Efficient Similarity Estimation for Systems
Exploiting Data Redundancy

Kanat Tangwongsan', Himabindu Pucha?, David G. Andersen', Michael Kaminsky?>
!Carnegie Mellon University, 2IBM Research Almaden, ®Intel Labs Pittsburgh

Abstract—Many modern systems exploit data redundancy to
improve efficiency. These systems split data into chunks, generate
identifiers for each of them, and compare the identifiers among
other data items to identify duplicate chunks. As a result, chunk
size becomes a critical parameter for the efficiency of these sys-
tems: it trades potentially improved similarity detection (smaller
chunks) with increased overhead to represent more chunks.

Unfortunately, the similarity between files increases unpre-
dictably with smaller chunk sizes, even for data of the same type.
Existing systems often pick one chunk size that is “good enough”
for many cases because they lack efficient techniques to determine
the benefits at other chunk sizes. This paper addresses this
deficiency via two contributions: (1) we present multi-resolution
(MR) handprinting, an application-independent technique that
efficiently estimates similarity between data items at different
chunk sizes using a compact, multi-size representation of the
data; (2) we then evaluate the application of MR handprints to
workloads from peer-to-peer, file transfer, and storage systems,
demonstrating that the chunk size selection enabled by MR
handprints can lead to real improvements over using a fixed chunk
size in these systems.

I. INTRODUCTION

“We were most concerned about the choice of [chunk size]”
—Spring & Wetherall [22]

Exploiting cross-file redundancy has become an important
technique to improve the efficiency of data transfer and storage—
so much so that just recently, a filesystem “deduplication”
company (Data Domain) was acquired for over two billion
dollars. Redundancy elimination is widely used at the packet
level (e.g., Spring and Wetherall [22], and WAN optimizers
from companies such as Riverbed [21]); at the protocol level
(e.g., Web page duplicate elimination [20]); for local [9] and
remote filesystems (LBFS [13]); and for file transfers (rsync
and several peer-to-peer systems [1, 6, 16]). In general, these
systems identify chunks of data shared across files, in order to
transfer or store them more efficiently.

For this reason, these systems all face the question of how
to divide data into chunks. The goal of this chunking is to
maximize the probability of finding common chunks while
minimizing the overhead of transmitting and looking up chunk
identifiers. Choosing the correct chunk size is a fundamental
decision in managing this tradeoff. Existing systems choose a
static value based upon one or a few intended data sets, and
the range of these values spans several orders of magnitude:

System Chunk Size
eMule (p2p) 9500 KB
BitTorrent (p2p) 256 KB
SET (p2p) 16 KB
LBFS (dist. fs) 8 KB

Shark (dist. fs) 8 KB
REBL (filesystem) 1 KB-8 KB
Rsync Variable
Packet-level 64 bytes

In this work, we study a seemingly simple question, and
provide a general-purpose technique and an empirical evaluation
to help applications navigate this tradeoff: how can two or more
entities efficiently determine the best chunk size to use when
transferring/storing data?

Answering this question is both challenging and important.
It is challenging because doing so efficiently requires improving
upon previous work in similarity estimation. It is important
because a poor chunk size selection harms efficiency: too large
a chunk size reduces the exploitable redundancy between files,
but too small a chunk size can greatly increase the overhead of
representing and transferring the file. Unfortunately, the right
chunk size can vary dramatically even within files of the same
type.

To illustrate this point, consider an example from a real
p2p file-sharing network: One popular English movie was 75%
similar to the same movie in Italian using 1 KByte chunks,
but only 3% similar using 128 KByte chunks. The movies
have identical video streams, but different audio streams. Thus,
the chunk size needs to be smaller than a single video frame
to decouple audio and video. The difference in overhead is
also large between small and large chunk sizes: A common
800 MByte movie in 1 KByte chunks has 800,000 chunks,
each of which must be requested and accounted for separately.
Using BitTorrent’s 256 KByte chunk size, however, the same
file would be represented as only 3,125 chunks.

Our solution involves an application-independent technique
that efficiently estimates achievable benefit at different chunk
sizes, a building block for optimal chunk size selection. The
algorithm builds upon prior work in similarity detection [12,
2, 3]; its key contribution is providing bounds on the size
of the handprints that must be compared in order to obtain
accurate estimates, and using these bounds to design estimation
techniques that have very low overhead. It operates using a
compact, multi-size representation of the data’s content, called
a multi-resolution (MR) handprint. We show analytically the
error bounds on such an estimate and provide theoretical results

indicating how many chunks must be included in the MR-
handprint, at different sizes, so that the similarity estimate falls
within those bounds (Sections III, IV). Although the techniques
presented here are not tied to any particular chunking scheme,
in this paper, we focus on Rabin-based chunking and in this
particular case, a chunk size refers to the expected chunk size.

We empirically evaluate our algorithm using workloads from
a p2p file system and an RPM/ISO mirror site. Our results
suggest that an MR-handprint consuming 0.15% of the size of
the file can be used to estimate to within 5% (and often much
more closely) the similarity between two files at chunk sizes
of 1, 2, 4, ..., 128 KBytes (plausible chunk sizes in a p2p file
transfer system).

We then illustrate the utility of multi-resolution handprinting
in both our workloads. As discussed in Section V, in the p2p
scenario, MR-handprinting identifies that only a small fraction
of files actually benefit the most at a static chunk size of
16 KBytes (as used in [16]); 40% of the file transfers would
have higher performance with larger chunk sizes, and ~ 60% of
the transfers would have higher performance with chunk sizes
smaller than 16 KBytes. Similarly, in the RPM/ISO scenario,
~ 20% of files can be transferred faster with a larger chunk
size, while ~ 80% of files benefit from smaller chunk sizes.

