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Abstract— Wireless access points are becoming more and more promi-
nent in the home, yet there is no incentive to encourage access point owners
to share their service. We introduce SWAP, a lightweight protocol that uses
reciprocity to motivate users to share service. Each node participating in
SWAP stores perishable receipts that are used to calculate a user’s rating
(how much the user shares his or her access point). SWAP does not use a
centralized authority to store or validate receipts nor does it place an exces-
sive burden on peers. SWAP is also robust against collusion, which we show
through analysis and implementation. As demonstrated by an implementa-
tion of the most computationally expensive portions of the protocol, SWAP
imposes little overhead even on mobile devices.

Keywords—Community Wireless, Reciprocity, Wireless Security

I. INTRODUCTION

Recent years have seen an explosion in the use of wireless
networking technology. Unfortunately, while city-wide wire-
less Internet access is being explored in a few locations [1], [2],
[3], [4], most communities are still far from having ubiquitous
wireless. Users can often rely only on finding access through a
coffee shop, hotel, or airport, and must typically navigate one of
several payment systems to make use of one of these wireless
access points. The coverage area could be greatly expanded if
users could access any of the home access points in a commu-
nity, but owners of these access points have no incentive (and
many disincentives) to share their resources with the commu-
nity.

We address this hurdle by proposing a mechanism, the Shared
Wireless Access Protocol (using Reciprocity), or SWAP, that
guarantees reciprocity to those who grant others access to their
resources. Reciprocity, as it applies to networking, is the ability
for a user who has provided resources to another user to receive
services in return. We have expanded this definition to include
transferable reciprocity under which a user can receive service
from any other user as long as she shares her service.

SWAP is a lightweight protocol that encourages users to share
service, detects collusion, and limits freeloading. It does not
require either a trusted third party or a large number of peers
to validate each exchange of service. SWAP detects collusion
without auditing every transaction, and requires little communi-
cation between participants.

To present SWAP in context, Sec. II reviews related work and
outlines the key features that make SWAP unique. Sec. III dis-
cusses our design considerations. Sec. IV identifies the entities
that make up the system model. Sec. V describes the SWAP
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protocol itself. Sec. VI presents an analysis of the random audit
process. Sec. VII covers the implementation of several portions
of SWAP. We conclude and discuss future work in Sec. VIII.

II. RELATED WORK

Approaches to sharing the upstream capacity of fixed wireless
access points typically use one of three techniques: reputation,
micropayments, or reciprocity.

Reputation-based schemes use good reputation to draw
users to access points (APs) [5], [6]. These schemes typically
use monetary incentives to encourage APs to maintain good rep-
utations and track reputations at a central authority. A notable
reputation scheme is MoB [5], which allows mobile users to
choose their provider based upon some criteria (e.g. price, band-
width, reliability, etc.). SWAP focuses instead on providing dif-
ferent levels of service to users based upon how much they share
their own APs. SWAP does so without monetary incentives or a
central reputation authority.

Micropayment-based schemes use credit as digital money.
A user can acquire service from any other user by spending dig-
ital money. Micropayment-based schemes rely on either a cen-
tralized authority or other peers to verify the authenticity of the
digital money. PPay [7], for example, limits the use of a cen-
tral authority by allowing peers to “own” coins. Coins may be
transferred from peer to peer as long as the original owner of
the coin is involved. Karma [8] is a decentralized peer-to-peer
micropayment scheme in which a set of participant nodes main-
tains a user’s credit rating (karma) and information regarding the
user’s recent payments. Every transaction a user makes must be
recorded by the set of nodes responsible for her credit rating,
potentially creating a heavy burden on those nodes. Like mi-
cropayment schemes, SWAP does not require previous contact
between two users in order to receive service. Unlike micropay-
ment schemes, SWAP does not rely on a central authority nor
does it excessively burden peers for credit tracking.

Reciprocity-based schemes have peers record who has
granted them service and grant service only to those entities who
have granted them service. Direct reciprocity is when A grants
service to B because B granted service to A. Under indirect
reciprocity [9], A grants service to B who grants service to C

who grants service back to A. Reciprocity-based schemes typi-
cally involve an exchange of credits between users. Once those
credits are exhausted, a node cannot receive service from a par-
ticular node or set of nodes until it again gains credit from that
node or group. These schemes do not rely on a central authority.

