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Abstract

Recent proposals to build hybrid electrical (packet-switched) and
optical (circuit switched) data center interconnects promise to re-
duce the cost, complexity, and energy requirements of very large
data center networks. Supporting realistic traffic patterns, how-
ever, exposes a number of unexpected and difficult challenges to
actually deploying these systems “in the wild.” In this paper, we
explore several of these challenges, uncovered during a year of
experience using hybrid interconnects. We discuss both the prob-
lems that must be addressed to make these interconnects truly
useful, and the implications of these challenges on what solutions
are likely to be ultimately feasible.

Categories and Subject Descriptors

C.2.1[Network Architecture and Design]: Network topology,
Packet switching networks, Circuit switching networks

General Terms

Design, Experimentation, Performance

Keywords

Data center networking, optical circuit switching, hybrid network

1 Introduction

Cloud computing is imposing stringent performance require-
ments on the underlying data center networks: high-bandwidth
connectivity across tens to hundreds of thousands of nodes, la-
tency as low as a few microseconds, high reliability, and easy
management. Recent work on Helios [8] and c-Through [21]
independently proposed two network architectures to meet this
challenge. Both create a hybrid network that combines the
best properties of electrical packet switches and high-bandwidth
optical circuit switches, the latter reconfigured at millisecond
timescales using MEMS optical switches.

These efforts demonstrated the promise of deploying hybrid
networks in commodity Ethernet environments. A number of im-
portant cloud applications, including virtual machine migration,
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large data transfers, and MapReduce, experienced significant per-
formance improvements while running on such a hybrid network
with the potential for much lower cost, deployment complexity,
and energy consumption than purely packet-switched high band-
width networks.

Unfortunately, both papers ignored an important property of
modern cloud data centers: their fundamental heterogeneity and
multi-tenancy. We have since encountered a number of chal-
lenges, some quite unexpected, in building these networks and us-
ing them for larger-scale, mixed workloads. In this paper, we dis-
cuss both the promise of hybrid networks and the importance of
addressing the key challenges that can prevent their wider adop-
tion.

Several hardware/firmware engineering challenges arise in in-
corporating switched optical circuits into the modern data center.
Most notably, the link setup and switching time of optical compo-
nents are far from their theoretical limits—perhaps because they
were previously used primarily for slowly switching (tens of sec-
onds or longer) telecom applications.

The software challenges are more complex, with the most
thorny arising from the temporal and spatial heterogeneity in data
center traffic: flow duration, correlations in demand and interfer-
ence between applications, priority across flows within and across
applications. Addressing these software challenges requires near
real-time analysis of application requirements to support dynamic
switch scheduling decisions. For scheduling at the application
layer, such measurement and analysis should ideally take place
on aggressive timescales of milliseconds or tens of milliseconds
across networks of tens of thousands of servers.

The original Helios and c-Through designs focused on maxi-
mizing total bisection bandwidth, treating flows as interchange-
able and undistinguished from each other—effectively ignoring
the diversity described above. Although a reasonable starting
point, these assumptions often produce circuit scheduling behav-
ior and forwarding decisions that lead to unnecessary circuit flap-
ping and low circuit utilization. This paper revisits several of
these assumptions to articulate design goals for practical hybrid
data center interconnects; specifically, the interconnect should 1)
tolerate greedy and ill-behaved flows that try to occupy circuits
but not use them, 2) tolerate inaccurate information about ap-
plication demands and changes, 3) support flows that are inter-
dependent and correlated, and 4) support flexible circuit sharing
policies with flow and application differentiation.

Based on these challenges, our design goals, and our year-long
experiences using hybrid networks, we propose a meta-solution
to these challenges: that the control framework for a hybrid data
center interconnect should allow flexible, fine-grained, and re-
sponsive control. The framework collects traffic statistics and
network status information from various sources, performs data



analysis to understand traffic demand with application semantics,
and configures the network with user-defined objectives about
overall performance and sharing metrics. It should do so with-
out imposing overhead or delays that would prevent reacting on
millisecond timescales.

