Exact Pattern Matching with Feed-Forward Bloom Filters

Tulian Moraru*

Abstract

This paper presents a new, memory efficient and cache-
optimized algorithm for simultaneously searching for a large
number of patterns in a very large corpus. This algo-
rithm builds upon the Rabin-Karp string search algorithm
and incorporates a new type of Bloom filter that we call a
feed-forward Bloom filter. While it retains the asymptotic
time complexity of previous multiple pattern matching al-
gorithms, we show that this technique, along with a CPU
architecture aware design of the Bloom filter, can provide
speedups between 2x and 30X, and memory consumption
reductions as large as 50x when compared with grep.

1 Introduction

Matching a large corpus of data against a database
of thousands or millions of patterns is an important
component of virus scanning [18], data mining and
machine learning [1], and bioinformatics [19], to name
a few problem domains. Today, it is not uncommon to
match terabyte or petabyte-sized corpuses or gigabit-
rate streams against tens to hundreds of megabytes of
patterns.

Conventional solutions to this problem build an
exact-match trie-like structure using an algorithm such
as Aho-Corasick [3]. These algorithms are asymptoti-
cally optimal: matching n elements against m patterns
requires only O(m + n) time. In another important
sense, however, they are far from optimal: the per-byte
processing overhead can be high, and the DFAs con-
structed by these algorithms can occupy gigabytes of
memory, leading to extremely poor cache use that crip-
ples throughput on a modern CPU. Figure 1 shows a
particularly graphic example of this: When matching
against only a few thousand patterns, GNU grep can
process over 130 MB/sec (using an algorithm that im-
proves on Aho-Corasick [11]). But as the number of
patterns increases, the throughput drops drastically, to
under 15MB/sec. The cause is shown by the line in the
graph: the size of the DFA grows to rapidly exceed the
size of CPU caches.

Un-cached memory accesses on modern CPUs are

Carnegie Mellon University, Computer Science Depart-
ment, Pittsburgh, PA 15213. E-mail: imoraru@cs.cmu.edu,
dga@cs.cmu.edu

David G. Andersen*

dauntingly expensive!. The Intel Core 2 Quad Q6600
CPU used in the above example with grep, for instance,
is capable of sequentially streaming over 5GB/sec from
memory and (optimistically) executing several billion
instructions per second. The achieved 15MB/sec is
therefore a disappointing fraction of the machine’s ca-
pability.

Furthermore, there are situations when running a
full-scale Aho-Corasick implementation is very expen-
sive because memory is limited—e.g., multiple pattern
matching on netbooks, mobile devices, embedded sys-
tems, or some low-power computing clusters [4]. Other
applications, such as virus scanning, benefit from ef-
ficient memory use in order to reduce the impact on
foreground tasks.

This paper makes two contributions that together
can significantly boost the speed of this type of pro-
cessing, while at the same time reducing its memory
requirements. They both center around making more
efficient use of the cache memory.

Feed-Forward Bloom Filters: Bloom filters [5]
have previously been used to accelerate pattern match-
ing by reducing the size of the input corpus before an
exact matching phase (in this paper we refer to this ex-
act matching phase as the “grep cleanup” phase). Feed-
forward bloom filters reduce the size of the input corpus
as well, but during processing, also record information
about which patterns could have been matched. They
then introduce a second pass filtering step where this in-
formation is used to reduce the number of patterns that
must be handled during the “cleanup” phase. As a re-
sult, it reduces drastically the memory used for cleanup.

Cache-partitioned Bloom filters: A lookup in
a typical Bloom filter involves computing k hash values
for a query, and using these values as indices into a
bit vector. Because the hash values must be randomly
distributed for the filter to be effective, and since, for
millions of patterns the bit vector must be substantially
larger than the cache available on modern CPUs, Bloom
filter implementations have poor cache performance.
Our solution to this problem is to split the Bloom filter
into two parts. The first part is smaller than the largest

TOn a 65 nm Intel Core 2 CPU, for example, a cache miss

requires 165 cycles.

140 : : 3500
throughput === 4
120 1 3000
§ 100 o 1 2500 s
= 2000 =
=)
&= IS
) 1500 &
[}
Iz p=
= 1000
500
0
0 le+06 2e+06 3e+06 4e+06

Number of patterns

Figure 1: The grep processing rate and memory con-
sumption for various numbers of patterns. The average
length of the patterns is 29 characters.

