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Asymmetric broadband connections in the home provide a limited upstream pipe to the
Internet. This limitation makes various applications, such as remote backup and sharing high
definition video, impractical. However, homes in a neighborhood often have high bandwidth
wireless networks, whose bandwidth exceeds that of a single wired uplink. Moreover, most
(wired and wireless) connections are idle most of the time.

In this paper, we examine the fundamental requirements of a system that aggregates
upstream broadband connections in a neighborhood using wireless communication between
homes. A scheme addressing this problem must operate efficiently in an environment that
is: i) highly lossy; ii) broadcast in nature; and iii) half-duplex. We propose a novel scheme,
Link-alike, that addresses those three challenges using opportunistic wireless reception, a
novel wireless broadcast rate control scheme, and preferential use of the wired downlink.
Through analytical and experimental evaluation, we demonstrate that our approach provides
significantly better throughput than previous solutions based on TCP or UDP unicast.

I. Introduction

People are creating and sharing data in unprecedented
quantities. Websites such as Flickr and YouTube pro-
vide easy portals through which users can share their
photos and movies; peer-to-peer systems such as Bit-
Torrent [14] offer a simple interface to share files; and
several online storage companies offer users an easy
way to backup their data remotely. These new modali-
ties of information exchange, however, are voracious
consumers of bandwidth. Most of this content is mul-
timedia, which home users create megabytes and gi-
gabytes at a time. The volume of data they create and
share is growing at a staggering rate each year.

Increasingly, the main problem that users face in
trying to share their data is the limited bandwidth they
have at home. Typical broadband connections, such as
cable modems or DSL, are asymmetric: ISPs provision
their links such that users receive more downstream
bandwidth (into the home) than upstream (out of the
home). Thus, downloading rich content is feasible, but
publishing such content is challenging.

In this paper, we present a solution to this prob-
lem that exploits wireless connectivity to aggregate
the bandwidth of multiple broadband uplinks; our sys-
tem then makes this aggregate bandwidth available to
users for their uploads. This approach is motivated
by two observations. First, most broadband connec-
tions are idle most of the time [18]. Second, wireless
802.11 connectivity is becoming commonplace in the
home, and these wireless networks have much higher

capacity than residential broadband connections. Cur-
rent 802.11a/g links offer 54 Mbps and the upcoming
802.11n standard offers over 200 Mbps while cable mo-
dem or DSL links typically provide only 384—-768 Kbps
upstream. This significant difference in bandwidths
provides a unique opportunity for users to harvest the
idle upstream capacity of cooperating neighbors.

Three trends make this application scenario favor-
able in neighborhoods. First, community efforts like
FON [3] and Meraki [22] clearly indicate the desire
for users to share their wireless and wired connectivity
in the presence of appropriate incentives (e.g., for a
monetary reward or free access to other parts of the net-
work). Second, Internet Service Providers like British
Telecom (BT) seem to be leaning in this direction with
products such as the BT Home Hub [5]. The BT Home
Hub promotes wireless community networking and
sharing of wired connectivity by supporting two simul-
taneous SSIDs, one of which forms part of the FON
network. Finally, a number of manufacturers now offer
affordable, open-firmware wireless routers (e.g., FON,
OpenMesh Linksys, and Netgear [7, 4, 2]), which en-
ables easy deployment of new functionality. Similarly,
manufacturers like Broadband Bonding [1] and Wi-
Boost [6] build custom hardware for the bonding of
wired links through wireless connections.

A common approach to wired link aggregation
through wireless is to stripe traffic over multiple ac-
cess points to increase throughput [13, 19]. That work,
however, mostly focuses on the mechanisms needed to
perform the striping transparently. Such mechanisms



include deciding how long to stay on each wireless
channel, minimizing the time needed to switch chan-
nels, handling the queues of multiple TCP connections,
and interfacing with the kernel. A common assumption
in these approaches is that the wireless links can de-
liver packets quickly and reliably to the access point. In
contrast, our focus is on devising a solution that works
well within the constraints of neighborhood wireless
deployments: they are unplanned, they have a wide
range of link quality, and obstructions and interference
are common.

In this paper, we re-examine the problem of aggre-
gating broadband connections, with a specific focus on
the requirements imposed by the neighborhood envi-
ronment. The three central challenges are:

1. Work efficiently in a high-loss environment.
Wireless links between neighbors are unplanned
and can exhibit a wide range of performance [18].
Transport protocols such as TCP may perform
quite poorly in this environment, particularly
when communicating with distant or occluded
neighbors. The system should maintain high
throughput despite this potentially high loss rate.

2. Work efficiently in a broadcast environment.
Wireless is fundamentally a broadcast medium,
in which all nodes have a chance to receive a par-
ticular transmission. If any neighbor with spare
uplink capacity receives a transmitted packet, the
source should not waste wireless capacity retrans-
mitting the packet to a different neighbor.

3. Make efficient use of the half-duplex, shared
medium. A node cannot send and receive simul-
taneously on a single channel. Given that down-
link wired capacity is often abundant in the neigh-
borhood environment, the system should favor
using the wired downlinks instead of the wireless
whenever possible. (For example, as we discuss
later, our system uses the downlinks to schedule
nodes and acknowledge received data.)

We present Link-alike, a system that uses oppor-
tunistic wireless broadcast to aggregate neighboring
upstream broadband bandwidth. The source broadcasts
data to everyone that can hear, and the participants in
the system decide (using one of several techniques
described later) how to most efficiently get that data
to the intended recipient. Although the idea of wire-
less opportunism has been applied before to routing
in mesh networks [11, 21, 12], Link-alike is the first
system to use this technique to aggregate the uplink
bandwidth of multiple access points.

The neighborhood scenario we consider is inher-
ently cooperative: users share resources so that they
individually receive improved throughput when they
need it and idle bandwidth is available. Thus, in ad-
dition to maximizing throughput, Link-alike tries to
minimize wasted transmissions on both the wired and
wireless networks since other users may be using these
resources simultaneously.

After reviewing background information and related
work in Section II, we describe in Sections III and IV
the design and implementation of Link-alike and its
strategies for sending data through neighbors and for
making efficient use of the wireless medium. We then
provide a detailed theoretical comparison of the op-
portunistic approach versus unicast techniques (Sec-
tion V), including the maximum achievable throughput
given a set of system parameters. Section VI shows
through analysis and experimentation that Link-alike
achieves nearly optimal efficiency. We conclude by
discussing practical deployment issues and future ex-
tensions to our work.