We therefore introduce an observe-analyze-act framework for
optical circuit configuration. We have begun prototyping an
OpenFlow [16] implementation of this framework; a modular
topology manager controls the placement of individual flows onto
optical circuits or electrical packet switches. While we do not
have a final answer to the challenges we present above, our expe-
rience using this framework suggests that the fine granularity sup-
ported by per-flow placement supports the implementation and
testing of advanced scheduling algorithms capable of capturing
application and data center demands.

The contributions of this position paper are 1) a taxonomy of
unexpected and non-obvious challenges that arise when actually
deploying hybrid networks on real hardware and with real traffic,
2) an outline of the features that will define the solution space
for these problems, 3) an observe-analyze-act framework for re-
search and development in hybrid networks, and 4) a discussion
of the inherent tradeoffs associated with deploying hybrid net-
works “in the wild.”

2 Hybrid packet/circuit switched data center

Hybrid packet and circuit switched networks (“HyPaC”s) aug-
ment an Ethernet packet switching layer with optical circuits
and optical circuit switches to flexibly provide high bandwidth
to applications on demand. We have proposed two systems, c-
Through [21] and Helios [8], and have demonstrated the feasi-
bility of constructing such networks using currently available de-
vices to support a wide variety of applications and traffic patterns.
We briefly describe these networks here.

2.1 Design principles

Electrical packet interconnects switch rapidly, potentially choos-
ing a different destination for each packet. They are well suited
for bursty and unpredictable communication. Optical intercon-
nects, on the other hand, can provide higher bandwidth over
longer distances (any 10Gbps links longer than about 10 me-
ters must be optical). Optical switches, however, cannot be re-
configured rapidly: the MEMS-based optical circuit switches we
use take between 10 and 25ms to reconfigure. As a result of
these properties, the two network types offer substantially differ-
ent advantages, with optics being superior for long-lasting, very
high bandwidth point-to-point flows, and electronics winning for
bursty, many-to-many local communication.

HyPaC networks aim to achieve the best of both worlds by
using these two interconnects together in the same network. Typ-
ically, these networks first connect electrically a group of nodes
(a “pod”) to a set of “pod switches”. The pod switches connect
to a core packet switch at a high degree of over-subscription. The
pod switches also connect several uplinks to an optical MEMS
switch, which can configure a matching of pod-to-pod links. Fig-
ure 1 shows the HyPaC prototype that we perform our experi-
ments over. At any time, nodes in one pod can communicate
with limited bandwidth to any node in the network using the core
packet switch, and with nodes in a few other selected pods at high
bandwidth using the optical switch. The optical circuit bandwidth

between pods is both less expensive and less flexible than packet-
switched bandwidth. A key problem for both c-Through and He-
lios thus becomes how to schedule these circuits: For example,
given four pods, each with one uplink to the circuit switch, should
the system connect 1-2 and 3-4, or 1-3 and 2-4?

Both c-Through and Helios estimate the network traffic de-
mand, identify pods that have long-lived, stable aggregated de-
mand between them, and establish circuits between them to amor-
tize the high cost of switching circuits. The two systems use dif-
ferent techniques to estimate traffic demand, but use the same
greedy approach to schedule optical circuits to maximize the
amount of data sent over optical circuits. Their centralized con-
trollers dynamically configure the circuit and packet switches
based upon the greedy scheduler’s output every reconfiguration
interval. Neither system incorporates history or state into their
scheduling, and both are reactive to observed traffic in the net-
work.

2.2 Overly restrictive design assumptions

These current proposals for hybrid networks make five overly re-
strictive assumptions about the traffic on the hybrid network:

Flows are independent and uncorrelated: Assigning circuits
between two pods will not affect the bandwidth desired by other
flows in the system.
Reality: Many flows depend on the progress of other flows, such
as those that relay traffic through a node.

All flows have same priority: Helios and c-Through sched-
ule optical circuits without taking into account any application
or flow level traffic prioritization.
Reality: Data center traffic has a rich mix of priorities and fair
sharing desires within and between applications.