II. MOTIVATION AND BACKGROUND
A. Why different chunk sizes?

We motivate this work by presenting the observation that
led to this research: the drastically different similarity observed
at different chunk sizes for different types of objects, and for
different objects of the same type. We first examine a handful
of example files sampled from a p2p file sharing system and a
collection of ISO/RPM files to understand similarity at different
chunk sizes; we examine a larger collection of files in Section V.
We begin with two definitions:

Splitting data into chunks: Rabin Fingerprinting. In this
paper, we adopt the now-common technique of dividing objects
into chunks using content-determined boundaries, which render
the chunk divisions insensitive to small insertions or deletions.
This technique, termed Rabin fingerprinting and first used in
LBFS [13], runs a sliding-window hash, covering about 40
bytes, over the data, declaring a chunk boundary whenever the
k-lowest-order bits of the hash (of those 40 bytes) are zero.
For efficiency, it uses Rabin polynomial fingerprints as the
hash [19]. The value of k determines the expected chunk size.!
The effect of choosing boundaries based upon the content of
the object is that an edit that adds or removes a small amount
of data will only change the chunking in a local area of the
object, but the rest of the object will still have the same chunks
as before.

Similarity Metric. We define the similarity between two sets

of chunks A and B as:

|AN B

s(A,B) =
We follow the LBFS example and also set a minimum and maximum chunk

size as a function of the expected chunk size to bound the resulting chunk

sizes under pathological inputs.

This definition matches the goals of a system exploiting
redundancy—it is, in essence, a measure of how useful object
B is when trying to transfer/store object A. (This notion of
similarity, originally called containment, was proposed and
studied by Broder [2] and Broder et al. [3]).

Similarity in Real-World Files: Figures 1(a), 1(b), and 1(c)
show similarity vs. chunk size for a small set of audio, video,
and software files, respectively. Each graph has four lines, with
each line showing how similar one pair of files was as the
chunk size increases from 1 KByte to 128 KBytes.

For instance, in the ISO/RPM files graph (Figure 1(c)), the
top line (Example 1) shows the similarity between two install
discs for Yellowdog Linux, one from March 2003 and one
from May 2003. In contrast, the line that drops drastically with
chunk size (Example 2) is two source code RPMs of gcc, one
gcc-2.96-128.7.2 and the other gcc-2.96-113.

These graphs illustrate that among individual files, some
have roughly constant similarity across chunk sizes (and thus,
could use a large chunk size to reduce overhead). Other files
(e.g., Figure 1(a), example 3, and Figure 1(c), example 2) have
similarity that “crashes” after a certain chunk size—but that
optimal chunk size varies between different file types. Still,
others have similarity that decreases more slowly, or linearly,
with increasing chunk size.

These were, of course, only sixteen example file pairs out of
the entire universe of files that users may wish to transfer, but
we observe similar patterns in larger sets of files: In a large
collection of video files, a small number of files are nearly 200x
more similar at 1 KByte chunk size than they are at 128 KByte
chunks. The decrease in video file similarity past 4-8 KBytes is
striking, because of the interleaving effect mentioned earlier. In
contrast, the similarity of audio files drops less sharply, because
most similar audio files differ only in the first or last chunk.

B. Example: P2P File Transfers

To provide context for the remainder of the paper, we briefly
outline how we envision MR-handprints to be used in our
example case study of p2p file transfer systems. This is neither
the only use nor a complete design of a file-transfer system
based upon MR handprints. A file transfer system augmented
with MR handprints will involve the following steps?:

(1) Identify candidate similar files (techniques proposed in [16]
can be used);

(2) Retrieve MR handprints for each candidate file;

(3) Estimate similarity to desired file at different chunk sizes;

(4) Determine the best chunk size to balance increased simi-
larity with increased overhead;

(5) Obtain the descriptor lists for the best chunk size; and

(6) Transfer the file.

In this context, our work focuses on providing tools for steps
3 and 4 that keep the MR handprints small enough that step 2
remains practical. The MR handprints can be compact because
they are only used for similarity estimation. The descriptor lists
used in the actual transfer still contain full hashes of the chunks
(e.g., 160-bit SHA-1 hashes as used in [16]).

2For details on a similarity based file transfer system, please refer to [16].

100

T T 100
= 80 ¢ = 80 ¢ Example 1 —v— 1 = 801
S * Example 2 —&— =
> > Example 3 —6— >
E 60 | "_% 60 Example 4 E 60
£ E £
R o K Example 1 —v—
L L L Example 2 —@—
§ 40 g 40 § 40 Example 3 —o—
5 5 £ Example 4
o a o
20 + Example 1 —s— 8 20 + 20 F o—F—_
Example 2 —&— o
Example 3 —o—
Example 4 g
o LBxamp ‘ ‘ 0L ‘ =9 0 L ‘ =
1 10 100 1 10 100 1 10 100

Chunk size (KBytes)

(a) Audio files

Chunk size (KBytes)

(b) Video files

Chunk size (KBytes)

(c) ISO and RPM files

Fig. 1: Pair-wise similarity among files as chunk size is varied.