CPU cache available (typically L2 cache) and is the only
one accessed for the large majority of the lookups?.
In consequence, it will remain entirely cache-resident.
The second part of the filter is larger, but is accessed
infrequently (e.g., for true or false positive queries). Its
role is to keep the false positive rate small. The result
is that the cache-partitioned Bloom filter is as effective
as the classic Bloom filter, but has much better cache
performance, and is as much as 5x faster, as a result.
We describe these techniques in section 3 and
evaluate them in section 4. We show that pattern
matching for highly redundant English text can be
accelerated by 2x while consuming 4x less memory,
while random ASCII text can be searched 37x faster
with 57x less memory, when compared with grep.

2 Background and Related Work

2.1 Multiple Pattern Search. The classic multiple
pattern search algorithm is Aho-Corasick [3]. It is
a generalization of the Knuth-Morris-Pratt linear-time
matching algorithm that uses a trie structure in which
each node represents a state of a finite-state machine—
for each input character, the automaton goes to the
state that represents the longest prefix of any match
that is still possible.

The popular GNU fgrep utility wuses the
Commentz-Walter algorithm [11] for multiple string
search. It combines Aho-Corasick with the Boyer-
Moore single pattern matching algorithm [6], which
achieves sub-linear running time by skipping characters
in the input text according to the “bad character” and
“good suffix” heuristics. As illustrated in figure 1, the

2 Assuming that the percentage of true positive queries is small.

size of the DFA used by Aho-Corasick-like algorithms
grows quickly with the number of patterns. This
increases setup time (building the trie) and reduces
search speed because of poor cache performance.

Another Boyer-Moore style algorithm for multiple
pattern search is the Wu-Manber algorithm [22], em-
ployed by the agrep tool. It uses the “bad character”
heuristic to skip over characters in the input text. The
difference is that it does so not by comparing individual
characters, but by comparing the hash values of groups
of consecutive characters. This algorithm is most effec-
tive for relatively small numbers of patterns—hundreds
to tens of thousands of patterns. For larger numbers of
patterns, it becomes more memory-hungry and thus less
cache-efficient. Lin et al. show that the Wu-Manber al-
gorithm has worse cache performance and worse overall
performance than Aho-Corasick as the number of pat-
terns increases [18].

Complementary approaches to multiple pattern
matching investigated the idea of encoding the text and
the patterns using a compact scheme, such that a word
comparison is equivalent to multiple symbol compar-
isons [15].

The inspiration for the work described in this paper
is the algorithm that Rabin and Karp presented in [14].
The patterns—which must be all of the same length—
are hashed and the hash values are inserted into a set
data structure that allows for fast search (e.g. a Bloom
filter, a hashtable or both a bit vector and a hashtable
[20]). The actual search consists of a window—of size
equal to the size of the patterns—slid over the input
text, and a hash value being computed for the text in the
window, at each position. This value is then searched
in the set of hashes computed from the patterns. If
found, it denotes a possible match, which needs to be
checked by comparing the string in the current window
with every pattern that has the same hash value as
it. The average case running time for this algorithm
is linear if the hash computations required when sliding
the window are done in O(1). This can be achieved by
using a rolling hash function—i.e. the hash value for
the current window is computed from the hash value of
the previous window, the last character in the current
window, and the first character in the previous window.

In this paper, we present several improvements to
the basic Rabin-Karp technique. They enable fast and
memory-inexpensive search for millions of patterns at
once.

2.2 Bloom Filters. A Bloom filter [5] is a data
structure used for testing set membership for very large
sets. It allows a small percentage of false positives in
exchange for space and speed.

Concretely, for a given set S, a Bloom filter uses a
bit array of size m, and k hash functions to be applied
to objects of the same type as the elements in S. Each
hash application produces an integer value between 1
and m, used as an index into the bit array. In the filter
setup phase, the k hash functions are applied to each
element in S, and the bit indexed by each resulting
value is set to 1 in the array (thus, for each element
in S, there will be a maximum of k bits set in the bit
array—fewer if two hash functions yield the same value,
or if some bits had already been set for other elements).
When testing membership, the k& hash functions are also
applied to the tested element, and the bits indexed by
the resulting values are checked. If they are all 1, the
element is potentially a member of the set S. Otherwise,
if at least one bit is 0, the element is not part of the set
(false negatives are not possible).

The number of hash functions used and the size of
the bit array determine the false positive rate of the
Bloom filter. For a set with n elements, the asymptotic
false positive probability of a test is (1 — e*km/”)k (see
section 3.2).

The larger m is, the smaller the false positive rate.
Furthermore, since hits in the Bloom filter (false or true
positives) are more expensive than misses (a query can
stop as soon as one hash function misses), a larger m
may also improve the performance (search speed) of the
filter. On the other hand, random accesses in a large bit
array have poor cache performance on today’s machines.