Flows will not under-utilize the circuits: Once flows are as-
signed to circuits, they will continue to use the same (or more)
bandwidth as their predicted demand indicated until the control
process reassigns that circuit elsewhere (which might not happen
for hundreds of milliseconds or more).
Reality: Perfectly predicting future traffic demand is not as easy
as one might hope.

Randomly hashing flows to optical circuits is effective:
Given a set of N 10Gbps circuits between two pods, we can create
a single superlink of 10N Gbps capacity using random hashing,
in which flows are randomly hashed across the set of available
circuits.
Reality: Random hashing cannot support flexible distribution of
circuit bandwidth that maximizes application performance.

All flows that can use a circuit should use that circuit: There
is no cost to using an optical circuit when it is available, or to
switching flows between the electrical and optical circuits. The
Helios design made this assumption because of switch software
limitations—traffic could not be scheduled on a per-flow basis
to the electrical or optical network. The c-Through design made
the same assumption to keep its optical/electrical selection tables
small using only per-destination entries.
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Figure 1: Hybrid testbed with 24 servers, 5 circuit switches
and 1 core packet switch.

Reality: We have found several cases where keeping some lower-
bandwidth, latency-sensitive flows on the packet switch reduces
latency and variance for some applications.

3 Challenges to integrating optics into real data
centers

This section demonstrates experimentally specific application
traffic patterns that expose weaknesses in both Helios and c-
Through. Figure 1 shows our prototype hybrid testbed with both
electrical and optical circuit switches. We have 24 servers orga-
nized into 4 racks. Each rack is configured with five 10Gbps up-
links connected to Glimmerglass optical circuit switches and one
10Gbps uplink connected to a 10G Ethernet switch. To easily ob-
serve the effect of switching between optical path and electrical
path, we rate limit the packet switched uplink to 5Gbps on all the
racks. Therefore, each rack has 5Gbps bandwidth to all the other
racks over packet switched network and up to 50Gbps bandwidth
over optical circuits that can be reconfigured to different destina-
tion racks.

3.1 Effect of bursty flows

Both designs use the greedy Edmonds matching algorithm [7] to
assign circuits between pods, based on an instantaneous snapshot
of the traffic demand. Unfortunately, scheduling using an instan-
taneous demand estimate can find a locally maximal circuit con-
figuration in which some circuits are under-utilized, while there
exists another configuration with better overall circuit utilization.

We demonstrate this problem using a topology of three pods
(Pod 0, 1 and 2), with two hosts each. Each pod switch has one
5Gbps uplink to the core packet switch and one 10Gbps uplink
to the optical circuit switch. In this topology, only two pods can
be connected optically at any given time. For the duration of
the experiment, one host in Pod 1 sends data to a host in Pod 2
over a long-lived TCP connection (the “foreground flow”). The
second host in Pod 1 sends data to a host in Pod 0 following a
bursty ON-OFF pattern; we vary the burst ON-duration with the
OFF-duration set to 2 second to observe the circuit scheduling
decisions made by the Helios and c-Through circuit schedulers.

Figure 2 shows the average utilization of the optical link. In
both designs, as the duration of the traffic bursts increases, the
utilization of the link initially decreases and then increases as the
bursts grow longer than 500ms. With short bursts, the circuit is
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Figure 2: The utilization of a circuit in the presence of a
bursty flow. By attempting to schedule the bursty flow on the
circuit, bandwidth is reduced for the long-lived foreground
flow.
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Sorting 900 GB with TritonSort

Figure 3: TritonSort completion time in three cases: (a) Fully
non-blocking electrical switch (baseline case) (b) Helios/c-
Through network with no background flows (c) Helios/c-
Through network with one competing background flow

assigned to the bursty flow between Pod 1 and Pod 0, but after
assignment, this flow goes quiescent, under-utilizing the optical
capacity. In the next control cycle, the circuit is assigned back
to the long-lived foreground flow. The control cycle is hundreds
of milliseconds; bursts shorter than the control loop will reduce
utilization for part of the control loop cycle. Longer bursts use
the optical circuit for a longer fraction of the time it is assigned,
improving overall optical utilization. Notably, the optical link ca-
pacity is never saturated by the long flow because of the constant
flapping of the circuit between the pods.

