Bayesian Learning

e Bayes Theorem

e MAP, ML hypotheses

e MAP learners

e Minimum description length principle
e Bayes optimal classifier

e Naive Bayes learner

e Bayesian belief networks



Two Roles for Bayesian Methods

Provides practical learning algorithms:
e Naive Bayes learning
e Bayesian belief network learning
e Combine prior knowledge (prior probabilities) with observed data

e Requires prior probabilities

Provides useful conceptual framework
e Provides “gold standard” for evaluating other learning algorithms

e Additional insight into Occam’s razor



Bayes Theorem

P(D|h)P(h)

PID) = =55

e P(h) = prior probability of hypothesia

e P(D) = prior probability of training datdD
(h|D) = probability ofh given D
(

°
i)

D|h) = probability of D givenh



Choosing Hypotheses

P(D[h)P(h)

PID) = =55

Generally want the most probable hypothesis given the training data
Maximum a posteriohypothesisiy 4 p:

, = P(h|D
hayap arg max (h|D)

PP
T e P(D)
= argr&a&(P(DM)P(h)

If assumeP(h;) = P(h;) then can further simplify, and choose thaximum likelihoodML) hypothesis

hasr = P(D|h;
ML = arg max (D|h;)



Bayes Theorem

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in
only 98% of the cases in which the disease is actually present, and a correct negative resulbirfonly

of the cases in which the disease is not present. Furthermd0geof the entire population have this
cancer.

P(cancer) = P(—cancer) =
P(+|cancer) = P(—|cancer) =
P(+|-cancer) = P(—|-cancer) =



Basic Formulas for Probabillities

e Product Rule probability P(A A B) of a conjunction of two events A and B:

P(A N B) = P(A|B)P(B) = P(B|A)P(A)

e Sum Ruleprobability of a disjunction of two events A and B:

P(AV B) = P(A) + P(B) — P(A A B)

e Theorem of total probabilityif eventsAy, ..., A,, are mutually exclusive witfy""_, P(A4;) = 1, then

P(B) = ZP(B|A1‘)P(A¢)



Brute Force MAP Hypothesis Learner

1. For each hypothesisin H, calculate the posterior probability

P(h|D) = P(i?l);;(h)

2. Output the hypothesis,; 4 p With the highest posterior probability

hMAp = argmax P(h|D)
heH



Evolution of Posterior Probabilities

P(h) P(h|D1) P(h|D1,D2) I

hypotheses hypotheses hypotheses
(a) (b) (c)



Characterizing Learning Algorithms

Equivalent MAP Learners

Inductive system

Training examples D

L

Hypothesis space H

Candidate
Elimination
Algorithm

Output hypotheses

-

Equivalent Bayesian inference system

Training examples D

L

Hypothesis space H

P(h) uniform
P(D|nh) = 0 if inconsistent,
= 1if consistent

Brute force
MAP learner

Output hypotheses

A

/

Prior assumptions
made explicit

-



Learning A Real Valued Function

Y

Consider any real-valued target functifn
Training examplesz;, d;), whered; is noisy training value

o d; = f(z;) +e

e ¢; is random variable (noise) drawn independently for eachccording to some Gaussian distribution with
mean=0

Then the maximum likelihood hypothedis, . is the one that minimizes the sum of squared errors:

harr, = argmin 3 _ (d; - h(z;))?

=1
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Learning A Real Valued Function

har

Maximize natural log of this instead...

hyro =

= argmaxp(DJh)
heH

= argmapr d;|h)
heH

d ’( ))2

= argmax H
heH vV 27r02

i=1

()
()

(d; — h(:))”

argmax Z In

heHd

argmax Z

heH =

271'0'2

argmax Z

heH 3

argmmz (d; — h(z;))?

heH
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Learning to Predict Probabilities

Consider predicting survival probability from patient data
Training examplesz;, d;), whered; is 1 or 0

Want to train neural network to outpuipaobability givenz; (nota 0 or 1)

In this case can show

hyr = argmadei Inh(z;) + (1 —d;) In(1 — h(x;))
heH

Weight update rule for a sigmoid unit:
Wik < Wik + ijk

where .
Awjr =0 (di — h(x:)) Tijn

i=1
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Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis

MDL.: prefer the hypothesis that minimizes

hypr = argmin Lo, (h) 4+ Le, (D]h)
heH

whereLq(z) is the description length af under encoding”

Example:H = decision treesD = training data labels
e Lo, (h) is # bits to describe trele
e Lo, (D|h) is # bits to describ® givenh
— Note L, (D|h) = 0 if examples classified perfectly By Need only describe exceptions

e Henceh,,p;, trades off tree size for training errors
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Minimum Description Length Principle

haap = argmax P(D|h)P(h)
= argmax log, P(D|h) + log, P(h)
= arg }’%IE —log, P(D|h) — log, P(h) (1)
13

Interesting fact from information theory:
The optimal (shortest expected coding length) code for an event with probaliity log, p bits.
So interpret (1):
e —log, P(h) is length ofh under optimal code
e —log, P(DJh) is length of D givenh under optimal code

— prefer the hypothesis that minimizes

length(h) + length(misclassi fications)
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Most Probable Classification of New Instances

So far we've sought the most probalbigpothesigiven the data (i.e., hprs ap)

Given new instance, what is its most probableassificatior?

e hyrap(x)is not the most probable classification!