ISBN 9-9999-9999-9/99/ $20.00 c©2007 IEEE 1



Reciprocity-based schemes include Samsara [10] and
P2PWNC [11]. Samsara is a peer-to-peer storage system that
enforces fairness among peers via transferable “claims.” A peer
using storage from another peer gives a claim that allows the
other peer to use its space. P2PWNC groups users into teams.
Wireless users access foreign teams’ APs based on their team
rating. The algorithm builds a receipt graph of directed paths
to determine who should be granted service. Service is granted
only if there is a direct or indirect path from the consumer to
the provider. Like other reciprocity-based schemes, SWAP does
not require a centralized authority to manage credit. Unlike
other reciprocity-based schemes, SWAP does not require pre-
vious contact between two users in order to receive service. Ad-
ditionally, SWAP’s credits are not depleted during connections
to foreign access points. Instead, credits expire over time. Users
may thus use other APs as long as they share their own APs.

III. DESIGN CONSIDERATIONS

SWAP is designed with two considerations in mind: the in-
centives for a user participating in a shared wireless access pro-
tocol, and the requirements, such as computational feasibility,
that the system must meet.

A. Incentives

SWAP’s primary incentive for users is delayed reciprocity:
the promise of receiving service for providing service [12]. In
order to access the Internet using SWAP while away from their
home access points, users must first share their own service. The
system can promote sharing if users receive better service by
sharing more of their own service with others.

A second incentive is the network effect: As more users share
their service, users are more likely to be able to receive service
at a particular location [13].

A third benefit to users is cost/performance: SWAP is free if
you share your own AP, and 802.11 access points are typically
much faster than other wireless access methods such as 3G cel-
lular data networks. (Users will often travel to an access point
to avoid slow 3G connection speeds [14].) Finally, some users
might share their service for ideological reasons of sharing or
undermining the telecommunication giants [14].

These incentives encourage users both to provide service and
to improve the service provided. For example, a typical indoor
802.11b/g wireless access point has a range of 46 m[15]. Out-
doors, the same wireless access point can exceed 92 m. Users
can extend the range of their APs in other ways, such as using
antennas or amplifiers [16]. Improved service will attract more
users, which in turn grants the AP’s owner better service when
away from home. Such “competition” expands the coverage and
quality of the entire system.

B. Requirements

A reciprocity-based credit system for wireless access net-
works should meet five requirements:

1. The system should motivate users to share their resources.
The system should limit “freeloading” (consuming resources
without contributing resources).
2. The system should allow users with credit to receive ser-
vice from any other user. In other words, credit for providing
service should be transferable, and access to resources should
not be based solely on direct reciprocity between two users.
3. The system should not need a trusted-third party (TTP).
SWAP’s goal is to allow users to benefit from each others’
access points without incurring extra costs. Introducing a
TTP to maintain the credit accounts of all users in the sys-
tem may incur costs that undermine the goal of being entirely
community-based.
4. The computational, storage, and latency overhead of the
protocol should be low. For example, the time to issue credit
for having received service should not be a significant portion
of the service time.
5. The system should be able to detect peers who collude to
subvert the system. Furthermore, the system should minimize
the gains peers can receive from collusion.

IV. SYSTEM MODEL

SWAP brokers access between two entities: mobile nodes
that wish to receive broadband service; and access points (APs),
wireless routers that provide access to the Internet. Each mobile
node is associated with one home AP and freely receives service
from this AP. Roaming mobile nodes wish to receive service
from foreign APs. SWAP allows roaming nodes to receive ser-
vice from foreign APs provided that their home APs are willing
to service other roaming nodes.

To give APs credit for providing service, each mobile node
M has a private key skM that it uses to sign receipts for service
from APs. Receipts are stored in a distributed hash table (DHT)
using a consistent hashing protocol which we discuss in more
detail in Sec. V. A mobile node is bound to its associated AP
through a certificate signed by a node in the DHT that verifies
both the mobile node’s public key and the AP’s network address.
The certificate issuer assigns each mobile node a unique identi-
fication number (ID) used to identify itself to foreign APs.

All entities must have clocks loosely synchronized to within
a few minutes. The clock is used only to timestamp receipts.