3.2 Effect of correlated flows

An important component of data center traffic has a “shuffle”, or
all-to-all workload characteristic. For example, MapReduce [6]
and Hadoop [1] require large scale sorting and shuffling of data
between nodes. In this section, we evaluate the performance of a
representative large scale sorting application, TritonSort [17]. We
use TritonSort on Helios to show how suboptimal circuit schedul-
ing impairs performance. TritonSort represents a balanced system
where progress is largely a function of the speed of the slowest



flow; therefore, allocating high bandwidth to only few TritonSort
flows will not improve overall performance. The key deficiency
of the Helios and c-Through schedulers is that they do not take
into account these dependencies across application flows.

This experiment measures the completion time of TritonSort
running together with a long-lived background TCP flow that
competes for circuit capacity. We use four pods, each connected
with a 5Gbps uplink to the core packet switch and a 10Gbps up-
link to the circuit switch. TritonSort sorts 900GB of data using
nine nodes (three hosts in each of pods 0, 2, and 3). Meanwhile,
another host in Pod 2 sends traffic to a host in Pod 1, compet-
ing with TritonSort for the Pod 2 circuit uplink. With only one
circuit uplink, Pod 2 can connect optically to only one other pod
at a time; if the scheduler creates a circuit from Pod 2 to Pod 1,
the TritonSort flows from Pod 2 are sent over the slower packet
switch. This imbalances the system, slowing it down. We mea-
sure the effect of this background flow on the completion time for
TritonSort.

Figure 3 shows the completion time for sorting 900GB of data
when the pods are inter-connected by 1) a fully non-blocking
electrical switch (the baseline case), 2) Helios/c-Through net-
work with no background flow, and 3) Helios/c-Through network
with the background flow. Absent other traffic, Helios matches
the performance of a non-blocking switch, but in the presence of
competing flows, TritonSort’s completion time increases substan-
tially, taking as much as 69% longer.

3.3 The Hashing effect on multiple circuits

Data center networks increasingly use multi-path topologies to
increase reliability and performance. Their switching hardware
computes a hash of the packet header’s source and destination
information to determine which of several equal-cost paths to
send each flow on; this mechanism ensures that packets within
a flow follow the same path to avoid re-ordering, which can cause
problems with TCP. While hash-based load balancing works well
when the number of flows is large and individual flows are rela-
tively small, it can perform worse under several real application
workloads. For example, in a workload where most of the flows
are mice (small) with only a few elephant flows, hashing uni-
formly across the entire set of flows can result in the elephant
flows receiving too little bandwidth. We perform the following
experiment to illustrates this problem with hashing.

4 hosts in Pod 0 send data to 4 hosts in Pod 1. These 4 flows
between two pods are hashed over a circuit superlink with four
individual circuit uplinks. If the hashing is truly uniform, each of
these flows gets hashed to one unique circuit separately, and as a
result each flow gets 10Gbps throughput. However, we observe
that two of the flows get hashed to the same circuit due to hash
collision. As a result two flows receive 10Gbps but the other two
flows receive only 5Gbps and one of the circuits is not used at all.

3.4 Hardware issues

Other than the application and network level challenges, there are
a few hardware hurdles to achieving fast and efficient network
reconfiguration in HyPaC networks. The major problem is that
current optical components are not designed to support rapid re-
configuration due to their original requirements in the telecom
industry, and thus there has been a lack of demand to develop
faster optical control planes.

The switching time of current optical switches is still far from
their ideal limits. The minimum time for switching lots of lamb-
das (over 80) at once is still around 10 to 25 ms for commercially
available optical switches. However, free-space MEMS switches
should be able to achieve switching times as low as 1ms. Another
hardware issue comes from the design of optical transceivers.
Currently available transceivers do not re-sync quickly after a net-
work reconfiguration. The time between light hitting the photore-
ceptor in the transceiver and the path being established is need-
lessly too long–as long as several seconds in practice [9]. The un-
derlying transceiver hardware can theoretically support latencies
as low as a few nanoseconds. Beyond the physical limitations,
many of the control plane performance limitations are due to the
electrical control aspects of the design, including the implemen-
tation of the switch software controller.