II. Background and Related Work

Our work builds upon related work in three areas: net-
work connection sharing, opportunistic wireless deliv-
ery, and techniques for improving transport efficiency
over lossy networks.

II.LA. Network Connection Sharing

These schemes share Link-alike’s goal of aggregating
multiple broadband links to increase upload or down-
load speeds. Particular proposals, such as [27, 17],
advocate doing so using wireless, and define appropri-
ate flow scheduling approaches. The recently proposed
FatVAP [19] and at least two commercial products also
offer network connection sharing: Broadband Bond-
ing [1] and WiBoost [6]. These products appear to
target a similar application scenario to that addressed
by Link-alike. Based on the limited literature on their
products, it appears that they also focus on flow load
balancing and unicast distribution. As we show in Sec-
tion VI, Link-alike can substantially out-perform these
unicast schemes.

II.B. Opportunistic Wireless Delivery

Traditional network and application-layer approaches
to wireless connectivity attempt to force it into the
abstraction of a relatively reliable point-to-point link.
Packets are transmitted via unicast to receivers, and
802.11 NICs mask losses by retransmitting the packet,



potentially using different modulation schemes, until a
maximum number of retries or a successful reception.
This approach provides system designers with an easy
and familiar interface, but hiding the complexity of the
wireless medium also hides some of its power.

The wireless medium is intrinsically broadcast. Be-
cause receivers are separated spatially, each receiver
typically sees an uncorrelated set of bit-errors. Hence,
even if one receiver is unable to decode a wireless
frame, others may be able to do so. In recent years,
this observation has been exploited by several oppor-
tunistic transmission schemes to substantially increase
throughput in multi-hop wireless mesh networks.

MRD (Multi-Radio Diversity) [23] and SOFT [29]
use reception variability to hide losses in transmis-
sions from clients to an access point. EXOR [11] and
others [21] use reception variability to opportunisti-
cally forward data as far as possible in a mesh net-
work. MORE [12] combines the ExOR design with
network coding to greatly simplify the coordination
task. There have also been efforts [24, 15] that apply
similar techniques to forwarding in sensor networks.
Although these previous systems use data received at
different nodes opportunistically, none of these have
considered the particular problem domain that Link-
alike addresses. The wide range of previous efforts
demonstrates that the effective use of opportunistic for-
warding in a particular context mandates solutions to a
number of domain-specific issues.

In this work, we use the wireless medium to natu-
rally provide an anycast communication model, where
it is sufficient for any of the potential receivers to suc-
cessfully receive a transmitted packet. In the scenario
we examine, the opportunistic approach is key to al-
lowing Link-alike to take advantage of neighbors with
poor reception, where making explicit (and often un-
successful) attempts to reach only that neighbor would
simply waste network capacity.

II.C. Transport over lossy networks

TCP treats losses as an indication of congestion and re-
duces its sending rate in their presence. It has long been
observed that as a result, TCP performs poorly when
it experiences significant numbers of non-congestive
losses—as is common on wireless links. Link-alike’s
approach is to use a custom transport protocol over
the wireless link, while using TCP over the wired
uplink from the neighbors to the destination. This
approach is inspired by many proxy-based solutions
such as Split-TCP and Snoop [8], among others. Be-
cause Link-alike assumes a modified sender as well as
proxies on the neighboring APs, it does not need to

force its changes into TCP as much prior work does.
Link-alike still uses end-to-end acknowledgments for
reliability, but it implements its own wireless broad-
cast rate-control scheme, described in Section III. We
emphasize that Link-alike does require changes on
the APs themselves; however, we feel that such a re-
quirement is well justified in the studied environment.
BT, for example, already controls what is running on
their Home Hub, and re-configurable APs are shipped
by several manufacturers (e.g., OpenMesh, Linksys,
Netgear, Meraki, FON [7]).

III. Design

Link-alike’s primary goal is to minimize the total trans-
fer time by using neighbors in the most effective way
possible. The system’s secondary goal is to minimize
wireless cost, i.e. the amount of airtime occupied by
the transmission of each unique piece of information—
a metric that will reach high values in the presence of
unnecessary retransmissions.

This section presents the design of Link-alike, which
achieves these two goals by meeting the three require-
ments set forth in Section I: it works efficiently in a
high-loss environment, it works efficiently in a broad-
cast environment, and it makes efficient use of the
half-duplex, shared medium.

Throughout our work, we focus on a single wireless
transmitter in the network (treating other transmitters
merely as interference and the causes of packet loss),
and we target our solution to using neighbors who are
one wireless hop away from the source. We assume
that the transmitters use a single shared channel. We
believe this focus is reasonable since most home net-
works are typically idle and the current ratio of wireless
to wired bandwidth does not require a large number of
neighbors to maximize performance. In Section VII,
we discuss possibilities for extending our system to
relax these constraints.

To illustrate how Like-alike’s opportunistic broad-
cast strategy provides the best solution for the neigh-
borhood environment, we compare it to two alternate
strategies: TCP striping and UDP unicast.

III.LA. Alternate 1: Unicast TCP striping

Many existing broadband aggregation techniques di-
rect different TCP connections through different access
points or neighbors. Although these schemes allow
faster aggregate downloads (e.g., if a Web browser
opens multiple TCP connections), they typically do
not directly speed up the transfer of a single file. To
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Figure 1: The basic data flow in the system. The source can
transmit chunks of the file either on the wireless interface
or the wired uplink. Each neighbor buffers received chunks
before sending them upstream. The destination reassembles
the chunks it receives into the output file.

compare with these schemes, we implement an aggre-
gator where the sender opens a TCP connection to the
destination through each neighbor. The source sends
chunks of the file to the open sockets on a greedy first-
come-first-served basis. No special queuing discipline
is applied at the wireless interface.

This approach suffers from two weaknesses. First,
when a packet received by the intended neighbor is cor-
rupted, the link layer must retransmit the packet even
if it was received correctly by other nodes. Second,
if losses are severe enough that the link is unable to
retransmit a packet successfully, TCP will be exposed
to the loss. As many past studies have shown, TCP
performs poorly when operating over such lossy links.

III.B. Alternate 2: UDP Unicast

Figure 1 shows the basic data flow for our UDP uni-
cast setup (and for Link-alike, described below). The
source divides the file into packet-sized chunks, which
it sends either over its wired uplink or broadcasts on
the wireless interface. Any neighbor that successfully
receives a chunk can buffer it, ship it to the destination
over its wired uplink, or drop it.