V. SWAP PROTOCOL

To gain access from a foreign AP, Af , a roaming mobile node,
M , first sends its certificate (containing its ID and the network
address of its AP) to Af . The foreign AP then contacts the mo-
bile node’s AP, AM , to retrieve receipts that prove that AM has
given access to other mobile nodes. Af then verifies the valid-
ity of the receipts it receives. It may also randomly audit some
of the receipts (Sec. V-C). From the receipt set, Af determines
how much bandwidth to give the roaming node. After this ne-
gotiation, the mobile node can access the AP. Throughout the
active session, the mobile node generates and sends receipts for
the service it receives. The simple protocol is shown in Fig. 1.
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Fig. 1. SWAP protocol

The AP logic for accepting a mobile node’s request for access is
shown in Fig. 2.

We next explain six specific components of the SWAP pro-
tocol: receipt generation, receipt storage, random audits, rating
calculation, service denial, and the way nodes join the system.

A. Receipt Generation

When a mobile node M receives service from an AP Af , it
credits the AP by generating a receipt for the AP. The receipt is
of the form:

R = {Af , IDM , b, tstart, tend}skM

where IDM represents the ID of M , b represents the number of
bytes transferred, and tstart and tend represent the start and end
time of service, respectively. The five fields are signed by M ’s
private key which is denoted by {·}skM

.
Receipts are created periodically for the AP granting ser-

vice. Periodic receipts discourage corrupt nodes from refusing
to credit the AP after receiving service. If a mobile node fails
to generate a receipt after the fixed time interval, the AP can
deny the mobile node further access. To reduce storage over-
head, receipts express cumulative amounts of time such that a
new receipt will replace the previous one stored at the AP.

Analogous to receipts are nonreceipts: certificates summa-
rizing the times which a mobile node is idle and has not been
accessing a foreign AP. Nonreceipts are receipts signed by a mo-
bile node to its own AP. They allow non-roaming mobile nodes
to receive credit. This dissuades nodes from giving receipts to
APs from which they have not received service, as they can
credit themselves instead. Nonreceipts have the same form as
regular receipts, and are stored in the same manner as receipts.
Therefore, we limit our discussion to only receipt storage.

B. Receipt Storage

When an AP receives a receipt R, it stores the receipt both
locally and on one other designated AP, A

′. A
′ is chosen us-

ing consistent hashing [17]. Similar to many peer-to-peer dis-
tributed hash tables (DHTs) (e.g., [18], [19], [20], [21]), SWAP
uses the hash function to map a receipt to an AP that stores it.

Fig. 2. Random Audit Process

A DHT gives nodes and objects identifiers generated by a
globally-known hash function, g(·) (e.g., SHA-1 [22]). A node’s
identifier determines the objects for which the node is respon-
sible. DHT protocols are designed to scale to a large number
of nodes; therefore, the primary goal of these protocols is to
quickly determine the location of an object. Any DHT imple-
mentation can fulfill this requirement for SWAP. One possibility
is an external “service” DHT such as OpenDHT [23].

An AP’s identifier is determined by hashing the network ad-
dress of the AP. Receipt identifiers are determined by hash-
ing the start time of the receipt, rounded down to the nearest
hour and the ID of the mobile node that generates the receipt:
g(tstart, IDR). This allows all receipts generated by the same
mobile node in the same start hour to be mapped to the same
AP. This mapping is enforced to reduce the overhead in random
audits, while ensuring that a single compromised node does not
affect a wide time range for any mobile node.

Unlike conventional credit, which does not expire, receipts
are only valid for a limited time. When a foreign AP requests
receipts from a mobile node’s AP, only receipts for the active
time period are sent. When a receipt is older than the current
active time period, it is expunged from the sets of receipts that
the AP stores. This reduces the overhead of storing receipts to
storing only receipts valid at the current active time period.

C. Random Audit

The random audit allows Af to catch mobile nodes that gener-
ate multiple receipts for the same time period (impossible, since
a node is only allowed to use one AP at a time). When an AP
receives a set of receipts S from a mobile node’s AP, it may de-
cide to randomly audit some of those receipts. The AP audits a
receipt by querying each AP that is responsible for every hour
within the receipt’s start and end times. For each receipt R that
Af wishes to verify, it does the following:
1. Round down the start time and end time of the receipt to the
nearest hour, hstart and hend respectively.
2. For each hour h from hstart to hend:

(a) Determine the AP Ah that stores the receipts for the mobile
node that generated the receipt MR for that hour by calculating
its identifier, g(h, IDR).