4 Solution space

This section explores the requirements for data center optical cir-
cuit controllers and sketches the design of an observe-analyze-act
framework that can (help) meet them.

4.1 Design requirements

An optical circuit controller should be able to meet four key re-
quirements:

Tolerate inaccurate demand information: It is difficult for a
controller to have precise knowledge about all application’s traf-
fic demands and performance requirements. Existing systems in-
fer these demands from counters in the network, but as we have
shown, these heuristics can result in flapping circuits and sub-
optimal network performance. A good circuit allocation mech-
anism must be robust to inaccurate measurement of application
traffic demands.

Tolerate ill-behaved applications: As we showed in previous
sections, bursty data center applications can cause unnecessary
network reconfiguration. Non-malicious but selfish applications
could claim to need more capacity than they really do. All such
ill-behaved applications can reduce the performance of a HyPaC
network. The circuit controller must therefore be robust to their
behavior, ensuring that the network’s performance is not affected
by them.

Support correlated flows: To achieve good application layer
performance, the circuit scheduling module must be able to ac-
commodate flows whose demand and performance depends on
the performance of another flow. The underlying framework sup-
porting the scheduler must provide fine-grained control to handle
differently traffic that is on the critical path of an application vs.
less important flows. It should also provide an avenue for the
controller to gather sufficient information to understand the ap-
plication’s dependence upon a flow’s performance.

Support flexible sharing policies among applications: Allo-
cating circuits among mixed applications is challenging given the
diversity of data center applications. Particularly in a multi-tenant
cloud environment, applications may have very different traffic
patterns and performance requirements. In addition, the manage-
ment policies in data centers could assign applications different
priorities. To share the limited number of optical circuits among
these applications, the circuit allocator must be able to handle the
performance interference among applications and support user-
defined sharing policies among applications.
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Figure 4: The control loop

4.2 An Observe-Analyze-Act framework

To achieve the above design requirements, the circuit controller
must be able to obtain a detailed understanding of application se-
mantics and fine-grain control of flows forwarding policies. We
propose a three phase approach for managing HyPaC networks
based on the Observe-Analyze-Act framework. To get a better
understanding of the network dynamics and application hetero-
geneity in the cloud ecosystem, the HyPaC scheduler should be
able to interact with different components and collect informa-
tion from them. This information collected in this Observe phase
would include the link utilization from the switches and applica-
tion status from the cluster job schedulers (e.g., the Hadoop job
Tracker), as well as application priorities and QoS requirements.
The HyPaC manager then analyzes the aggregation of this infor-
mation to infer the most suitable configuration for the network.
The Analyze phase is a key step that helps the network controller
understand the application semantics of traffic demand, detect ill-
behaved applications, discover the correlated flows and therefore
make the optimal configurations to support these applications. Fi-
nally, in the Act phase, it communicates this configuration to the
other components in the system in order for the decision to be
acted upon. The Act phase requires fine-grain control on the flow
forwarding to support flexible configuration decisions and shar-
ing policies.

We are prototyping a OpenFlow based system to support the
Observe-Analyze-Act framework. Figure 4 shows the control loop
and the main software components involved. Our prototype in-
cludes three main components: Topology Manager, OpenFlow
Controller application and Circuit Switch Manager. The Topol-
ogy Manager is the heart of the system, coordinating with other
components to collect information for the Observe phase. To col-
lect input from the network, we leverage the existing OpenFlow
API using an OpenFlow Controller system (e.g., NOX, Beacon,
or Maestro). We have implemented the Analyzer as a pluggable
piece of software in the Topology Manager; this allows us to sep-
arate policy from mechanism and evaluate different optimization
goals and algorithms. Based on the output of analysis, during
the Act phase, the Topology Manager provides the new topology
to the Circuit Switch Manager to configure the optical links, to
the OpenFlow Controller application, and to the application job
scheduler. The OpenFlow Controller configures the switches to
forward traffic over appropriate links. The job scheduler can po-
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Figure 5: Application fairness based on Jain’s fairness metric
in (a) Helios/c-Through vs. (b) the proposed framework

tentially use this information to schedule jobs that can take ad-
vantage of the resulting underlying network.