In UDP unicast, the sender addresses each wire-
less transmission to a specific neighbor. This protocol
implements the optimal unicast strategy developed in
Section V: it ships chunks through the neighbor with
the best packet reception probability who has avail-
able bandwidth. Since 802.11-compliant interfaces
support multiple modes (bit-rates) which trade error-
protection for transmission time, the source picks the
most efficient neighbor, i.e., that which offers the low-
est expected transmission time (ETT) per packet [10].
Observe that this strategy matches the approach taken
in FatVAP [19].

The unicast strategy requires estimates of reception

probabilities. To obtain these estimates, all neighbors
passively sniff the wireless interface and count the num-
ber of unique packets they observed from the source
(uniqueness is determined by the packet sequence num-
ber). The neighbors report to the destination the num-
ber of packets they observed during the last measure-
ment period. (A measurement period is defined as a
sequence number range so that all neighbors provide
a consistent count.) The destination uses this infor-
mation to rank the neighbors in ascending ETT order.
The neighbors also send their queue size and estimated
uplink capacity with each upstream packet. Using
this information, the destination computes the optimal
transmission schedule and provides it to the source.

Finally, the destination sends ACKs to the source
over the downstream wired connection. The neighbors
do not need to query the destination to decide which
chunks to send upstream: they simply upload each
chunk that the source successfully transmits to them.

Like the TCP alternative, this approach must also
retransmit packets unnecessarily when the intended
recipient does not receive the packet. However, it does
not suffer from the problems related to TCP perfor-
mance over lossy links.

III.C. Link-alike: UDP broadcast

Link-alike is a two-tier file transfer protocol that is
similar to the UDP unicast approach. On the first hop,
a Link-alike source broadcasts chunks to all neighbors
(as opposed to the UDP unicast scheme above which
assigned chunks to specific neighbors and retransmited
them until they arrived at that neighbor). Simultane-
ously, the source greedily transmits chunks on its own
uplink and does not transmit those chunks over the
wireless.

For the second hop, neighbors use TCP to ship their
chunks over the wired uplink to the destination. Be-
cause Link-alike is a broadcast scheme, however, more
than one neighbor might receive a given chunk. Thus,
the core of Link-alike is a scheduling algorithm that
determines which neighbors transmit which chunks
over the wired uplink.

III.C.1. Scheduling

Our design for Link-alike results from the following
design decisions:

Centrally scheduled. The most fundamental decision
that the source and neighbors must make is which
chunks to send to the destination and how. To use
both the wired and wireless medium efficiently and



to minimize transfer time, these nodes must use an
effective transfer strategy.

In designing Link-alike, we explored three such
strategies: scheduled, random, and network coding.
In the scheduled scheme, a single node decides which
nodes send which chunks. Because this one node as-
signs chunks to neighbors, it can avoid redundancy and
reduce transfer time.

The primary advantage of the random and coding
schemes is that they do not require per-chunk coordina-
tion among the neighbors. In the random scheme, indi-
vidual neighbors decide independently which chunks
to send to the destination by randomly picking from
among the chunks they have received. Our initial exper-
iments showed, however, that the random scheme runs
into the coupon-collectors problem (requiring nlogn
uploads) unless the chunks are acknowledged to ev-
ery neighbor, thus requiring coordination. Addition-
ally, the probability of two neighbors uploading the
same chunk is inversely proportional to the number
of chunks buffered at the neighbors; as a result, ran-
dom scheduling is only efficient when the system is
highly wired-bottlenecked (Section V). When wired-
bottlenecked, the source can fill the neighbors’ buffers
quickly enough to avoid leaving their uplink capacity
idle.

The network coding approach avoids these problems
by generating random linear combinations of the re-
ceived chunks. Such combinations are independent
with very high probability. This scheme, however, has
several downsides: the number of chunks combined
together must be limited which requires batching; both
the neighbors and the destination have to perform fi-
nite field algebra; finally, the neighbors must know how
many coded chunks to generate [12], which requires
solving the capacity problem defined in Section V.
Based upon these limitations, we chose the centrally
scheduled design for Link-alike.

The destination node is the scheduler. Because the
neighbors are already communicating with both the
source and the destination, these two nodes are natural
choices to act as the scheduler.

The choice of the destination node stems from the
fact that the scheduling node must know which chunks
each neighbor has in order to produce an effective
schedule. The neighbors send reception reports to the
scheduler. Thus, if the source is the scheduler, the
neighbors must transmit their reports over the wireless.
These transmissions can cause interference, and small
packet transmissions make less efficient use of the
wireless capacity. By choosing the destination as the
scheduler instead, the neighbors can send reception
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Figure 2: The basic communication via neighbors in
destination-coordinated FCFS. For clarity, the diagram
shows only a single chunk exchange; in practice, the neigh-
bor would be uploading previously scheduled data while
awaiting a new schedule.

Neighbor

reports over their substantially more reliable upstream
wired connection.

Greedy, first-come, first-served scheduling. Given
a set of neighbors and the list of chunks they have
received from the source via broadcast wireless, the
destination must schedule chunks to neighbors. Link-
alike uses a greedy, first-come-first-serve (FCFS) strat-
egy that schedules chunks to the first neighbor with
capacity that has that chunk. (Neighbors piggyback
their available capacity on the shipped chunks.) By
scheduling chunks onto neighbors as soon as they have
spare capacity, it ensures that at least that neighbor will
efficiently use its bandwidth. Although we have not
(yet) proved whether our greedy strategy is optimal, in
practice it works well, as we show in Section VL.

III.C.2. The greedy scheduler algorithm

The details of the greedy scheduler are as follows (see
Figure 2):

1. The source broadcasts the chunks of the file in
order. When it completes, it cycles back and re-
broadcasts chunks that have not yet been acknowl-
edged (Step 6) by the destination. The source
transmits chunks at a rate it estimates will keep its
neighbors uplinks full without wasting wireless
bandwidth (Section III.C.3).

2. Neighbors receive a wireless broadcast and send a
reception report to the destination via their wired
uplinks. They insert the received chunk into their
buffer.

3. The destination maintains a FIFO list of the
chunks reported by each neighbor. It declares
a neighbor schedulable when that neighbor has



chunks to send that have not already been sched-
uled to another neighbor and when it believes
that neighbor to have spare uplink capacity (Sec-
tion IIL.C.3).