III. ESTIMATING SIMILARITY

In this section, we present a design for lightweight MR-
handprints and show that they provide accurate estimates of
similarity. A MR-handprint is a compact representation of a data
item (e.g., a file) with the property that given the MR-handprints
of any two data items, their similarity at all chunk sizes of
interest can be estimated efficiently. Our method of generating
handprints follows the work of Broder [2] for estimating both
our notion of similarity (which he calls containment) and the
Jaccard coefficient; however, Broder’s analysis did not provide
a comprehensive guideline for picking the parameters to control
the accuracy and size of the resulting handprints. More recently,
Pucha et al. [16] proposed a constant-size handprinting scheme
for detecting whether two files share any chunk and give a
recipe for controlling the size of the handprint while ensuring
high accuracy. Their handprinting scheme, however, does not
lead to accurate similarity estimates in our setting.

Generating the multi-resolution handprint: The MR hand-
print contains, for each chunk size of interest, a subset of the
hashes of the chunks in the data (e.g., a file). A chunk hash
is included in the set if it is zero modulo some number k
(e.g., if k =8, then, in expectation, %th of the chunk hashes
will be included in the handprint); i.e., for a set of hashes A,
H(A) == {he€ A : hmod k =0}.

Important to this definition is to note that inclusion in the
set is a property of the chunk: if a chunk is in A’s handprint,
that chunk will also be in the handprint of any file B that also
contains the chunk. If the hash value of a chunk is effectively
random (e.g., if the hash is secure), then any particular chunk
essentially has a probability o = 1/k of being included in the
handprint (independent of other chunks)?.

We vary «, which determines the handprint’s size, based upon
the chunk size for reasons we explain below. For implementation
convenience, we round up to the nearest power of two. For
example, in a p2p file sharing system, o can be chosen as
follows:

Chunk Size 1KB 2KB 4KB 8KB > 16KB
a /16 1/8 1/4 1/2 1

3F0rmally, each chunk e is associated with a Bernoulli random variable
be ~ Be(a); we define H(A) ={h € A:b, =1}.

These values are slightly more conservative than necessary
(the fraction of chunks included could be somewhat smaller),
but they produce highly accurate estimates while resulting in
an MR-handprint that is only 0.15% the size of the file (using
40-bit hashes as described in Section III-B).

Estimating similarity using two handprints: The process is

simple: Count the fraction of fingerprints in A’s handprint that

also appear in B’s handprint. Use this fraction as an estimate

of how similar A and B are. In other words,
|H(A) NH(B)|

use ——————— as an estimate of
|H(A)]

A. MR-Handprint Accuracy

|ANn B
4]

We need to answer two key questions before using MR-
handprinting in a system:
(1) What fraction of chunk hashes should be included in
the handprint for a particular chunk size?
(2) How accurate is the similarity estimate?

More concretely, we wish to understand the probability that
the estimated similarity differs from the true similarity by more
than a small amount 4. In particular, we study Pr[|5 — s| < 4],
where s is the true similarity, and S the estimated similarity.

The variable we control is «, the probability that a given
chunk is included in the handprint. By increasing this probability,
we expect to decrease the error.

We attack this problem in two ways. First, we numerically
compute the probability that an estimate is within ¢ for a few
values of J, «, and |A| that we are particularly concerned
with. Because this numerical evaluation is computationally
intensive, we then derive a weaker, but tractable, lower bound
on the confidence that can provide an understanding of how
the confidence scales with chunk size, the number of chunks,
and a. (The theoretical bounds are also useful for estimating
confidence for data whose size is too large to directly compute.)

Confidence interval result summary: Table I shows the
probability that the similarity estimates are within 5% for a
large data item (32K chunks). Two things are clear: First, the
confidence values are high. Using a handprint that contains
only 1 chunk in 32 still results in an estimate that is within
5% of the true value 98% of the time. Second, the theoretical

Inclusion Probability Confidence Confidence
(¢ value) (bounds) (numerical)
a=1/2 ~1 ~1
a=1/4 > 0.999 > 0.999
a=1/8 0.982 > 0.999
a=1/16 0.758 > 0.981
a=1/32 0.234 > 0.978

TABLE I: Confidence that similarity estimate is within 5% (6 = 0.05)
as the fraction of chunk hashes included in the MR-handprint varies
(). |A] = 32,768; files are 50% similar (s = 0.5).

1

>
£ o098
3 A\ /
S 096 \
2 o
g 094 \ /
b
S 092 N
O
0.9
0 0.2 0.4 0.6 0.8 1
Similarity (s)

Fig. 2: Numerically calculated confidence probability with 2048
chunks, § = 0.05, and o = 1/8.

bound is not very tight for smaller values of «, but it provides
a useful answer when the number of chunks is large: choosing
g or —th of the 1 KByte chunks provides very high confidence
that the estimate is within a few percent. As described later,
using an MR-handprint with this fraction of chunks results in
the MR-handprint with =~ 0.15% of the original content size,

which seems a reasonable overhead.

Directly calculating the confidence values: We derive an
expression for the probability that |H(A) N H(B)| = = and

|H(A)| = y. Let
fla,y) = a¥(1—)4 y(8;4|)((1y_ S)glAl)'

The confidence probability, then, is }°, cr f(z,y), where
= {(z.):ls—2| <4, 0< y < |A],

min(s|A[,y)}. To compute this exact confidence probability,
we sum the probability of all possible outcomes in which the
additive error is at most J. This calculation takes about 20
minutes to perform for |A| = 10, 000—fast enough for offline
computation, but too slow for on-line use. Since the computation
time grows rapidly with |A|, when the number of chunks is
large, we are limited to the theoretical bounds established in
the following section.