(b) Send an audit request message containing R to Ah.
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When Ah receives an audit request, it looks at all of the re-
ceipts it has stored for the hour and determines if the generator of
R, MR, created more than one receipt R′ that overlaps R’s time
period. If not, Ah returns NOCOLL to the querying AP, signi-
fying that R is valid. Otherwise it returns COLL to the querying
AP and provides the set of overlapping receipts from the cheat-
ing node. While a cheating AP could falsely return NOCOLL,
the proof of cheating is self-verifying, since it consists of re-
ceipts that only the cheating node could generate.

If any Ah returns COLL for any receipt R, A begins a reverse
audit for the node requesting service, M . When R and R′ col-
lide, the culpable party is not necessarily M , the node requesting
service. Rather, it is the node that generated the receipt, MR for
AM . However, if MR and M are colluding, it is likely that M

has also generated receipts for MR. Therefore, the reverse au-
dit checks all receipts generated by M during the active time
period. If there are collisions between any receipts during the
reverse audit, then M is also guilty of colluding. If there are
no collisions, A gives access to M . The logic for Af granting
access is shown in Fig. 2. Confirmed cheating nodes are either
temporarily or permanently banned from the community as de-
scribed in Sec. V-E.

To evade collusion detection, a malicious AP may refuse to
push its receipts to the DHT (this way no false receipts are stored
in the DHT). To prevent this, Ah issues NOFINDs to the query-
ing AP for each receipt R that is audited, but not found. If a
querying AP receives NOFINDs for a significant number of the
receipts it has queried, it denies the roaming node access. Ad-
ditionally, if the querying AP receives a NOFIND from Ah for
R, the querying AP sends R to Ah. This is safe to do since Ah

can verify the validity of R. Since the querying AP sends miss-
ing receipts to the appropriate node in the DHT, those receipts
intentionally omitted by the malicious AP will get stored in the
DHT simply by requesting service. Thus, collusion can still be
detected during subsequent service requests.

Note that there may be cases when Ah might legitimately not
respond to an AP’s audit request (e.g., Ah is temporarily offline
or the audit request gets dropped by the network). In such cases,
the AP simply ignores the receipt stored at Ah in its bandwidth
calculation for the node.

Optionally, Af can query the DHT to determine if the access
point belonging to the receipt issuer, AR, has provided service to
any mobile node other than itself or M . If not, AR is suspected
to be a Sybil node [24] of AM . For verification, Af queries the
DHT to determine if any AR∗ in AM ’s receipt set has provided
service to any mobile nodes other than itself or M . If most nodes
never receive service from anyone else, it is reasonable to accuse
M of employing a Sybil attack and ban her from the community.

D. Rating Computation

Once mobile node M passes the random audit, AP Af com-
putes the node’s rating, which determines the amount of service
Af grants M . The rating is based upon the total amount of time
that AM provides service:

rM =

U
∑

i=1

ti (1)

where rM is M ’s rating, U is the number of users that re-
ceived service from AM , and t is the total amount of time ser-
vice was provided to each user.

Time is used as a linear measure for calculating rating in order
to provide the greatest reward to APs that provide the most ser-
vice. We assume that users who receive poor or low-bandwidth
service from an AP will terminate service of their own accord
and not return to the poor AP. Therefore, APs are discouraged
from trying to game the system by providing poor service to
many people. The incentive for APs is to provide the minimum
level of service to users that keeps them happy, which is in line
with SWAP’s goals.

While our scheme works well in most scenarios, it is ineffec-
tive for APs in isolated areas. These APs may see only a few
roaming nodes for short periods of time, and the resulting rat-
ings will be similar to that of a non-sharing AP. To encourage
such APs to provide service (the service may be quite valuable
to those few users who use it, since access is presumably rare),
(1) can be modified such that there is a higher reward to APs for
smaller amounts of sharing. However, this modification allows a
malicious AP to modify its behavior to maximize rewards with-
out providing honest sharing. For this reason, a nonlinear rating
equation should only be used in a trusted environment.