4. The destination assigns chunks to schedulable
neighbors in FCFS order.

5. The destination notifies the schedulable neighbors
which chunks they should send.

6. When the destination actually receives a chunk, it
reliably sends an acknowledgment to the source
and to every neighbor. These ACKs permit
neighbors to flush useless chunks from their own
buffers (Section II1.C.4).

Note that for clarity, the figure shows the commu-
nication as if it were synchronous; in practice, both
neighbors and the destination operate asynchronously
and batch some of their communication for efficiency,
as we describe later.

III.C.3. Capacity Estimation

Capacity estimation is required for two aspects of
chunk scheduling in Link-alike. First, the neighbors
must estimate their available uplink capacity. Second,
in order to avoid wasting wireless transmissions and
needlessly overflowing the neighbors’ buffer space, the
source should determine the slowest rate at which it
can transmit on the wireless medium while ensuring
that neighbors’ uplinks are full.

Link-alike deals with capacities as bandwidth-delay
products (BDP) instead of directly estimating rates.

Uplink capacity estimation using BDP. Link-alike
neighbors send chunks to the destination using TCP.
The FCFS strategy schedules new chunks to a partic-
ular neighbor only if it has spare capacity. To avoid
an imbalance of outstanding requests to neighbors, the
destination issues upload requests to each neighbor
at a rate no greater than its upload capacity. Rather
than measuring and enforcing a rate, Link-alike uses a
simple per-neighbor sliding window-based approach:
the number of outstanding uploads (assigned to the
neighbor but not yet executed) is bounded by the win-
dow size. Clearly, to achieve full link capacity, the
window size must exceed the bandwidth-delay product
(BDP) of the wired link. An excessive window, how-
ever, could lead to imbalance as we discuss in the next
subsection.

To estimate the BDP, the neighbors use TCP buffer
auto-tuning and query the kernel for its estimate of the
send socket buffer size each time they pass a chunk to
the socket. The resulting value is a safe upper bound
on the amount of data that the neighbor could upload

to the destination (even if it is too low, the resulting
low socket buffer size would itself limit the neighbor’s
capacity).! This value is sent to the destination along
with the chunks, so the destination can adjust the win-
dow size before it issues the next schedule to fill the
window.

Source broadcast rate. Unlike neighbor capacity esti-
mation, there is no well-defined optimal source broad-
cast rate; in many scenarios, larger values continue to
marginally increase the end-to-end transfer rate while
considerably increasing the load on the wireless net-
work.

To understand this trade-off, consider a source with
neighbors ny,ny,n3,- - - ,n; where the probability that
these neighbors hear transmissions from the source
decreases exponentially with increasing subscript. At
a low transmission rate, the source can saturate n;’s
uplink. At double that base rate, n; and n; both receive
enough chunks to saturate their own uplinks, but the
end-to-end rate is not doubled because these neighbors
receive some overlapping chunks. At four times the
base rate, a third receiver now receives enough chunks,
and so on.

Link-alike sources therefore dynamically determine
a broadcasting rate that will fill the uplink TCP win-
dows of all neighbors who account for 5% or more
of the total throughput to the destination. Although
the choice of 5% is arbitrary, in our test topologies, it
provided a good balance between keeping useful neigh-
bors sending while not wasting wireless broadcasts to
extremely poor neighbors. To ensure the uplinks do
not go dry during transient variations in available wire-
less bandwidth, we aim to ensure that the buffer of
each useful neighbor contains data amounting to 5x its
estimated BDP.

To determine the sending rate, the destination counts
the number of chunks shipped from each neighbor in
every window of 200 chunks. It reports the maximum
number of chunks that are needed to reach 5xBDP
buffer occupancy among neighbors that shipped more
than 10 chunks each (5% of the total). The source
uses this feedback value, F, to drive a proportional-
differential controller that attempts to keep that capac-
ity occupied without overflowing. Every 0.2 seconds
the controller computes the new packet broadcast rate

I'This approach actually estimates the TCP fair-share capacity,
not the spare capacity. In the future, we plan to investigate using
techniques from TCP-Nice [28] or TCP-LP [20] to ensure that
opportunistic transfers do not interfere with the uplink owner’s
own traffic.



as:

F = max
contributing neighbors

rateglq + (0.1 F + 0.4 (F — Fyiq)) x 1/s
Fou = F

(5 x BDP — buffered)

rate =

The rate is clipped to be between zero and the maxi-
mum packet rate for the wireless bitrate used.

Bit-rate selection. Link-alike’s transmissions are not
addressed to any one neighbor; hence, no traditional
auto-rate algorithm is applicable. In general, the opti-
mal bit-rate selection for opportunistic broadcast is an
open problem, and is beyond the scope of this paper. In-
stead, Link-alike drafts behind the auto-rate algorithm
used by unicast transmissions. First, we determine
the long-term best bit-rate for each neighbor using the
algorithm built into the driver (SampleRate [9]). Sub-
sequently, the bit-rate for each transmission is set to
the best bit-rate for the lowest expected time (i.e. ETT
metric [16]) to a neighbor with available bandwidth.
This heuristic essentially mimics the optimal unicast
strategy.

II1.C.4. Acknowledging Received Data

As noted above, the source transmits the entire file in
order over the wireless medium. We assume that the
file is large enough that the time needed to do so is long;
as a result, the system uses a completely asynchronous,
end-to-end acknowledgment scheme. Link-alike sends
these acknowledgments only from the destination to
ensure reliability.

Although we use TCP to provide reliable delivery of
chunks over wired uplinks, chunks may be lost over the
wireless medium or because a neighbor has failed after
receiving them. In the approaches that use wireless
unicast, the 802.11 transmitter retransmits the packet
until it receives an 802.11 ACK from the intended
receiver. Broadcast packets have no such mechanism
(nor should they—multiple simultaneous responses
would interfere with each other). Therefore, in Link-
alike, the source does not receive immediate feedback
from its neighbors.

When the source transmits a chunk, it selects the
not-yet-acknowledged chunk that was broadcast the
longest time ago. In practice, this means it cycles
through the unacknowledged chunks of the file in order.
By permitting a large gap between transmission and
acknowledgment, this scheme ensures that the Link-
alike source need never stop broadcasting packets to
wait for feedback.