To understand how the confidence probability varies with
similarity level, Figure 2 shows the confidence probability at
different similarity level for |A| = 2048 and o = 1/8. The
lowest confidence is when s = 0.5. We therefore use this value
of similarity in Table I.

Confidence Bounds: We establish a theoretical bound for
Pr[|s — s| < 4], the probability that the similarity estimate is

within +6 of the true similarity, as a function of the data size
|Al, the true similarity s, and the fraction of chunk hashes in
the handprint a.

Let us begin by stating a useful observation: the intersection
of the two handprints is the handprint of the intersection of
two set of chunks (i.e., H(A) N H(B) = H(A N B). This is
because as noted earlier, inclusion in the handprint is a property
of the chunk.

Now we can lower-bound the confidence probability of the
overall estimate by bounding the error probability of two “bad
events”—an excessive error in the denominator (the size of the
handprint of A) and in the numerator (the intersection of the
two data items) of the similarity estimate—and then bounding
the probability that neither error occurs. Let A be a parameter
to be set later.

(1) Bad event for denominator:
&1 := {|[3€(A4)] ~ |la] > A[Ala}
(2) Bad event for the numerator: Recall |[AN B| =
& = {||H(AN B)| — |Alsa| > A|A[sa}

|Als.

If neither bad event occurs, then the estimate error § is
less than 2)‘)\3 so we set A = 5 +{5 75" Note that the overall
probability of both conditions is at least the probability of
them both occurring independently, and so we can calculate
the confidence probability as (1 —Pr[€1])(1 —Pr[E5]). This is
possible because the events &; and €, are negatively dependent—
e.g., the size of A’s handprint must be larger than the size of
the intersection of A and B’s handprint, so the probability of
&, occurring, given that &, occurred, is at least as high as the
probability of €; occurring alone.

Finally, we bound the above bad probabilities using the
Chernoff bounds, resulting in the following theorem:

Theorem 1. Let \ =
is at least

2+{5/s The probability Pr||s — s| < 4]

A2 alAl A2 aslal
(1 — % A T—a)FA(1— 2&)/3)(1 — e 2 (l—a)+A(1—2a)/3)
Proof Sketch. First, write the size of a handprint as a sum of
indicator random variables:

A)l = Z Licescay = Z Xe,
ecA ecA
where X, ~ Be(a). Thus, E[|H(A4)|]] = «alA| and
E[|H(A) NH(B)|] = a|AN B|. Then we lower bound Pr [€4]
and Pr [€2] using the Chernoff bounds (e.g., [10]). As observed
carlier, Pr{[s—s| <ds] > (1 — Pr[&])(1 — Pr[&;]), so
plugging in the lower bounds yields the desired result. U

Understanding the bounds. First, and most importantly, as
the chunk size increases, we must increase the fraction of
chunks included in the handprint to maintain a constant error
probability. Note that in the formula, the numerator depends
on «|A|—that is, the accuracy decreases as the number of
chunk hashes decreases. The denominator also depends on
a—the accuracy increases as more chunks are included. As a

result, doubling the chunk size halves | A|, so to keep the error
2«

probability, o must increase to (H—a). As noted earlier, in our
implementation, we round these numbers to nearby powers of
two fractions (1/8, 1/16, etc.) for efficient cornputation.4

Second, the error probability decreases with increasing
number of chunks. Because finding similar items is most
important for larger data items whose transfer time is long,
this means that a setting of « that works for the minimum size
data of interest will work for all data sizes of interest.

Finally, the confidence of the bound increases with increasing
similarity—but this differs from the directly calculated numbers.
This difference shows part of the reason the theoretical bounds
are not tight: they ignore the dependence information between
the numerator and the denominator; our analysis simply made
use of negative dependence. This provides guidance for future
work in tightening the bounds we have established.

B. Reducing MR Handprint Size

Next we explore how many bits are needed to represent
each chunk’s hash in order to maintain high confidence in the
accuracy of the similarity estimate, while reducing the size of
the MR-handprint. The answer, which we derive below, is that
it suffices to use 40 bits to represent each chunk ID in the
MR-handprint. (Recall that the MR handprint for a 1-gigabyte
file would contain up to 256,000 chunk hashes, so this savings
is substantial.)

Thus far, we have relied upon the common assumption that
the output of a cryptographically strong hash function (i.e.,

160-bit SHA-1) produces a unique identifier for each chunk.

Although this is certainly a safe way to proceed, our similarity
estimation does not require cryptographically strong identifier

generation, merely IDs that, with high probability, are unique.

More concretely, assuming we wish our estimates of similarity
to be within ¢ (e.g., 1%, 5%, etc), then we can tolerate a small
possibility of collision, as long as the collisions do not reduce
the estimate’s accuracy past a tolerance. Our analysis below

closely parallels Broder’s analysis for the Jaccard coefficient [2].

Formally, let f be a (random) function from the set of all
possible chunks to the set of /-bit binary strings. Intuitively, if
£ > log,(|Al), then the output of the hash function should be
unique over the possible set of input chunks. But how large is
large enough, given our goal of not having more than a small
percentage error? To answer this question, first we note that

E[f(A]) ~ (4= () /2" M

Therefore, in the context of similarity estimation, if ¢ is large

enough, the quantity W is a good approximation for
|ANB|

Tar To quantify this relationship more precisely, we first
examine the probability that there are substantially more unique

input chunks than output hashes when hashing to /-bit strings.