Consider:
e Three possible hypotheses:
P(hy|D) = 4, P(hao|D) = .3, P(hs|D)=.3
e Given new instance,
hi(z) = +, ha(z) = —, hs(z) = -

e What's most probable classification o?
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Bayes Optimal Classifier

Bayes optimal classification:

Example:

therefore

and

arg max > P(v;|hi)P(hs|D)
77" hieH

P(hi|D) =4, P(—|h1)=0, P(+|h)=
P(he|D) = P(=|h2) =1, P(+|h2) =0
P(h3|D) = .3, P(—|h3) =1, P(+|h3) =0

> P(+|h)P(hi|D) = A4

h,eH

Z P(—|h;)P(h;|D) = .6

hi;€H

argmax Z (vj|hi)P(hi|D) = —
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Gibbs Classifier

Bayes optimal classifier provides best result, but can be expensive if many hypotheses.
Gibbs algorithm:

1. Choose one hypothesis at random, accordingtk| D)
2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at randomff@ocording to priors o{. Then:

E[err'TOTGibbs] S QE[ETTOTBayesOptimal]
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Naive Bayes Classifier

Along with decision trees, neural networks, nearest nbr, one of the most practical learning methods.

When to use

e Moderate or large training set available

e Attributes that describe instances are conditionally independent given classification
Successful applications:

e Diagnosis

e Classifying text documents
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Naive Bayes Classifier

Assume target functiofi : X — V, where each instancedescribed by attribute&, as . .. a,,).
Most probable value of (x) is:

vpmap = argmax P(vjlai,as...an)
v, eV
P P (v;
Uprap = argmax (a1, az. .. an|vj)P(v;)
v EV P(al,ag...an)
= argmax P(ai,as...an|v;)P(v;)
v, eV

Naive Bayes assumption:
P(ai,az...anlv;) = HP(ai\vj)

which gives

Naive Bayes classifiervy g = argmax P(v;) H P(ai|v))

v; eV i
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Naive Bayes Algorithm

Naive BayesLearngexzamples)

For each target value;

P(vj) < estimateP(v;)
For each attribute valug, of each attribute

P(a;lv;) — estimateP(a;|v;)

Classify New_Instancef)

UNB = argmaxp(vj) H P(ai|vj)

v; €V a;€x
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Bayesian Belief Networks

Interesting because:
¢ Naive Bayes assumption of conditional independence too restrictive
e Butit’s intractable without some such assumptions...
e Bayesian Belief networks describe conditional independence asmdrgptof variables

— allows combining prior knowledge about (in)dependencies among variables with observed training data

(also called Bayes Nets)

21



Conditional Independence

Definition: X is conditionally independerdf Y given Z if the probability distribution governing is
independent of the value &f given the value ofZ; that is, if

(Va:i,yj,zk) P(X = Ii|Y = yj,Z = Zk) = P(X = .I‘1|Z = Zk)

more compactly, we write
P(X|Y,Z) = P(X|2)

Example:Thunder is conditionally independent dRain, given Lightning

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naive Bayes uses cond. indep. to justify

P(X,Y|2) P(X|Y,Z)P(Y|Z)

= P(X|2)P(Y|Z)

22



Bayesian Belief Network

BusTourGroup

SB S,-B -S,B -S,-B
C 04 01 08 0.2
-C 06 09 0.2 0.8

Campfire

Network represents a set of conditional independence assertions:

e Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors.

e Directed acyclic graph
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Bayesian Belief Network

BusTourGroup

SB S,-B -S,B -S,-B
C 04 01 08 0.2
-C 06 09 0.2 0.8

Campfire

Represents joint probability distribution over all variables
e e.g.,P(Storm, BusTourGroup, ..., ForestFire)
e in general,

n

Py1, .. yn) = H P(y;|Parents(Y;))

i=1

whereParents(Y;) denotes immediate predecessordpin graph

e S0, joint distribution is fully defined by graph, plus thy;| Parents(Y;))
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Inference in Bayesian Networks

How can one infer the (probabilities of) values of one or more network variables, given observed values of others?

e Bayes net contains all information needed for this inference
e If only one variable with unknown value, easy to infer it

e In general case, problem is NP hard

In practice, can succeed in many cases
e Exact inference methods work well for some network structures

e Monte Carlo methods “simulate” the network randomly to calculate approximate solutions

25



Learning of Bayesian Networks

Several variants of this learning task

e Network structure might bknownor unknown

e Training examples might provide valuesaif network variables, or justome

If structure known and observe all variables

e Then it's easy as training a Naive Bayes classifier
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Learning Bayes Nets

Suppose structure known, variables partially observable
e.g., observ&orestFire, Storm, BusTourGroup, Thundbut notLightning, Campfire.

¢ Similar to training neural network with hidden units
e In fact, can learn network conditional probability tables using gradient ascent!

e Converge to network that (locally) maximizes?(D|h)

27



Gradient Ascent for Bayes Nets

Let w;;;, denote one entry in the conditional probability table for varidjlen the network
wijr = P(Y; = y;;|Parents(Y;) = the listu;;, of values)
e.g., ifY; = Campfire, thenu;, might be(Storm = T, BusT ourGroup = F)
Perform gradient ascent by repeatedly
1. update alkv;;;; using training dataD

Py (yij, wir|d)

Wijk < Wik + 1 E w
ijk

deD
2. then, renormalize the;;;, to assure

° ijijkzl
(] 0§wijk§1
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More on Learning Bayes Nets

EM algorithm can also be used. Repeatedly:
1. Calculate probabilities of unobserved variables, assurhing

2. Calculate neww; ;i to maximizeE|[Iln P(D|h)] whereD now includes both observed and (calculated
probabilities of) unobserved variables

When structure unknown...
e Algorithms use greedy search to add/substract edges and nodes

e Active research topic
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Summary: Bayesian Belief Networks

e Combine prior knowledge with observed data
e Impact of prior knowledge (when correct!) is to lower the sample complexity
e Active research area

— Extend from boolean to real-valued variables

— Parameterized distributions instead of tables

— Extend to first-order instead of propositional systems
— More effective inference methods
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