Link-alike neighbors do not ACK chunks when they
receive them. Such an approach might improve effi-

ciency (particularly when there are few chunks remain-
ing) because it would let the source avoid redundantly
transmitting a chunk. In practice, however, the com-
bination of the large file size and careful buffer sizing
at receivers (as a multiple of their uplink bandwidth-
delay product) means that chunks will not reside at
a neighbor for long periods of time prior to upload
and acknowledgment. Using only end-to-end acknowl-
edgments greatly simplifies handling neighbor failures.
When the TCP connection to a neighbor is severed,
the destination simply marks all outstanding chunks
scheduled to this neighbor as unscheduled.

III.C.5. The End-Game

Like many load-balancing systems, Link-alike must
deal with the end-game problem that occurs when all
chunks of the file have been scheduled to neighbors,
but those neighbors may upload at drastically different
rates. The system must avoid being bottlenecked by
the slowest of these neighbors while other neighbors
are idle.

Link-alike deals with this problem in two ways.
First, the destination always uses the TCP bandwidth-
delay estimate to determine how many chunks to sched-
ule on a neighbor. This mechanism avoids grossly
over-committing to a slow receiver.> Second, Link-
alike copes with failed neighbors by rescheduling all
of their chunks (as discussed above). Triggered by
a timeout, this method can also deal with neighbors
whose capacity drastically drops during the last part of
a transfer. As we explore in Section VI, the existing
mechanisms perform well in most scenarios, and we
leave more advanced end-game strategies for future
work.

IV. Implementation

Link-alike is implemented completely in userspace us-
ing approximately 2300 lines of C++. It interfaces with
the kernel network stack via regular sockets, and ac-
cesses the wireless network interface in monitor mode
via a raw packet socket to support per-packet bit-rate
control and sniffing for unicast. For TCP, the auto-rate
algorithm implemented in the wireless driver tracks
the best bitrate to communicate with each neighbor.
For UDP and Link-alike, however, we use the long-
term best bit-rate per neighbor estimated before the
experiment.

The source splits the file into 1.4KB chunks so that
each chunk fits in a single UDP packet. The source

%In fact, our commitment ensures that the end-game lasts no
longer than the RTT spread.



assigns each chunk a unique sequence number that is
used for acknowledgments and file reassembly. To
cope with files larger than the amount of available
memory, the Link-alike source keeps only a part of
the file in its buffer, which it refills as the chunks are
acknowledged by the destination.

IV.A. Neighbors

Each neighbor maintains a bit vector of all sequence
numbers to avoid storing and shipping redundant
chunks. Whenever a chunk is received over the wire-
less UDP or ACKed over the TCP from the destina-
tion, the corresponding bit is set in the vector. ACKed
packets are also evicted from the buffer. Further UDP
receptions of that sequence number are discarded.

IV.B. Capacity Estimation Implementa-
tion

Neighbors report their buffer state information to the
destination with each chunk they upload. This in-
formation contains the number of chunks currently
stored in the neighbor’s buffer and an estimate of the
bandwidth-delay product (BDP) from the neighbor to
the destination. The BDP is measured in chunks and
is estimated using a get sockopt (SO_SNDBUF') sys-
tem call. The destination, in turn, attaches feedback
information (Section III.C.3) to each ACK packet it
sends to the source, so that the source can compute its
broadcast rate.

V. Understanding potential gains

Before empirically evaluating Link-alike, we exam-
ine the potential benefit of an opportunistic wireless
broadcast scheme for broadband link aggregation.

V.A. System Model

Our analytical model divides the network into two do-
mains, the wireless and the wired. For simplicity, we
assume that there are no shared bottlenecks in the wired
domain and that the wireless transmitter operates on a
fixed modulation (bit-rate) and power. The transmitter
broadcasts each packet, after which any successful re-
ceiver can relay it to the recipient over its wired uplink.
To find the maximum rate of unique packets that could
be delivered to the destination, we use a specialized
variant of the standard maximum flow problem.

In this flow formulation, the source can attempt to
broadcast at most B units of flow (i.e., it is limited
by the maximum rate of the wireless network). The
source has a set of neighbors, N. Each neighbor i €

N is characterized by its uplink capacity u; and the
probability p; that it receives a packet from the source.
Because wireless losses might be correlated, each set
of neighbors K also has a probability gk that at least
one node in K receives a transmission. (If all receivers
are independent, then gx = 1 — [Ticx (1 — pi).)

V.B. Opportunistic Capacity Bounds

Let x; be the rate of flow relayed by neighbor i to the
ultimate destination. The total amount of flow sent
can be formulated as a linear program (LP), whose
objective is to maximize the total number of unique
packets that can be delivered to the destination via the
neighbors:

max ) ey Xi @))
subject to:

0<xi<u Vien (2)
Vken (3)

uplink limit
redundancy limit Y ;cpx; < Bqg

The first limit simply says that no neighbor can trans-
mit faster than its uplink capacity u;. The second con-
straint encodes the fact that if multiple neighbors re-
ceive a packet via the wireless medium, it is only useful
for one of them to send the packet to the destination.

There is one instance of the second constraint for
each set of neighbors K (the number of these con-
straints may be exponential in the size of the neighbor-
hood N). The total expected flow of unique packets
that reach at least one of them is Bgg (the wireless
bandwidth times the set reception probability). This
value is the upper limit on the total amount of unique
flow that can be delivered to the destination by all
nodes in that set.

Note that this formulation does not include the up-
link capacity of the source itself. This capacity simply
augments the total throughput.

V.C. Unicast Capacity Bounds

To understand the benefits that can be achieved by
exploiting wireless broadcast, we compare the oppor-
tunistic capacity to that which could be achieved by
having the source select a single, best forwarder for
each packet [17]. In this case, the total flow through
a neighbor i is limited both by that neighbor’s uplink
capacity u; and the total wireless capacity at the source,
B. If z; denotes the rate of packets sent to neighbor i,
then the LP formulation is again to maximize the total
flow sent through all neighbors:

maxy ey Xi 4



subject to:
0<xi<u; Vien (5)

x; <zipi Vien (6)
Yienzi <B (7

uplink limit
unicast limit

wireless limit

The first constraint again bounds the amount of flow
sent by neighbor i to be smaller than its available ca-
pacity. The second constraint takes into account the
effect of wireless losses on the amount of flow sent to
neighbor i from the source. The neighbor can forward
on its uplink the fraction p; of z; it receives from the
source. The last constraint simply declares that the to-
tal amount of flow sent to all neighbors from the source
must be smaller than the wireless capacity itself.

