Strongly History-Independent Hashing with Applications

Guy Blelloch, Daniel Golovin
Carnegie Mellon University
Pittsburgh, PA USA
Why be History Independent?

- Information stored by an implementation of some abstract data type (ADT) is a superset of that demanded by the ADT.
- Implementation may store undesirable clues of past use of the data structure.
 - File systems
 - Databases
 - Voting logs
Strong History-Independence (SHI)

- Store exactly the information required by the ADT, and no more.
- Impossible to learn more from the machine state than via the legitimate interface.
- For reversible data structures, equivalent to unique representation [Hartline et al. ‘05]: For every ADT state there is exactly one machine state that represents it.
Previous Work

- Pointer Machine Models & Comparison-based Models
 - Snyder ('77):
 - Sundar & Tarjan ('90):
 - Andersson & Ottmann ('95):
 - Buchbinder & Petrank ('06):

- Characterizing History Independence
 - Micciancio ('97): Oblivious data structures
 - Naor & Teague ('01): Weak & Strong History Independence
 - Hartline et al. ('05): SHI vs. Unique representation

- Strongly History Independent Data Structures
 - Amble & Knuth ('74): Hash tables (without deletions)
 - Naor & Teague ('01): Hash table (without deletions) with limited randomness
 - Acar et al. ('04): Dynamic trees (via dynamization)

Very strong lower bounds:
\(\Omega(n^{1/3}) \) or worse for dictionaries
\(\Omega(n) \) for heaps & queues
Our Contributions

In a RAM we can build efficient SHI data structures. Hashing is the key.

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Table</td>
<td>Expected $O(1)$ lookup, insert, & delete</td>
<td>Linear</td>
</tr>
<tr>
<td>Perfect Hash Table</td>
<td>Expected $O(1)$ updates</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>Worst case $O(1)$ lookup</td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>Expected $O(\log(n))$</td>
<td>Linear</td>
</tr>
<tr>
<td>Ordered Dictionaries</td>
<td>Expected $O(\log(n))$ [comparisons]</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>Expected $O(\log \log (n))$ [Integer keys]</td>
<td></td>
</tr>
<tr>
<td>Order Maintenance</td>
<td>Expected $O(1)$ updates</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>Worst case $O(1)$ compare</td>
<td></td>
</tr>
</tbody>
</table>
SHI Hashing (with Deletions)

- Based on correspondence with Gale-Shapley stable matching algorithm

Theorem [GS ‘62]: Every valid execution of the GS stable matching algorithm outputs the same stable matching.
- **Probe(K, i)**: \(i^{th}\) slot in K’s probe sequence
- **Rank(K, X) = i** if **Probe(K, i) = X**
- **Next(X, State)** is the slot containing X’s favorite key that prefers X to its current slot.

![Diagram]

- **Insert(C)**: X Y Z
- **Delete(C)**: X Y Z

\[
\text{Next}(X, \text{State}) = Y
\]
With linear probing, and uniform eviction policy, we can implement operations in $O(\text{displacement})$ time.

Theorem [PPR ‘07]: Linear probing with 5-wise independent hash functions yields expected $O(1)$ time operations (and hence expected $O(1)$ displacement).
Dynamic Perfect Hashing

- Label each key with labels in \{1, \ldots, (\log(n))^3\} using a hash function.
- For all slots \(x \), indices on \{ (\text{label}(k), \text{displacement}(k)) : k \text{ hashed to } x \}.

Assume (for now):

1. Every slot has \(O\left(\frac{\log(n)}{\log \log(n)}\right) \) keys hashed to it.
2. Every key has displacement \(O(\log(n)) \).
3. For all slots \(x \), the keys hashed to \(x \) all get distinct labels.
Assume (for now):
(1) Every slot has \(O\left(\frac{\log(n)}{\log \log(n)}\right) \) keys hashed to it.
(2) Every key has displacement \(O(\log(n)) \)
(3) For all slots \(x \), the keys hashed to \(x \) all get distinct labels

Then each index is \(O(\log n) \) bits.
Updates & queries in \(O(1) \) worst case time!

● Removing the assumptions:
 ● If you don’t really need to be SHI, just resample random bits “on the fly”.
 ● Otherwise, sample several hash functions on initialization, but use only what you need.
Other Results

- BSTs using treaps and hash table for memory allocation
- Ordered Dictionaries using treaps (comparison based) or van Emde Boas structures (integer keys)
- Order Maintenance
Conclusions

- Very small overhead for many fundamental SHI data structures in a RAM (unlike in pointer machines).
- Fast SHI hashing is a crucial enabling factor.
Future Work/Open Problems

- SHI versions of various other ADTs
- Develop techniques to automate the creation of SHI versions of various ADTs
- lower bounds in a RAM
Thank You