argmax
vj∈V

P (vj)
∏

i

P (ai|vj)
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Naive Bayes Algorithm

Naive BayesLearn(examples)

For each target valuevj

P̂ (vj) ← estimateP (vj)

For each attribute valueai of each attributea

P̂ (ai|vj) ← estimateP (ai|vj)

ClassifyNew Instance(x)
vNB = argmax

vj∈V
P̂ (vj)

∏
ai∈x

P̂ (ai|vj)
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Bayesian Belief Networks

Interesting because:

• Naive Bayes assumption of conditional independence too restrictive

• But it’s intractable without some such assumptions...

• Bayesian Belief networks describe conditional independence amongsubsetsof variables

→ allows combining prior knowledge about (in)dependencies among variables with observed training data

(also called Bayes Nets)
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Conditional Independence

Definition: X is conditionally independentof Y givenZ if the probability distribution governingX is
independent of the value ofY given the value ofZ; that is, if

(∀xi, yj , zk) P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk)

more compactly, we write
P (X|Y, Z) = P (X|Z)

Example:Thunder is conditionally independent ofRain, givenLightning

P (Thunder|Rain, Lightning) = P (Thunder|Lightning)

Naive Bayes uses cond. indep. to justify

P (X, Y |Z) = P (X|Y,Z)P (Y |Z)
= P (X|Z)P (Y |Z)
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Bayesian Belief Network

Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Network represents a set of conditional independence assertions:

• Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors.

• Directed acyclic graph
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Bayesian Belief Network

Storm

CampfireLightning

Thunder ForestFire

Campfire

C
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Represents joint probability distribution over all variables

• e.g.,P (Storm, BusTourGroup, . . . , ForestF ire)

• in general,

P (y1, . . . , yn) =
n∏

i=1

P (yi|Parents(Yi))

whereParents(Yi) denotes immediate predecessors ofYi in graph

• so, joint distribution is fully defined by graph, plus theP (yi|Parents(Yi))
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Inference in Bayesian Networks

How can one infer the (probabilities of) values of one or more network variables, given observed values of others?

• Bayes net contains all information needed for this inference

• If only one variable with unknown value, easy to infer it

• In general case, problem is NP hard

In practice, can succeed in many cases

• Exact inference methods work well for some network structures

• Monte Carlo methods “simulate” the network randomly to calculate approximate solutions
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Learning of Bayesian Networks

Several variants of this learning task

• Network structure might beknownor unknown

• Training examples might provide values ofall network variables, or justsome

If structure known and observe all variables

• Then it’s easy as training a Naive Bayes classifier
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Learning Bayes Nets

Suppose structure known, variables partially observable

e.g., observeForestFire, Storm, BusTourGroup, Thunder, but notLightning, Campfire...

• Similar to training neural network with hidden units

• In fact, can learn network conditional probability tables using gradient ascent!

• Converge to networkh that (locally) maximizesP (D|h)
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Gradient Ascent for Bayes Nets

Let wijk denote one entry in the conditional probability table for variableYi in the network

wijk = P (Yi = yij |Parents(Yi) = the listuik of values)

e.g., ifYi = Campfire, thenuik might be〈Storm = T,BusTourGroup = F 〉

Perform gradient ascent by repeatedly

1. update allwijk using training dataD

wijk ← wijk + η
∑

d∈D

Ph(yij , uik|d)
wijk

2. then, renormalize thewijk to assure

• ∑
j wijk = 1

• 0 ≤ wijk ≤ 1
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More on Learning Bayes Nets

EM algorithm can also be used. Repeatedly:

1. Calculate probabilities of unobserved variables, assumingh

2. Calculate newwijk to maximizeE[lnP (D|h)] whereD now includes both observed and (calculated
probabilities of) unobserved variables

When structure unknown...

• Algorithms use greedy search to add/substract edges and nodes

• Active research topic
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Summary: Bayesian Belief Networks

• Combine prior knowledge with observed data

• Impact of prior knowledge (when correct!) is to lower the sample complexity

• Active research area

– Extend from boolean to real-valued variables

– Parameterized distributions instead of tables

– Extend to first-order instead of propositional systems

– More effective inference methods

– ...
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