Our experience in using an OpenFlow controller for this pro-
totype has been positive: it provides sufficiently fine-grained
control over flow placement on the optical links, and it has al-
lowed us to implement different hashing policies and flow man-
agement decisions that achieve better sharing among applications
in the cloud. The overhead of installing new OpenFlow rules into
Current OpenFlow-enabled devices can be quite high (e.g., one
hardware switch we have access to can only accept six rule up-
dates per second). However, newer devices already support much
lower rule insertion overhead, and we expect that trend to con-
tinue moving forward. Our experience meshes well with prior
work that used OpenFlow to create a unified control plane for
IP/Ethernet and optical circuit-switched networks for long-haul
backbone networks [5].

4.3 Usage examples

Although many design details remain to be fleshed out, we can
already realize some flexible control over optical circuit using our
fine-grain control framework. In this section, we demonstrate two
simple examples: application level circuit sharing and ill-behaved
flow detection.

Application level fairness: Consider the following scenario
in a HyPaC system: Application A has 18 flows sharing a super-
link of 20 Gbps capacity (consisting of two 10 Gbps circuit links)
with application B, which sends 2 flows over the shared super-
link. Since Helios/c-Through implement naive hashing of flows
across the circuits in the superlink, each application gets a share
of the optical link bandwidth proportional to the number of flows
they have. This means that even though Helios/c-Through pro-
vide flow level fairness in the network, their flow management
leads to unfair utilization of the superlink at the application level.
We overcome this deficiency with our proposed OpenFlow inte-
grated prototype. With more flexible ways to assign flows to the
circuit, our prototype can guarantee different fairness objectives
including application based fairness by first classifying flows into
applications and then assigning flows such that application level
fairness is achieved. Figure 5 shows how this modification to the
scheduling algorithm increases the Jain’s fairness index [12] for
applications A and B compared to the naive Helios/c-Through
policy. Importantly, no external input is required from the appli-



cations or network administrators to provide this application-level
fairness. The controller can use port numbers as a coarse-grained
way to classify flows into applications for use in subsequent cir-
cuit selection.

Ill-behaved flow detection: We have also implemented a sim-
ple heuristic in the Analyze phase of our prototype to eliminate
the undesirable effect of the bursty flows. The idea is to identify
the likely bursty flows and filter them out from the inter-pod traf-
fic matrix before using that as the input for scheduling of circuits.
We do this by maintaining idle and active counters for each flow
that denote the number of control loop cycles for which the flow
has been idle or active, respectively. According to our heuristic,
a flow is considered active while it is sending data across the net-
work and we classify a flow as non-bursty if its active counter is
greater than a configurable threshold value. If a flow has been idle
for a specific number of cycles, we again reset its idle and active
counters in order to account for the changing nature of flow, e.g.
when a previously stable flow becomes bursty. We evaluated the
effectiveness of this approach by repeating the experiment from
Section 3.1 for demonstrating the effect of bursty flows. Our re-
sults confirmed that our prototype avoided the unnecessary circuit
flapping due to incorrect demand estimation for the bursty flows
and the circuit link was utilized to its full capacity by the long
foreground flow.

We emphasize that the point of these preliminary designs is
not to show that they are the final answer to the challenges we
described—indeed, we are fairly certain they are not. Instead, we
believe they demonstrate that the framework we propose helps
pave the way to future solutions in this area.

5 Discussion

The flexible control framework allows us to explore design
choices in managing hybrid network in data centers. We hope
to investigate these components in more detail in the future, and
hope that this paper spurs others to do likewise.