The LP formulation for unicast provides some in-
sight on how to implement such a system in practice.
Unlike the opportunistic formulation, this problem has
a linear number of constraints that can be solved greed-
ily by filling neighbors’ capacities (x;) in order of de-
scending reception probability p;. In practical terms,
this means that the optimal strategy is to forward via
the neighbor most likely to receive the packet who still
has remaining capacity.

V.D. Potential Capacity Gain

Based on the formulation of Section V.B the potential
gain from opportunism depends greatly on the wireless
bandwidth B, uplink speeds u;, and reception probabil-
ities p;. For simplicity, we examine the case when all
neighbors have the same uplink capacity u; = u, and
all neighbors independently receive packets with prob-
ability p; = p. In this restricted scenario, the capacity
bounds become:

broadcast min {Nu, B(1—(1- P)N)}

unicast min [N u, Bp]

Figure 3 explores the potential gain from oppor-
tunism, i.e., the ratio of the broadcast and unicast
bounds, as a function of the available wireless band-
width B and the reception probability p. Notice that the
wired upstream capacity u is set to 1. Thus, varying
the value of B allows us to explore the benefits one
can reap as the wireless medium capacity increases in
relation to that of the wired medium. Figure 3 suggests
three distinct operating regimes:

Wired-bottlenecked: As B increases, we eventu-
ally enter a region where the received wireless flow
exceeds the neighbors’ wired capacity. For example,
in Figure 3, the line for N = 10, p = 0.5 when B = 20
may correspond to a very dense (e.g., large apartment
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Figure 3: Assuming wired uplink capacity, u; = u = 1 and
probability of reception, p; = p, the potential gain is always

limited by 1/p and converges to 1 as the available wireless
bandwidth B increases.

building) deployment (ten neighbors) using a very high
performance wireless network (e.g., 802.11n), since
the wireless bandwidth is 20x that of the wired band-
width. At this point, we expect B * p = 10 units of
traffic to arrive at the neighbors. If the total capacity
available at the neighbors is N * u = 10, then additional
wireless bandwidth would not increase traffic flow at
the destination, since all broadband links are saturated.
As a result, the gain at this point drops to 1. If wireless
capacity is abundant, such that we can easily saturate
the wired links, then opportunism provides little bene-
fit.

Wireless-bottlenecked: When B is low, the poten-
tial gain from opportunism is (1—(1—p)V)/p. In
this case, opportunistic broadcast minimizes the band-
width cost of delivering packets to the neighbors, who
have excess wired capacity that can be used to then
forward data to the destination. The gain from oppor-
tunism is larger when the loss rate is higher, since the
system has nothing to gain from opportunism if all
receivers perfectly hear every transmitted packet.

In-between: When B is not too low but not high
enough to saturate the wired links, then the oppor-
tunistic gain reduces in response to increased wireless
bandwidth availability (e.g., when 10 < B < 20 for
N =10, p = 0.5). The length of this region depends
on the actual values for N and p. The reason behind
the decrease in gain is that as the wireless bandwidth
increases, unicast can be more successful at bridging
the gap and utilizing a higher fraction of the available
wired resources.

Practical wireless deployments have been shown to
suffer from high loss rates [10]. Consequently, we
believe that opportunism will play a significant role in
actual deployments. This simplified analysis suggests
that in wireless-bottlenecked topologies, opportunistic
broadcasting can significantly improve throughput. In
the next section, we evaluate whether these gains hold



Parameter Setting

25ms, 50ms, 75ms

400 Kbps, 800 Kbps, 1200 Kbps
bandwidth x 1s

15 KB

one-way latency
bandwidth
maximum queue
maximum burst

Table 1: Parameters for the wired uplink shaping in our
experiments. Whenever there is a choice, we pick a value at
random with equal probability.

in practice as well as in theory.

VI. Evaluation

In this section, we use measurements from our wire-
less testbed to evaluate the performance of Link-alike.
First, we validate our implementation against the theo-
retical capacity computed according to the framework
developed in the previous section. Second, we com-
pare the performance of Link-alike against that of the
unicast schemes. Finally, we study how the throughput
gain is affected by changing topological features (e.g.,
the channel, the number of nodes, etc.) that would vary
widely in actual deployments.

VI.A. Testbed

The testbed consists of 8 wireless nodes deployed on
one floor of an office building. Each node is a small
Soekris net4826 computer equipped with an Atheros
802.11a/b/g wireless card. These nodes and an ad-
ditional machine that acts as the destination are con-
nected to a 100 Mbps Ethernet switch. The wireless
nodes run Linux 2.6.21 with the supplied Madwifi
0.9.4 drivers configured in ad-hoc (IBSS) mode (for
TCP) or monitor mode (for UDP and Link-alike) in
802.11b. 3

To emulate residential connectivity, the traffic be-
tween the destination and the nodes is shaped using the
Linux bandwidth (tbf) and latency (netem) shaping
modules. To match the characteristics of residential
Internet access we pick the parameters according to
Table 1.

VI.B. Methods

In each experiment, we transfer one file to completion.
The size of the file is scaled with the aggregate wired
capacity so that each transfer lasts at least 1 minute.

3 Note that the special operating modes do not conflict with
regular AP functionality since the driver supports software virtu-
alization of the hardware NIC, a feature commonly exploited in
wireless mesh networks.

600 : : : ‘ : —
500 | N
400 |
300 -~

200 | /

-~
100

Link-alike throughput [kB/s]

0 100 200 300 400 500 600
Theoretical broadcast throughput [kB/s]

Figure 4: Observed experimental throughput compared to
the theoretical prediction.

We assess the performance of the different distribu-
tion mechanisms in terms of two metrics: 1) overall
throughput, defined as the number of unique chunks
delivered per second to the destination, and 2) wireless
cost per chunk, defined as the total amount of wire-
less “air-time” required for the file transfer divided by
the number of chunks delivered via the neighbors. In
the case of TCP, this includes both link-layer and end-
to-end retransmissions and acknowledgments. Both
metrics include the overhead of TCP/IP packet headers.

The computation of the theoretical capacity is based
on actual measurements and depends on the accurate
computation of B, u; and gg (for the LP problems (1)
and (4)). B can be easily computed as the number of
chunks sent in the wireless medium per second. u; is
computed from the nominal bandwidth applied at the
wired uplink shaper accounting for the TCP/IP headers.
Finally, gk is computed from the number of times
a wireless transmission was received by at least one
neighbor in set K. Note that, for increased accuracy,
we do not assume that the bit errors are independent.