After calculating M ’s rating (rM ), Af grants service to M

proportionally to rM :

allocated bandwidthM =
total bandwidth · rM

∑

U ′ r
(2)

where U ′ is the number of users currently accessing Af .

E. Service Denial

A node confirmed as cheating is added to a revocation list and
denied service. If a node fails a random audit, it is suspected of
cheating. The accuser then requests that the AP located at the
hash of the current time and the ID of the accused node conducts
a confirmation audit. If this audit also fails, then the accused
node is confirmed as cheating. Nodes added to the revocation
list can either remain on the list permanently or decay over time.

F. Bootstrapping

A node joins SWAP by registering with the DHT to receive an
identity certificate. It can then build its receipt set by allowing
mobile nodes to roam on its AP. It can also increase its receipt set
by generating nonreceipts for itself. Thus, an idle mobile node
may later receive some service from foreign APs even though it
has only recently joined the system.

VI. ANALYSIS

This section presents an analysis of how SWAP prevents
cheating. We assume that most users of the system are not ma-
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licious. We begin by discussing how a malicious node may at-
tempt to cheat. This is followed by a discussion of the coun-
termeasures we take to mitigate collusion in SWAP. We then
present the mathematical likelihood of detecting collusion based
on our primary countermeasure, random audit. A demonstration
of the validity of our calculations is given through implementa-
tion of the audit process.

A. Possible Ways to Cheat

There are many ways a malicious node may attempt to cheat
in SWAP. We address each of these and show how SWAP miti-
gates the threat.

Sybil attack. An AP might augment its receipt set with re-
ceipts from fake mobile nodes. This type of cheating is known as
a Sybil attack [24]. SWAP prevents this by randomly checking
receipts to see if receipt issuers are sharing service (described in
Sect. V-C). The rationale is that a Sybil node will only receive
service from itself, the “real” node, or not at all. A node using a
second layer of Sybil nodes to provide service to the first layer
of Sybil nodes can escape detection. We accept this risk in the
interest of keeping SWAP completely decentralized.

Service theft. A mobile node may attempt to steal service by
not issuing receipts to an access point for service provided. As
described in Sect. V-A, this cheating is mitigated by the access
point terminating the connection with the mobile node after the
first interim receipt is not received. The gain from this attack is
less than or equal to the minimum interim receipt period.

Service hoarding. An access point may share service with
only one or a few mobile nodes. According to the semantics of
the protocol, the access point’s corresponding mobile node will
not be denied service. However, the amount of service this node
receives will be reduced, according to the rating calculation dis-
cussed in Sect. V-D.

Non-participation. A selfish user may participate in the pro-
tocol but refuse to share her access point with anyone. Instead
the user may build up her rating solely by signing nonreceipts to
herself. We do not prevent this attack because nonreceipts are
useful to bootstrap into the system as well as mitigate collusion.

Although it is possible for a selfish user to receive service
from other APs this way, her bandwidth allocation will be
smaller than that of someone who shares. For example, in a
specified time period a sharing user can accumulate U times
as much time as a user who only signs nonreceipts. As a re-
sult, a sharing user will receive U times as much bandwidth as
a selfish user. This effect is compounded by the number of shar-
ing users accessing the same foreign access point as the selfish
user. Moreover, a selfish user cannot generate nonreceipts while
roaming to other access points.

Drop attack. When an access point stores duplicate receipts
at a remote access point (see Sect. V-B), the remote access point
might drop these receipts instead of storing them. The access
point may simply be selfish and not wish to store receipts for
others. More dangerously, it may drop receipts in an attempt
improve its own service. Since storage is cheap and we assume

most users of the system are not malicious, we do not consider
the first to be a compelling reason for this attack. The second
reason, although more compelling, is not likely to produce no-
ticeable results.

Consider the possibility that a remote access point stores a
duplicate of one receipt out of every AP’s receipt set (due to the
distributed nature of how receipts are hashed in the DHT, this
assumption is unlikely). If a malicious remote AP drops these
receipts, it has the potential to reduce each AP’s rating from
∑

U t to
∑

U−1
t. This potential is only realized if the dropped

receipt is chosen by Af during an audit. The probability p that
this occurs is p =

number of receipts audited
total receipts in set . Regardless of

whether the dropped receipt is audited, if U is large the impact
of one missing receipt is small.