Traffic analysis with application semantics: Efficient traf-
fic engineering in HyPaC networks relies on precise and detailed
traffic analysis. In addition to bursty flow detection, the traf-
fic analyzer should detect any ill-behaved flows that may disrupt
the network configuration or consume more bandwidth than their
fair-share. This feature is important for system reliability. To
support controlled sharing among mixed applications, a second
challenge is learning the salient application characteristics, either
by inferring them using traffic analysis or by devising a cluster-
wide abstraction for applications to provide such information.

Traffic analysis requires thorough, but efficient, monitoring
and aggregation of network traffic and status. We can classify
application flows in controlled data center environments based on
flexible header signatures, especially in OpenFlow deployments.
Bursty flows can be detected by analyzing the flow counters on
each switch. We can reveal correlated flows by analyzing the de-
pendency of flow rate changes when the network is reconfigured.
Given the frequent reconfiguration of circuits, the system level
challenge is to perform traffic analysis accurately and efficiently
with a limited number of flow samples, a problem similar to many
in streaming databases.

Circuit scheduling: The objective of circuit scheduling is
a combination of performance and fairness. For same-priority
applications, the objective is to maximize the overall throughput
of the optical circuits. For applications with different priorities,

appropriate sharing policies must be defined (for example, strict
priority, max-min fairness). Based on application semantics from
the traffic analysis, different sharing policies can be implemented
in the controller. The remaining questions are what scheduling
algorithms will achieve optimal circuit utilization, and how the
scheduling framework coordinates and balances the trade-offs be-
tween performance and sharing objectives.

HyPaC networks can achieve maximum optical throughput by
using maximum weighted matching algorithms provided they ac-
curately predict the application traffic demands for the next con-
figuration round [21, 8]. Unfortunately, future application de-
mand cannot be perfectly known for most applications. We are
exploring different opportunities for improving the traffic demand
prediction accuracy. For instance, instead of relying on heuris-
tics alone for demand estimation (as in c-Through and Helios),
one possible approach is to compare the measured and predicted
throughput for each round and use that to predict the “natural”
traffic demand for the application. When optical links are provi-
sioned, they provide a fast interconnect to relieve the bandwidth
bottleneck. Therefore, throughput on the optical links represents
the natural traffic demand of applications. Assuming that the ap-
plication traffic is stable at the pod level, we can combine the
measured and estimated traffic demand to predict future applica-
tion demands. There are many potential ways to combine these
traffic matrices, such as weighted average, time sequence model
fitting.

Another approach can be to collect explicit traffic demand from
a centralized job scheduler. For example, the Topology Manager
can communicate with the Hadoop Job Tracker so that Hadoop
jobs can explicitly request optical links for certain period of time.
The advantage of this approach is that applications can provide
precise circuit request but this requires modifying applications to
interact with the Topology Manager.

Efficient flow table update and aggregation: The
OpenFlow-based control framework enables flexible and fine-
grain forwarding decisions on both electrical and optical links.
In a rapidly changing and high throughput data center environ-
ment, optical circuits are reconfigured in sub-second time scales
with thousands of flows being impacted. It imposes significant
challenges on the efficiency of OpenFlow control framework.

The challenges are two-fold: first, the rapid reconfiguration
of optical circuits requires fast flow table updates on OpenFlow
switches. On currently available OpenFlow switches, inserting
flow rules is relative slow because they are not designed to sup-
port rapid network changes. A recent study [4] has reported that
current implementation of OpenFlow switches can only achieve
275 flow setups per second. While OpenFlow based control is
still an active research topic, it remains to be seen how fast we
can achieve on rapid flow table updates. Recent proposals such
as DevoFlow [4] can be leveraged to explore this space.

Second, due to limited number of flow table entries on pod
switches, it is not feasible to install a forwarding rule for each
flow and flow aggregation becomes necessary. This leads to an-
other optimization objective: minimizing the number of forward-
ing entries required to configure the HyPaC network while pre-
serving the desired traffic control policies. A possible solution is
to group all the correlated flows and flows with the same priority
into a single flow group, and compute the most concise wildcard
rule associated with that flow group. It might be possible to lever-
age similar algorithms proposed in related work [22].