Finally, in order to explore a breadth of network
configurations using a single network testbed, we vary
four parameters of the network configuration. We quan-
tify the individual performance gains of each resulting
topology. The four parameters we vary are: (i) the
number of nodes, (ii) the channel (among the 802.11b
orthogonal channels), (iii) the wired uplink capacity,
and (iv) wired latency. We present below results from
200 runs that allow us to study the gains of Link-alike
under a variety of conditions.

VI.C. Capacity Bounds

Before proceeding with the actual performance com-
parison, we first validate Link-alike’s performance
against the estimated potential gain from Section V.
Because the theoretical analysis did not include bit-
rate selection, we run only this experiment with a fixed
bit-rate.
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Figure 5: The measured throughput of Link-alike versus
TCP and UDP. Each point represents two back-to-back
experimental runs with the same topology parameters.
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Figure 6: The CDF of the overall throughput gain of the
three compared schemes against the source’s wired uplink
alone.

Figure 4 shows that our implementation of Link-
alike closely matches the throughput estimated using
our model. In fact, 95% of the two hundred runs
achieve 90% or more of the theoretical throughput.

VI.D. Broadcast Gain

Next, we quantify the benefit of Link-alike in contrast
to unicast. For each of the 200 network configurations,
we perform a file transfer using TCP, UDP unicast and
Link-alike, one immediately after another. Figure 5
compares the three schemes in terms of overall through-
put. Link-alike consistently outperforms both TCP and
UDP. In addition, the percentage gain from Link-alike
appears independent of the actual throughput value.
In Figure 6, we show the overall throughput gain
of each scheme over using just the wired uplink of
the source. The median throughput improvements are
2.6x with TCP, 2.9x with UDP unicast, and 3.7x with
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Figure 7: The CDF of the average wireless air-time per
chunk delivered via neighbors.
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Figure 8: The plot shows the overall throughput gain of
each scheme depending on the number of neighbors.

Link-alike. These results show the effectiveness of
Link-alike’s wireless-specific approach: through op-
portunistic broadcast, Link-alike provides 28% better
throughput than UDP unicast, and through the combi-
nation of opportunism and avoiding poor TCP behavior
in the lossy environment, it provides a 43% improve-
ment over TCP. These improvements occur despite
the broadcast approach having (at present) inferior bi-
trate adaptation than TCP unicast—the latter adjusts
the bitrate for each packet using the state-of-the-art
SampleRate algorithm, instead of using a fixed rate
throughout the entire experiment.

Another important point in the comparison of Link-
alike and the unicast approach is that the aforemen-
tioned performance benefits are associated with sig-
nificantly reduced wireless costs. Figure 7 shows the
CDF of the wireless cost computed as the ratio of total
wireless air-time consumed to the number of chunks
delivered via neighbors. The transmission time of a
1500 byte frame at 5.5 Mbps with no retransmissions is
3.3ms. In our experiments, the median cost of a chunk
sent using TCP is 8.7ms, which is 47% higher than the
5.9ms needed by Link-alike. Link-alike substantially
reduces the amount of airtime required to successfully
upload a file.

So far, we have looked at the statistical gains one
should expect from Link-alike across a range of sce-
narios. In Figure 8, we break down those gains based
on the number of neighbors assisting in the file distri-



bution. As expected from analysis, using more neigh-
bors increases the throughput gain from Link-alike
versus unicast. More neighbors provide more wired
capacity, which means that the system is more wireless-
bottlenecked, the regime in which Link-alike excels
by opportunistically using any neighbor that correctly
receives a chunk. In contrast, given limited wireless
bandwidth, unicast can only saturate the top few neigh-
bors with the highest link quality. TCP is even more
limited by its congestion control algorithm and ends
up using only a subset of the available neighbors.

VL.E. Opportunistic Failure Tolerance

Opportunism in Link-alike not only leads to apprecia-
ble performance improvement and reduction in wire-
less cost, but has the potential to offer increased robust-
ness in the presence of link and node failures. Each
broadcast is forwarded by any neighbor selected by the
central scheduler. Fluctuations in the number of avail-
able neighbors change the potential for throughput, but
will not jeopardize the operation of Link-alike itself.
We explicitly tested this scenario by randomly killing
neighbor Link-alike processes and restarting them at a
later time. Link-alike worked correctly and seamlessly:
when new neighbors appeared, Link-alike opportunisti-
cally started using them; when neighbors disappeared,
Link-alike stopped using them and rescheduled the ap-
propriate blocks, effectively masking out any network
failures.

VII. Discussion and Future Work

This section discusses several design decisions and
challenges related to this work.

Incentives. Link-alike requires a number of nearby
neighbors that are willing to participate in the system.
However, user concerns about issues such as liability
for illicit content uploaded across their access link may
prevent broad adoption of systems such as Link-alike.
One sign that this may not be an issue is the popularity
of systems such as FON [3], in which users provide
guests access to their broadband connections. Sim-
ilarly, the increasing popularity of community wire-
less networks [2, 4] suggests that users are willing
to share the wired connectivity in their neighborhood.
Technical solutions that assign liability more appropri-
ately [26] may address many user concerns.

Wireless channels. Broadcast requires that the source
and the neighbors operate on the same channel. This
shared channel might therefore be highly congested.
Moreover, extending the design to multi-source or

multi-hop scenarios means that the system will contend
with itself for the wireless medium.

One simple approach to help alleviate this wireless
contention is to use multiple radios. Each could oper-
ate on an independent channel, but at least one would
use a common neighborhood-wide channel. As radios
become cheaper, commodity access points may start
shipping with multiple radios, or users may simply
purchase two access points (one for use with Link-
alike and one for in-house connectivity). A second
radio is likely to cost less than a single month of high-
speed broadband connectivity, making this option vi-
able. BT’s Home Hub addresses this issue by using a
dedicated FON SSID; a similar solution could be used
by Link-alike.

Security. The design presented above does not address
security. We assume that the source and destination
use standard end-to-end security techniques to achieve
confidentiality and integrity if desired. These tech-
niques allow for a threat model in which the neighbors
and the network are untrusted. Note that the neighbors
cannot perform a denial-of-service attack by dropping
chunks. The transfer is opportunistic; if the neighbors
drop packets, the source itself will eventually just ship
all of the chunks over its own upstream link.