Recall that (2) uses the total rating of all connected users to
calculate the allocated bandwidth for any particular user. Even
if the malicious node is effective at getting Af to drop one re-
ceipt from each connected user, the total sum of receipts of all
connected users is likely large. Therefore, the expected gain by
the malicious node is small.

Receipt masking. If an access point has receipts in its receipt
set it knows are false, it may choose not to store duplicate copies
in the DHT. By not duplicating these receipts, these inconsisten-
cies are less likely to be detected during random audits as the
audit will return NOFINDs. However, each time a NOFIND is
received, the access point conducting the audit will push a copy
of the receipt to the DHT as described in Sect. V-C. Missing
receipts will thereby get copied to the DHT for verification in
subsequent audits. If too many audited receipts from an access
point return NOFINDs, the mobile node requesting service will
be denied.

Ignoring Rating. An AP might ignore a mobile node’s rat-
ing when determining the amount of bandwidth to provide. We
allow this limitation because the added complexity of prevent-
ing this attack outweighs any potential damage it causes. We
categorize the damage as minimal because the main incentive
for this attack is for the AP to improve its own rating. To do
this, the AP needs to maximize the quality of service it provides
users (i.e. same bandwidth to all users) while still providing
users with enough bandwidth to keep them satisfied. Maximiz-
ing the number of satisfied users is in line with the goals of the
system. The danger of this attack is that if all nodes behaved in
this manner, the incentive for sharing would disappear. For this
reason, we assume that most users in the system are honest.

Collusion. Mobile nodes and APs may collude to give the
appearance they are providing more service than they really are.
Collusion is defined as malicious mobile nodes issuing false re-
ceipts (receipts for service not granted) to malicious APs. Nodes
can collude in many ways. For example, a node can issues false
receipts to multiple APs simultaneously. Alternately, a node can
issue (false) receipts to a friend while actually idle. Collusion
is a difficult problem faced by reciprocity schemes, and is ad-
dressed in the remainder of this section.
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B. Reducing the Incentives to Collude

SWAP includes countermeasures to discourage collusion. Us-
ing these countermeasures, the risk of detection and the resultant
consequences outweigh the gains from collusion.

The strongest countermeasure is the ability to probabilisti-
cally detect a colluder and impose a punishment for collusion.
Collusion is detected using random audits of a user’s receipt set
as discussed in Sect. V. In SWAP, mobile nodes connect to
only one access point at a time. If the same mobile node simul-
taneously issues receipts to multiple APs, it is cheating. If the
cheating is detected, the colluder can be fined, removed from the
system, or subjected to other appropriate punishment.

While audits detect mobile nodes issuing multiple receipts to
different access points, they cannot detect nodes that issue false
receipts when they are idle. To prevent this, SWAP nodes sign
“nonreceipts” for themselves when they are idle, as discussed
in Sect. V-A. Since a mobile node can improve its own rat-
ing during idle periods, it has no incentive to issue false receipts
when idle. This countermeasure levels the playing field for hon-
est users by giving an equal advantage to all users during idle
periods.

The final countermeasure is selecting the access point at
which to store receipts using both the node ID and the receipt
time. If receipts were mapped according to ID only, a malicious
node could collude with the access point responsible for storing
its receipts. By including time, receipts from any particular node
are spread out among the access points in the DHT.

C. Time to Detect Collusion

The previous section showed how SWAP can probabilistically
detect collusion. In this section, we examine how long a colluder
can cheat before getting caught. We do so by calculating the
number of audits that take place before we can say with some
percentage of certainty that we will detect collusion.

Recall from Sect. V-C that an access point can randomly audit
any receipts from the receipt set. The probability of detecting
collusion in a single audit is:

PD = 1 −

(

N−B

n

)

(

N

n

) (3)

where N is the number of entries in the received receipt set, B

is the number of false receipts in set N , and n is the number of
receipts drawn from N to audit.

Equation 3 can be expanded to show the cumulative probabil-
ity of detecting collusion within z audits.