Using Markov’s inequality and Equation (1), we can show that

Pr(jA] - |f(4) 2 1/5] < & (32"

4o can actually increase somewhat more slowly: 12 4 8 16

167 172 192 237 317 """

If we wish to tolerate no more than 1% error in the similarity
estimation due to collisions, we can use this bound to compute
the minimum size of ¢. 4 GBytes of data has approximately
222 total 1 KByte chunks, and so the MR-handprint contains
2th of those, or 2'% chunks. If we desire accuracy within 1%
(0 = 0.01), then, with 40-bit hashes:

19

001 (%)

Pr |4l = /(A = soimm| < S
< 238x107°

In other words, for a 4 GByte file, by using only 40 bits
of the hash, we have roughly a one-in-a-million chance of
the similarity estimate being wrong by more than 1% due to
collisions. (The chance of having any collisions is less than
25%, and allowing 1% error in estimation means that we can
have roughly 5,000 collisions before causing excess error.) 40
bits gives substantial room for growth: A 128 GByte file would
have only a 1 in 100,000 chance of having a similarity estimate
wrong by more than 1% due to collisions.’

IV. EVALUATION: ACCURACY

How accurately do MR-handprints estimate similarity, using
our chosen parameters to perform handprinting? We evaluate
MR-handprinting using a large data set of real files from
the Web, FTP sites, and file-sharing networks. We begin by
examining the data sets and evaluation methods.

A. Methods

Data sets. We examined several large software collections as
well as an existing data set of 1.7 TB of files downloaded from
popular file-sharing networks.

ISO/RPM data set: The data in this set was collected via HTTP
downloads from various software mirrors. Our data consisted of
17 GBytes of ISO files of various Linux distributions, 11 GBytes
of different versions of Linux kernel RPMs, 1.2 GBytes of gcc
RPMs and 1 GByte of perl RPMs.

p2p data set: This data set consists of files downloaded
from the eDonkey and Overnet networks for three months
between November 2006 and February 2007. The set was
biased towards possibly-popular content: groups of unique files
returned as search results for a given search query. The set
includes “popular” content, chosen from Billboard top ten audio
tracks and video box office results, and “unpopular” search
terms from top song collections from 1990-2000 as well as
from one of the data set collector’s personal Netflix history.
The data set includes download results from 15 popular and

SWe note that one can achieve a slightly more compact encoding by using a
Bloom filter to store the chunk hashes that make up the MR-handprint for a
particular size. Using this technique can reduce the per-hash storage required
to about 34 bits per chunk. We do not present this optimization here because
it requires that a system making use of it now to represent the file using
three mechanisms—the full chunk list for data transfer; the bloom-filter MR
handprint; and a list of small chunk hashes for the target file to use to search

within the bloom-filter handprint. This optimization may still be worthwhile in
a system that compares the target file against many remote files.

Scheme

P2P Data set

ISO/RPM Data set

1-KByte Chunks

128-KByte Chunks

1-KByte Chunks

128-KByte Chunks

Avg Stddevn. Max Avg Stddev Max Avg Stddevn Max Avg Stddev Max

(a = 1/8, 40 bits) 0.00 0.001 0.16 0.01 0.027 097 0.00 0.002 0.11 0.00 0.003 094

(o =1/8, 160 bits) 0.00 0.001 0.16 0.01 0.027 097 0.00 0.002 0.11 0.00 0.003 094
(w =1/16, 40 bits) 0.00 0.002 0.16 0.01 0.053 098 0.00 0.003 045 0.00 0.004 094
(a =1/16, 160 bits) 0.00 0.002 0.16 0.01 0.053 098 0.00 0.003 045 0.00 0.004 094

TABLE II: Accuracy (absolute error) of different MR handprint sizes when estimating pair-wise similarity.

11 unpopular song title/artist pairs, plus 14 popular and 12
unpopular movie titles.

These data sets are appropriate for use in a similarity study
because they include similar files, though it is certainly only a
lower-bound on the number of similar files (e.g., for any given
file, it includes some likely similar files, but the entire universe
of p2p likely would contain additional files that are similar to
the target file).

Obviously fake files are removed by eliminating files that
rzip compressed more than 20%. This step is a good filter
with one-sided error, because media files are already compressed
and should not be further compressable (non-compressable fake
files will, of course, remain). The audio files were then passed
through an MP3-to-WAV converter, and only working files were
retained.

Evaluation Method. We split each file in the data set with
eight different chunk sizes (1, 2, 4, ..., 128 KBytes) using Rabin
fingerprinting. For each pair of files in the data set, we compute
the true pair-wise similarity using all of the chunk hashes in
the files. We then estimate the pair-wise similarity for each
pair of files using the MR-handprints. Where appropriate, we
vary the o parameter that determines the size of the handprints,
and evaluate 160-bit vs. 40-bit hashes. We then measure the
absolute error (Jactual — estimated|) in our estimate.

B. Accuracy of Similarity Estimation

The accuracy of similarity estimation varies (potentially)
with two factors: The fraction of chunks included in the MR-
handprint and the number of bits used to represent the hashes
in the handprint. Table II depicts the accuracy of using different
handprint sizes (obtained by varying « and /).

40-bit fingerprints are sufficient. Using 40-bit fingerprints
instead of 160-bit fingerprints does not measurably degrade the
accuracy of similarity estimation, as evidenced by Table II.