Sending chunks through untrusted neighbors does,
however, leak some information. For example, the
neighbors may discover both the destination and size of
transfers. Note that recent studies [25] have shown that
wireless networks leak significant amounts of similar
information even when using encryption and not using
Link-alike.

The system design presented above assumes that
the source can broadcast chunks to neighboring access
points. If these access points use wireless security
mechanisms such as WEP or WPA, the source will not
be able to communicate with them. A potential solu-
tion is to share a “Link-alike key” among neighbors
in one of the additional WEP key slots in each access
point, to concurrently permit both WEP and non-WEP
access, or to use a separate access point for Link-alike.

Common neighborhood scenarios. Link-alike’s abil-
ity to improve upload depends on the number of neigh-
bors, wireless link bandwidth, wireless packet loss
rates and wired network bandwidth. An obvious ques-
tion is whether Link-alike performs well in the condi-
tions observed in current neighborhoods.

Although a detailed evaluation of wireless network
conditions is beyond the scope of this paper, we did
perform a small scale measurement study. We asked
30 people to collect wireless connectivity measure-
ments from inside their homes. They recorded the wire-



less neighborhood information (AP id, signal strength,
noise level, RSSI, etc.), every second for ten minutes
(typical NetStumbler output). The users lived in both
rural and urban areas, in houses and apartments. This
initial collection shows that in today’s neighborhoods,
a home AP may be able to reach between 0 and 31
different APs at a variety of link qualities. Only rarely
was a neighbor’s AP available at the highest transmis-
sion rate. The average number of APs within reach
was 5-6. While limited in scope, this study confirms
the existence of high-density wireless neighborhood
environments that enable Link-alike to facilitate higher
capacity uploads. In addition, based on the collected
measurements, we expect loss rates in such environ-
ments to vary greatly, which is one of the scenarios
in which Link-alike provides the most performance
benefit. Finally, the wired network bandwidth num-
bers used in our evaluation were based on typical DSL
configurations in the United States.

A related concern is that technology trends will
change neighborhood connectivity such that Link-alike
may no longer be effective. For example, 802.11n
promises speeds up to 200 Mbps and improved range.
Similarly, several companies have begun to provide
fiber-optic connections to the home (e.g., Verizon’s
FIOS) that offer an order-of-magnitude improvement
in upload speeds (e.g., 5-10 Mbps). As shown in Fig-
ure 3, the techniques presented in this paper are still
useful as long as the ratio between the wired and wire-
less bandwidth remain high enough.

Backward compatibility. Our design for aggregat-
ing broadband connections via wireless is specific to
whole-file transfer where pieces of the file can arrive
out-of-order. Limiting the design to this context allows
each neighbor to establish independent TCP connec-
tions to the destination machine. Thus, each neighbor
traverses any NAT or firewall that it is behind, as usual,
to reach the destination and deliver the data. The des-
tination runs a user-level file transfer application to
receive these TCP connections puts the file back to-
gether, but no kernel or TCP-level stream re-assembly
is necessary.

Our current focus with Link-alike is understanding
the potential gains from aggregation. To do so, we
deliberately focused on bulk file transfer and permit-
ted the requirement that the server participate in the
protocol.

Shared bottlenecks and Acceptable Use Policies.
There are two concerns about using Link-alike with
commercial ISPs. First, cable modem connections (un-
like DSL) may share the same trunk line to the ISP.
Two neighbors might thus share the same limited trunk

capacity, rendering Link-alike ineffective. In practice,
however, cable modem devices rate-limit connections
more aggressively than the limited trunk bandwidth.
This issue of rate-limiting, however, brings up a more
important point: acceptable use policies.

Many consumer ISP user agreements prohibit users
from selling or even giving away their network band-
width. We note two encouraging trends in this area:
First, many smaller ISPs (e.g., Speakeasy) permit users
to re-use their capacity. Second, some larger ISPs (e.g.,
British Telecom) have drafted policies to explicitly per-
mit users to participate in Wi-Fi sharing services [5].

Multi-source. Link-alike was designed and evaluated
for a single source. We also plan to explore the chal-
lenges that arise in multi-user environments. These
scenarios are complicated both by the potential for
wireless collisions and by the opportunity to use neigh-
bors as helper nodes for more than one source. Provid-
ing fairness in these environments may be particularly
difficult.

Multi-hop. While Link-alike offers significant bene-
fits in high density scenarios, we expect that it could
also lead to appreciable gains even in less dense net-
works. In this case, however, helper nodes will need to
decide whether to forward or drop a packet, but also
whether they should re-broadcast it to neighbors that
are more than one hop from the source.

Downloads. Our design focused on uploading data
from the neighborhood to an Internet server. Aggre-
gating broadband connections may also improve the
speed of network downloads. Opportunistic broadcast,
however, is less likely to be useful in such settings
since there is exactly one node that desires the down-
loaded data and speeding up downloads is less critical
due to the highly asymmetric nature of most broadband
links.

VIII. Conclusion

Link-alike is a simple and robust protocol that uses
opportunistic broadcast to exploit wireless diversity
in neighborhood networks and enable services that re-
quire higher upstream capacity through the aggregation
of multiple broadband links. Link-alike is tailored to
the specific challenges of neighborhood wireless: it
takes advantage of wireless broadcast to avoid unnec-
essary retransmissions, it provides a novel broadcast
rate adaptation algorithm to make efficient use of the
wireless and avoid the problems of TCP performance
on lossy links, and its design shifts small control pack-
ets away from the wireless medium to the relatively
free wired downlinks.



Our experiments in a physical wireless testbed in-
dicate that Link-alike not only outperforms the tradi-
tional unicast approach, but also comes very close to
the theoretical capacity bounds provided in this pa-
per. Importantly, Link-alike also greatly reduces the
number of wireless transmissions necessary to achieve
that capacity. Our results demonstrate that Link-alike
delivers a 3.7x improvement in median throughput
compared to a single wired uplink, over tests with an
average of 4.2 neighbors. It significantly outperforms
prior sharing solutions popular in both academia and
commercial products, offering 28% improvement over
UDP unicast, and 43% improvement over TCP strip-
ing. Trends in community wireless networking and
the support by AP manufacturers and Internet Service
Providers makes the problem of broadband link aggre-
gation very timely. Link-alike offers such a solution.
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