P ∗(Z ≤ z) =

z
∑

x=1

x
∏

i=1

(

1 −

(

Ni−Bi

ni

)

(

Ni

ni

)

)

(4)

where Ni, Bi, and ni vary with each random audit. If an ac-
cess point does not conduct an audit, we ignore that connection
when computing the probability of detecting collusion because
the probability of detection is zero.
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Fig. 4. The audit in which collusion was detected in simulation and analysis,
using N = 20 and B = 2. The simulation is the mean and the extreme
values of 100 runs for each value of n.

Assume that: (a) an AP’s receipt set reaches steady-state (re-
ceipts expire at the same rate as they get added); (b) a colluder
colludes at a constant rate; and (c) during each audit, the same
number of receipts are selected for audit. These assumptions
make N , B , and n constant over all random audits and allow
us to rewrite the cumulative probability of detecting collusion
within z audits as:

P (Z ≤ z) =
z
∑

x=1

PD(1 − PD)x−1 (5)

Fig. 3(a) uses (5) to illustrate how long collusion can continue
before it is detected. For example, assume the receipt set has 20
receipts and two of them are false. By auditing five receipts per
random audit, we expect to detect collusion with 95% accuracy
within five audits. SWAP can thus detect collusion with high
probability without excessively burdening other peers with audit
requests.

These results provide a useful upper bound on the probability
of detecting collusion. In expectation, it takes fewer audits to
detect collusion:

E[# audits] =
1

PD

(6)

Using the example above with N =20, B=2, and n=5, an AP can
expect to detect collusion on the second audit; cheaters cannot
operate for long before being caught. Fig. 3(b) shows how the
expected value varies with B and n.

As a proof of concept, we implemented the random audit pro-
cess in Java to test how long the system takes to detect collusion
compared to what we calculated. The implementation assumes
uniform N , B , and n so it can use (5) and (6). It also assumes
that APs perform an audit on each service request.

For each access point, we create a receipt set of size N and
randomly replace B receipts with false receipts. The AP ran-
domly chooses n receipts to audit. If the AP does not detect
collusion, the mobile node is granted access for that connection.
When the mobile node connects to another AP, a random au-
dit is again conducted. This process continues until collusion is
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Fig. 3. Likelihood of detecting collusion

TABLE I
RSA AND DSA’S KEY SIZE (KS), KEY GENERATION TIME (KG),

SIGNATURE GENERATION TIME (SG), SIGNATURE VERIFICATION TIME

(SV), AND SIGNATURE SIZE (SS).

KS (bits) KG (ms) SG (ms) SV (ms) SS (bytes)
RSA 1024 1083.5 257.3 6.2 128
DSA 512 179.4 40.0 224.4 47

detected. Fig. 4, compares the average audit during which col-
lusion was detected in simulation vs. the results from (6). As
the graph illustrates, the two curves closely overlap.

VII. MICROBENCHMARKS

To test the computational and storage overhead of using
SWAP, we implemented the computationally intensive parts of
the SWAP protocol (receipt generation, signature validation, and
random audit). SWAP is implemented using Java 1.4.2 with the
Java Cryptography Extension (JCE) [25] for digital signatures.
All experiments were run on a Pentium 4 1.79 GHz processor
with 640 MB of RAM running Microsoft Windows XP.

A. Digital Signatures

The largest computational overhead in SWAP is creating dig-
ital signatures. We examine two digital signature schemes, RSA
and DSA, to determine which scheme is best for SWAP. We
compare the two schemes on key size, time to generate a pub-
lic/private key pair, time to validate a signature, and the size of
the signature. Table I shows the average of ten runs.

RSA takes ten times longer than DSA to generate a key pair.
However, SWAP’s public/private key generation is a one-time
cost per mobile node. DSA’s signature generation is faster and
the resulting signatures are much smaller than using RSA, but

RSA verifies signatures much more quickly than DSA. As sig-
nature verification is more frequent than signature generation,
we chose RSA to minimize the verification time. Additionally,
RSA puts its expensive operation (signature generation) onto the
person who is benefiting from the service.

B. Certificate and Receipt Sizes

Certificates contain a 4 byte network address, a 4 byte mobile
node ID, and a 128 byte public key. Each unsigned certificate is
thus 136 bytes long, and is 264 bytes when signed.