« is the most important determiner of accuracy. In general,
increasing « increases the accuracy of estimating the pair-wise
similarity. As Table II shows, the estimates are not perfect
(merely quite close). Increasing the fraction of chunks clearly
improves the estimate quality, reducing the mean error and
substantially reducing the maximum error. We conclude from
these two factors that it is better to spend bits on including
more chunk hashes than on reducing the already-tiny chance
of hash collision by using 40-bit fingerprints.

o must increase as the chunk size increases. Table II
highlights the fact that the MR-handprints must contain a

2 0.1 . - ;

< fixed o —— ,
] variable 0. —@—

° 0.08 |
o

e

& 0.06r 1
©

5 004} 1
o

[0)

2 oo02f 1
©

[%2]

2 0 = o—0

1 10 100

Chunk size (KBytes)

Fig. 3: 98th percentile absolute similarity estimation error in the p2p
data set using 40-bit chunk hashes. The upper line shows the increasing
error with large chunk sizes when using a fixed o = é. The error
using variable-ao MR handprints is close to zero for all chunk sizes.

greater fraction of the chunks for a larger chunk size. The
lines for 128 KByte chunks show substantially higher error at
a = % than the 1 KByte chunk lines do. Figure 3 plots the
98th percentile error when using o = é, showing that the error
grows roughly linearly with each doubling of the chunk size.
Using the variable-oe MR handprints, the 98th percentile error

is close to zero across all chunk sizes.

o for 1 KByte chunk sizes. In the P2P data set, using v = 35
of the chunks provides an accurate estimate (the stddev is at
most % of a percent off). In the ISO/RPM data set, the files
are smaller, so the error at @ = 3% is higher. Our default
value of a = % works well for both the P2P data set and the
small RPMs. Based both upon this empirical success and the
theoretical bounds from earlier, we use this as the starting «

value for the smallest chunks in the MR-handprint.

V. EVALUATION: EFFECTIVENESS

The previous section showed that the similarity estimates
provided by MR-handprints are accurate. In this section, we
examine the application of MR-handprints to peer-to-peer file
transfers (examining how many more sources of chunks an
application could get by using MR-handprints instead of using
a static chunk size) and storage systems (examining how much
space the system could similarly save). The study reveals
that commonly selected “compromise” chunk sizes (4, 8, or
16 KBytes for many research p2p systems) are very rarely the
optimal chunk size—instead, a mix of larger chunk sizes (for
files with large spans of identical data) and smaller chunk sizes
(for files with tightly interleaved changes) provides substantially

more similarity for these systems to exploit with lower total
overhead.

Using MR handprints to accurately estimate application
metrics: A key result of this section is that the accurate
similarity estimates from MR handprints are a good building
block for determining metrics of interest to applications. We
examine in this section two such potential metrics, selected
from existing systems—creating realistic cost-benefit metrics is
highly application-dependent and is not the focus of this paper.
We view the development of a general cost-benefit analysis
framework for evaluating this tradeoff as an interesting subject
for future work, along with numerous other implementation
issues of incorporating MR-handprints into real-world systems.

Metric 1: Parallelism Gain. The first metric is relevant to peer-
to-peer file transfers. Parallelism gain (or pgain) captures the
expected benefit from exploiting similarity [16]. pgain measures
the increase in the number of sources from which a p2p receiver
can draw when exploiting similarity. For example, if every chunk
is available from two sources, the pgain is 2; if 99% of chunks
are available from only one source, and the remaining chunks
are available from 1000 sources, the pgain is only barely above
1. For the ISO data set, we compute a file-level pgain (the
number of files from which a chunk can come) as a coarse
estimate of the number of sources.

The measure pgain is the harmonic mean of the num-
ber of sources/copies available for each chunk: Given sets

Ag, A1, ..., A of chunks, the pgain of Ay with respect to the
pool of chunks {Ay,...,Ax} is given by
. | Ao|
pgainy, == =, 2
Ao Zeer 1/0e

where O, is the number of sources or copies available for each
chunk (e, Oc := 35 1ieca,))-

Metric 2: Compression Ratio. The second metric we examine
is relevant to both point-to-point transfers and storage systems.
The compression ratio of a file represents what fraction of the
file would need to be sent (or stored) if the receiver already
possessed the other files in the set. Formally, the compression

ratio of Ay with respect to a pool of chunks {A;,..., Ax} is
computed as
[Ao NUE 1 Ay
cra, = 3)
0 | Aol

For both metrics, we ask two questions: First, how accurately
can the MR-handprints be used to estimate the true value of
the metric? Second, how much is the achieved value of the
metric improved by using the best chunk size determined by
MR handprints instead of using a statically-chosen chunk size?

MR-handprints accurately estimate pgain and compression
ratio. Given the MR handprints, we estimate pgain in the same
manner as similarity; using

k

|H(Ao)]
= 57~ Where C. = Liecscia,
> eeai(Ag) 1/ Ce ; {e€3((A:)}

as an estimate for the pgain of Ay with respect to a pool of
chunks {Ay, ..., Ax}. Note that only the handprints are needed
to compute this expression. Compression ratio is estimated
similarly. The resulting estimates are quite accurate—in fact,
almost 70% of the files’ estimates are perfect. Figures 4 (left)
and 5 (left) show that the estimated pgain using MR handprints
is quite close to the actual pgain value. The compression ratio
estimates (Figure 6 (left)) have even higher accuracy: across
all chunk sizes, the worst 98th percentile error was only 0.04.