For a fixed m, k = In2 X m/n minimizes the
false positive rate. In practice however, k is often
chosen smaller than optimum for speed considerations:
a smaller k& means computing fewer hash functions.

Improving the performance of Bloom filters has
also been the subject of much research. Kirsch and
Mitzenmacher [17] show that computing all the hash
functions as linear combinations of just two independent
hash functions does not affect the false positive rate
of a Bloom filter. We use this result, as explained
in section 3.5. Putze et al. propose blocked Bloom
filters in [21], which achieve better cache performance
than regular Bloom filters by putting all the hashes of
an element in the same cache line of the bit vector.
This scheme is most effective for applications with a
high true positive search rate, while the cache-friendly
technique that we propose in this paper is better suited
for applications with a low true positive rate. Hao et al.
[13] use partitioned hashing (the elements are divided
into groups and each group is hashed with a different
set of functions) to reduce the Bloom filter fill factor,
and therefore its false positive rate. This optimization
is orthogonal to ours.

There exist various extensions to the Bloom filter

functionality as well: counting Bloom filters [12] allow
for deletions; bloomier filters [8] implement associative
arrays that allow a small false positive look-up rate;
distance-sensitive Bloom filters [16] are designed to
answer queries of the type “is x close to any element
in the set S” for a certain, suitable metric; spectral
Bloom filters [10] allow for queries on the multiplicity of
items in a multiset. In section 3.2 we present our own
extension to Bloom filters, which we call feed-forward
Bloom filters.

2.3 Comparison with Regular Expression
Matching. The algorithm that we present in this
paper is applicable to fixed pattern matching. DFA
based algorithms are more powerful in that they can
also be used for general regular expression matching. In
other work [7] we have succesfully applied feed-forward
Bloom filters to regular expressions that contain fixed
substrings. Expanding regular expressions to multiple
fixed patterns and then using feed-forward Bloom
filters could also be a solution for certain workloads,
and we leave exploring it for future work.

3 Design and Implementation

3.1 Overview. The multiple pattern matching algo-
rithm that we present in this paper was designed to per-
form well for situations where a very large numbers of
patterns generate a relatively small number of matches.
It takes into account the memory hierarchy of modern
computers.

The diagram in figure 2 presents a high-level view
of our approach:

1. Step 1: Pattern pre-processing. First, a feed-
forward Bloom filter (FFBF) is built from the set
of patterns.

2. Step 2: Scan items using patterns. The Bloom
filter is used to scan the corpus and discard every
item (e.g., line of text, if the patterns cannot span
multiple lines, or input fragment) that does not
generate hits in the filter and therefore cannot
contain any matches. If an item matches, it is
inserted into the feed-forward structure.

3. Step 3: Scan patterns using matched items. The
set of patterns is then scanned using feed-forward
information obtained during the corpus scan. Only
those patterns for which there is a chance of a
match in the filtered corpus are kept for the next
phase.

4. Step 4: Cleanup. At this point, all that is left to do
is search for a small fraction of the initial number

Patterns Preprocess

Filter

Text corpus

2

Patterns subset

Filtered corpus

Figure 2: Diagram of the pattern matching algorithm using feed-forward Bloom filters.

of patterns in a small fragment of the corpus.
This exact matching step can be performed quickly
and with minimal memory requirements using a
traditional multiple pattern matching algorithm
(e.g. Aho-Corasick). Notice that the large set of
patterns does not have to be memory-resident at
any point during the execution of our algorithm—
we only need to stream it sequentially from external
media.

The starting point for our work is the combination
of the Rabin-Karp algorithm and Bloom filters. This
multiple pattern matching approach was augmented
with two techniques that improve its speed and mem-
ory efficiency: feed-forward Bloom filters and cache-
partitioned Bloom filters.

We present the algorithm as a whole in this section,
and then describe and evaluate the two techniques in
detail. Even though they were designed to improve the
performance of our algorithm, we believe that they are
independently useful.

We begin by describing the traditional way of
using Bloom filters in the Rabin-Karp algorithm. The
patterns P represent the set that is used to build the
Bloom filter. During the scan, a window of the same
length as the patterns (we assume for now that all
patterns are of the same length) is slid through the text
and tested against the filter. A hit denotes either a
true or a false positive. Distinguishing between the two
can be done in two ways: (1) during the Bloom filter
scan, by looking-up the string in the current window
in a hash table that contains all the patterns, or (2)
after the Bloom filter scan, which involves saving the
regions of text (usually lines of text) that generated
hits in the Bloom filter, and running an exact multiple
pattern matching algorithm on only this smaller input.
In both cases, the disadvantage is that all the patterns
are used to build the data structures (either the hash
tables or the tries), and this can be memory-inefficient.