6 Related work

There have been various proposals that explore the feasibility
and applicability of optical interconnects in the data center con-
text [20, 15]. However, these papers focus on understanding the
performance of optical interconnects, their spectral efficiency and
power consumption, whereas this paper highlights the challenges
in designing and building a network fabric that can effectively
take advantage of optics in the data center. While both Helios
and c-Through propose a hybrid data center architecture that uses
both packet and circuit switches for interconnecting the top of
rack (ToR) switches, there are other network designs that use op-
tical switches very differently in the data center. For instance,
Proteus [19] proposes an all optical backbone for the data center
and only uses packet switches as ToR switches. Proteus relies
on wavelength selective switches that transmit multiplexed wave-
lengths from a ToR to the optical switches. One disadvantage
of the Proteus architecture is that it requires multi-hop routes for
ToRs that do not connect to the same optical switch. This leads to
unnecessary conversion of signals from optical to electrical and
back.

Recent studies have explored the problem of sharing data cen-
ter network among multiple tenants. SecondNet [11] is a vir-
tual data center architecture that controls the bandwidth allocation
to applications with different service types in hypervisors. Sea-
wall [18] allocates network bandwidth among non-cooperative
applications using congestion controlled, edge to edge tunnels.
These studies are mostly focused on network sharing in virtual-
ized data center environment, while our work targets specifically
on HyPaC network and we explicitly address the optical circuit
allocation problem for mixed applications.

Optical circuit scheduling has been studied extensively in the
context of backbone network. For example, previous work [24,
25] have studied the circuit scheduling with QoS guarantee in op-
tical burst switching network. In more recent work [2], Andrei et
al. have studied the provisioning of data intensive applications
over optical backbone network. Another work [5] proposes a
unified control plane for IP/Ethernet and optical circuit switched
network using OpenFlow. Another related effort along a simi-
lar approach to dynamically configure lightpaths is [14] in which
the authors augment wide area networks with high bandwidth op-
tics. This work implicitly applies the idea of observe-analyze-
act framework which automatically configures the optical part of
the network without any user intervention or the need for mod-
ification in the applications. Our work is different from these
existing studies given the different technology assumptions in the
data center as compared to wide-area and grid computing envi-
ronments. Supporting the highly dynamic requirements of data
center applications requires that optical circuits must be reconfig-
ured in sub-second timescales. Therefore, the circuit allocation
mechanism in data centers must be able to adapt to traffic changes
more quickly than in wide-area provisioning and grid link setup
tasks.

Another line of related works is recent proposals to control net-
works with a software controller with global view of the topology
(e.g. [10, 23, 3]). The idea is to provide a high level logically cen-
tralized (potentially physically replicated) software component to
observe and control a network. The main advantages of this is
flexibility as the network programs/protocols would be written
as if the entire network were present on a single decision ele-
ment as opposed to requiring a new distributed algorithm across

all network switching elements. Also, programs may be written
in terms of high-level abstractions that can ignore messy details
of the lower-level configuration parameters (e.g., IP and MAC
addresses of individual network elements). Onix [13] is an ex-
ample of a centralized controller built over OpenFlow which is
deployed in production data center network. This gives us confi-
dence in our design that also leverages OpenFlow in the Observer
and Act phases of our proposed framework.

7 Conclusion

Hybrid electrical/optical networks show significant promise for
supporting the ever increasing demand placed on data center net-
works. Unfortunately, several unsolved challenges could prevent
their adoption. This paper enumerated a set of challenges encoun-
tered during a year of experience with hybrid networks deployed
on real hardware. Although the complete picture of how to build
these networks is still unknown, we propose a flexible and frame-
work based on OpenFlow for that we believe will enable a variety
of future solutions to the remaining challenges. We are optimistic
that solving these problems will lead to increased adoption of op-
tical circuit switching into data center networks, leading to lower
data center costs, complexity, and energy use.
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