Using the optimal chunk size improves pgain and compres-
sion. For MR handprint-based systems, we estimate the pgain
and compression ratio using MR handprints at different chunk
sizes, and pick the largest chunk size that gives the maximum
benefit. We compare MR handprint-based systems to systems
that statically pick a constant chunk size for all their files.

Figures 4 and 5 show the results for the p2p and ISO/RPM
workloads. The leftmost figures show that the handprints nearly
always provide optimal pgain—higher than that achieved by a
16 KByte static chunk size—while the rightmost figures show
that they do so while allowing a large fraction of the files to
use a substantially larger chunk size. Thus, as shown in the
right panel of these figures, using MR-handprints to estimate
the optimal chunk size can permit p2p applications to download
from a larger number of sources while simultaneously having
lower overhead for 20-40% of the files (percent of files that
MR-handprint picks a size larger than 16K).

The results for compression ratio estimation are similar:
Figure 6 (right) shows the distribution of optimal chunk sizes
for transferring or storing the ISO repository. Like the p2p
chunk sizes, the MR-handprint selected chunks were sometimes
substantially larger than a static 8 KByte chunk size often
used for filesystem compression. As shown in Figure 6 (left),
compared to static 8§ KByte chunks, using the optimal chunk
size added substantial compression: 20% of the files compressed
by an additional 30% of their original size (i.e., they went from
being 70% of their original size to being 40% of their original
size).

In summary, the case study shows that multi-resolution
handprints can be used to efficiently select a chunk size that
is always better than a static chunk size. The largest benefit
from doing so is in selecting a large chunk size when there is
little benefit from similarity, and selecting a small chunk size
when files are quite similar. As a result, we believe that MR-
handprints provide an attractive technique for dynamic chunk
size determination in systems exploiting data redundancy.

VI. RELATED WORK

Estimating File Similarity The work most related to ours is
seminal work in estimating similarity, starting from Manber’s
technique of shingling [12], Broder’s resulting use of it for
clustering web pages by similarity [3], and its subsequent use
for duplicate elimination [8] by Douglis et al. Shingling runs a
sliding-window hash along the contents of a file, outputting a
hash value each time the low-order bits are zero. The technique
is much like that we explore, except that we consider the

100
90 _— .
/J__‘_._,_._.-.-H"".-
80 T
'/,.9“" v
3 % L
< 70 il
o f
* /r
60
50 Static chunk size (16 KBytes) .
i MR handprint scheme -------
Optimal chunk size -+---:-
40 L I C > ;

10 20 30 40 50 60 70 80
Parallelism gain

100

80 1

% of files

20 b

1K 2K 4K 8K 16K 32K 64K 128K
Chunk size selected using MR handprint (KBytes)

Fig. 4: Performance of MR-based scheme in a p2p file-transfer scenario (p2p data set); left: CDF of pgain, right: distribution of chunk sizes.

100
e
90 [//F -
80 /
8 l /
= 4
s 70 -
B s
60 [/
/
50 Static chunk size (16 KBytes) .
MR handprint scheme -------
Optimal chunk size ===+
40 1 1 1 1 1 1
1 2 3 4 5 6 7 8

Parallelism gain

100

80 b

60 1

% of files

1K 2K 4K 8K 16K 32K 64K 128K
Chunk size selected using MR handprint (KBytes)

Fig. 5: Performance of MR-based scheme in a file-transfer scenario (ISO/RPM data set); left: CDF of pgain, right: distribution of chunk sizes.

100
I -
a -
80 s o n
o
—r"
8 60 e -
k)
® 40
2 Static chunk size(8 KBytes)
MR handprint scheme -------
0) Optimallchunk sizeI R
0 0.2 0.4 0.6 0.8 1

Compression ratio

100

80 1

60 b

% of files

16K 32K 64K 128K
Chunk size selected using MR handprint (KBytes)

1K 2K 4K 8K

Fig. 6: Performance of MR-based scheme in a storage deduplication scenario; left: CDF of compression ratio, right: distribution of chunk sizes.

question of exploitable similarity, looking at entire chunks of
data, whereas Shingling examined possibly overlapping chunk
hashes to establish a more fine-grained estimate of similarity.

Exploiting Similarity to Speed Transfers Several systems
exploit similarity to reduce the amount of data that needs to be

transferred when the receiver already has a copy of a similar file.

rsync [25] selects a candidate file at the receiver (typically
with the same name as the file being transferred), and runs a hash
through this file to identify shared chunks. Remote Differential
Compression [23] and dsync [17] extend this idea to efficiently
search many files on the remote filesystem, while czip [14]

proposes a file format tailored for chunk-based search and
transfer. These systems and others (such as the Low-Bandwidth
filesystem [13], SET [16], and the Cooperative Filesystem [6])
typically pick statically sized chunks for their transfers, and
can benefit from the techniques we propose.

Content-Based Naming The techniques we described should
apply well to a large emerging class of systems that use content-
based naming (naming data based upon its hash, and frequently
based upon lists of chunks, each named by their hash). This
technique forms the basis for many modern peer-to-peer systems

such as BitTorrent [4], as well as many filesystems [9, 6, 18, 5],
and as a replacement for data transfer mechanisms [24].