Receipts consist of a 4 byte network address, a 4 byte mo-
bile node ID, 4 bytes for the number of bytes transferred, and 4
bytes for each of the start and end times. Unsigned receipts are
therefore 20 bytes, and 148 bytes with their RSA signature.

C. Protocol Overhead

To estimate the overhead mobile nodes and access points in-
cur while using SWAP, we use results from a study of wireless
access patterns at Dartmouth University [26]. These results are
based on traces generated by 7000 users on 550 APs using Dart-
mouth’s wireless network during the Fall and Winter terms of
2003/2004. Relevant results from the study include:

1. An AP serves a maximum of 91 concurrent users.
2. An AP services an average of seven users per day.
3. The median session duration (roughly, the period of time
a node is accessing an AP) is approximately ten minutes.
4. A node is on-line for an average of seven hours.
These results provide a gross over-estimate of the type of traf-

fic an AP may encounter in SWAP. SWAP requires that each
mobile node be associated with an AP to receive service, which
is not the case in a campus environment. However, these re-
sults give a rough estimate of mobility patterns in a community
wireless network.
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We begin by estimating the worst case scenario for an AP
receiving receipts from nodes using its service. If there are 91
users concurrently connected to an AP, and all nodes send their
receipts at approximately the same time, then an AP must spend
91 · 6.2 ms = 562.4 ms to verify the receipts. However, an
AP services only an average of seven nodes per day. Even if
all seven nodes access the AP at the same time, the AP would
require only 43.3 ms to verify the receipts.

The computational overhead for mobile nodes to compute re-
ceipts while roaming is also small. The median session during
which a node is associated with an AP lasts less than ten min-
utes. If the receipt period (the period of time which a mobile
node must generate a receipt before an AP denies the mobile
node further service) is greater than the session time, then a
freeloading mobile node could refuse to generate a receipt for
the AP and still receive all of the bandwidth for the average
session length. To account for this, we arbitrarily set the re-
ceipt period to five minutes (half the median session duration).
Accordingly, the time spent generating receipts for an average
session is 514.6 ms, or 0.0058% of the total session time.

Finally, the storage required on each remote AP to store du-
plicate requests is also small. Since the average session time
for a node is ten minutes, we assume that a node roams to six
foreign APs in an hour generating six receipts. Therefore, the
remote AP needs 148 bytes · 6 = 888 bytes to store this node’s
duplicate receipts for the hour. If we assume nodes roam dur-
ing their average of seven hours a day on-line, then the storage
needed across all APs to store duplicate receipts for all nodes’
receipts for a day is equal to 888 bytes · 7 = 6.22 KB. Since the
node ID is used as a factor in determining where in the DHT to
store duplicate receipts, the storage requirement scales with the
number of participants in the protocol.

VIII. FUTURE WORK AND CONCLUSION

One area that is lacking in all works related to community
wireless networks is user mobility patterns. It is unfortunate that
we are unable to show the storage and computation overheads
per AP as these depend on the mobility patterns of users in the
community wireless networks. A future area of research would
be to investigate mobility patterns in such networks and then
analyze how real-world mobility patterns would affect SWAP.

SWAP currently assumes that each access point has only one
associated mobile node. There are many scenarios in which
multiple nodes are associated with a single AP (e.g., a family
with multiple laptops). Multiple nodes may form a group and
be associated with the same AP as long as they all share the
same secret key. Only mutually trusting nodes should share a
secret key as the dishonesty of one member affects the service
that other members receive. A future area of research is to ex-
tend SWAP to support groups that share the resources of a single
access point, or of multiple “clustered” access points.

To conclude, SWAP is a shared wireless access protocol that
encourages members in a community to share their wireless ac-
cess points. SWAP is a lightweight protocol that promotes reci-

procity via receipts that are generated by nodes who roam on
others’ access points. SWAP detects collusion probabilistically
and does not require a centralized server for each transaction.
The analysis and simulation showed that SWAP can rapidly
catch colluders with low communication and storage overhead,
and the microbenchmarks showed that SWAP is computation-
ally feasible. We therefore believe that a system such as SWAP
is a promising step towards enabling more wide-spread commu-
nity wireless sharing for ubiquitous network access.
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