Studies of Similarity Finally, we took some of our motivation
from three studies that examined similarity across a wide range
of files. Denehy and Hu found that 32% of data in an email
corpus was duplicated [7]. Policroniades et al. made similar
observations about compressed software distributions [15], and
present a good summary of studies of chunk-level similarity
across different workloads. (We note that this study, like many
others, fixed the chunk size to 4 KBytes, while noting that many
files in the collection were identical or nearly identical—exactly
the observation we take advantage of in our work.) Kulkarni
and Douglis et al. compare an additional large set of similar
files [11]; they find 1 KByte chunk size to be a reasonable
default but note that 4 KByte chunk size improves efficiency
for large data sets that contain large files. Our work builds
upon this observation for even larger types of files, creating
techniques to build systems that can automatically determine
the proper chunk size, without the need for human study or
intervention.

VII. CONCLUSION

Many systems that exploit data redundancy statically choose
a chunk size that is “good enough” for most of their data, due to
lack of efficient techniques that identify optimal chunk size that
results in maximum efficiency. Multi-resolution handprinting is
an application-independent technique that provides an efficient
and accurate way to determine the similarity of two data items
over a wide range of chunk sizes, and, in turn, efficiently and
accurately compute several metrics of interest to applications.
We show through theoretical bounds and evaluation using
a large p2p and software data set that MR-handprints are
compact, requiring roughly 0.15% of the size of the file, but
provide accurate similarity estimates (errors less than 5%). MR
handprints can provide optimal chunk size selection for peer-
to-peer, data transfer, and storage systems that permit these
systems to exploit additional parallelism and compression, while
reducing overhead by using large chunk sizes for files with little
similarity. MR handprints thus represent a promising building
block for chunk-based storage and transfer systems.

Acknowledgments. We would like to thank Anupam Gupta
for inspiring discussions, and Stephanie Rosenthal and Donald
Sheeny for their preliminary work on this project. This work
was supported in part by NSF CAREER award CNS-0546551
and DARPA Grant HR0011-07-1-0025.

REFERENCES

[1] S. Annapureddy, M. J. Freedman, and D. Mazieres. Shark:
Scaling file servers via cooperative caching. In Proc. 2nd USENIX
NSDI, May 2005.

[2] A. Broder. On the resemblance and containment of documents.
In SEQUENCES ’97: Proceedings of the Compression and
Complexity of Sequences 1997, page 21. IEEE Computer Society,
1997. ISBN 0-8186-8132-2.

[3] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic
clustering of the web. In Proceedings of the 6th International
WWW Conference, pages 1157-1166, Apr. 1997.

(4]
(5]
(6]

[7

—

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

B. Cohen. Incentives build robustness in BitTorrent. In Workshop
on Economics of Peer-to-Peer Systems, June 2003.

L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making
backup cheap and easy. In Proc. 5th USENIX OSDI, Dec. 2002.
F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and 1. Stoica.
Wide-area cooperative storage with CFS. In Proc. 18th ACM
Symposium on Operating Systems Principles (SOSP), Oct. 2001.
T. E. Denehy and W. W. Hsu. Duplicate management for reference
data. Research Report RJ10305, IBM, Oct. 2003.

F. Douglis and A. Iyengar. Application-specific delta-encoding
via resemblance detection. In Proceedings of the USENIX Annual
Technical Conference, June 2003.

EMC Centera Content Addressed Storage System. EMC Corpo-
ration, 2003. http://www.emc.com/.

S. Janson. Large deviation inequalities for sums of indicator
variables. Technical report, Uppsala University, 1994.

P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey. Redundancy
elimination within large collections of files. In Proc. USENIX
Annual Technical Conference, June 2004.

U. Manber. Finding similar files in a large file system. In Proc.
Winter USENIX Conference, pages 1-10, Jan. 1994.

A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth
network file system. In Proc. 18th ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2001.

K. Park, S. Thm, M. Bowman, and V. S. Pai. Supporting
practical content-addressable caching with CZIP compression. In
Proceedings of the USENIX Annual Technical Conference, June
2007.

C. Policroniades and I. Pratt. Alternatives for detecting redun-
dancy in storage systems data. In Proc. USENIX Annual Technical
Conference, June 2004.

H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting
similarity for multi-source downloads using file handprints. In
Proc. 4th USENIX NSDI, Apr. 2007.

H. Pucha, M. Kaminsky, D. G. Andersen, and M. A. Kozuch.
Adaptive file transfers for diverse environments. In Proc. USENIX
Annual Technical Conference, June 2008.

S. Quinlan and S. Dorward. Venti: A new approach to archival
storage. In Proc. USENIX Conference on File and Storage
Technologies (FAST), pages 89-101, Jan. 2002.

M. O. Rabin. Fingerprinting by random polynomials. Technical
Report TR-15-81, Center for Research in Computing Technology,
Harvard University, 1981.

S. C. Rhea, K. Liang, and E. Brewer. Value-based web caching.
In Proc. Twelfth International World Wide Web Conference, May
2003.

Riverbed. Riverbed. http://www.riverbed.com/.

N. Spring and D. Wetherall. A protocol-independent technique for
eliminating redundant network traffic. In Proc. ACM SIGCOMM,
Sept. 2000.

D. Teodosiu, N. Bjorner, Y. Gurevich, M. Manasse, and J. Porkka.
Optimizing file replication over limited bandwidth networks using
remote differential compression. Technical Report MSR-TR-2006-
157, Microsoft Research, Nov. 2006.

N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. An
architecture for Internet data transfer. In Proc. 3rd Symposium
on Networked Systems Design and Implementation (NSDI), May
2006.

A. Tridgell and P. Mackerras. The rsync algorithm. Technical
Report TR-CS-96-05, Department of Computer Science, The
Australian National University, Canberra, Australia, 1996.