Feed-forward Bloom filters help with the second
phase exact-matching scan by providing a subset con-
taining all the patterns that will generate matches—and
possibly a small number of patterns that will not. In

other words, feed-forward Bloom filters not only filter
the corpus like regular Bloom filters, but also filter the
set of patterns. Usually, the resulting subset contains
only a small fraction of the initial number of patterns,
so the memory efficiency—and therefore the speed—of
the second phase exact-matching scan are drastically
improved.

In practice, the patterns may not all be the same
length. The solution is to take [consecutive characters
of every pattern (e.g. the first [characters) and use
only these substrings to build the Bloom filter. If there
are patterns shorter than [characters, we will look for
them in a concurrent exact matching scan. Choosing [
is a trade-off between the effectiveness of the filtering
phase (a large [makes the filtering more selective) and
the performance of the separate exact matching scan for
short patterns (a small [makes for fewer short patterns).

Another common case when filtering effectiveness
may be reduced is that when a small number of patterns
generate many matches. In this situation, the filtering
would only discard a small percentage of the corpus
text. A good way of dealing with this case is to test the
frequency of the patterns in a sample of the corpus. The
most frequent patterns could then be excluded from the
filtering phase, and join the short patterns in a separate
exact matching scan.

A pseudocode description of the algorithm is pre-
sented in figure 3.

3.2 Feed-forward Bloom Filters. Bloom filters
are used to test set membership: given a set S, a Bloom
filter is able to answer questions of the form “is x in S7”
with a certain false positive probability (in our pattern
matching application, x is a sequence of characters in
the corpus, and S is the set of patterns).

Feed-forward Bloom filters extend this functionality.
After answering a number of queries, a feed-forward
Bloom filter provides a subset S’ C S, such that:

1. If the query “is z in S7” has been answered and
z€ S, then z € 5.

2. If y € S’, then there is a high probability that the

{P is the set of all fixed-string patterns}

{T is the set of input string elements}

Phase 1 - Preprocessing

1. find FF C P, the subset of the most frequent
patterns

2. choose [, the minimum size for the patterns to be
included in the Bloom filter

3. compute S C P, the subset of all patterns shorter
than [

4. build feed-forward Bloom filter FFBF from
P\ (FUS)

Phase 2 - Filtering

1. (T',P") + FFBF(T)

with

T'CcTand PPC(P\(FUS))

Phase 3 - Exact matching

1. T} < exact_match[F U S|(T)

2. Ty + exact_match[P'](T")

3. output 77 UT5

Figure 3: Pseudocode for the multiple pattern matching
with feed-forward Bloom filters

query “is y in S?” has been answered.

To implement this functionality, feed-forward
Bloom filters use two bit arrays instead of one. The
first array is populated using the elements of S (e.g.,
the patterns to be matched, as in Rabin-Karp), just
like a regular Bloom filter. The second array starts with
all bits 0, and is modified during the querying process:
for every positive test “is x in S7”7, x is inserted into
a Bloom filter that uses the second array as its bit ar-
ray. The second Bloom filter uses a different set of hash
functions to determine which bits to set for an item, but
these hash functions are efficiently computable based
upon the hashing that was done to test for membership
in the first Bloom filter (section 3.5). After a number of
queries, S’ is obtained by testing every item in S against
the second Bloom filter, and putting all the items that
generate positive results in S’

In our implementation, we size the second array
the same as the first, but their sizes can be adjusted
independently.? Because this algorithm is designed for
workloads in which positive matches are rare, the total
time required for inserting entries into the second Bloom
filter is very small.

To understand why this approach is correct, con-
sider that the query “is x in S?7” has been answered for

SIn an earlier version of this algorithm, we used the same

hash functions for the two filters to avoid additional computation.
Doing so, however, substantially increases the false positive rate
of the pattern-filtering phase.

a certain x € S (so the answer must have been positive).
Then, according to the procedure described above, x
was inserted into the second Bloom filter. In the next
phase, when all the elements in S are queried against
the second Bloom filter, x will generate a hit and will
be included in S".

The feed-forward false positives are those items in S’
that were not queried against the first Bloom filter. In
pattern matching these false positive items are patterns
that we must match against in the cleanup phase, even
though no corpus fragment could successfully match
them. Given an item y € S which was not queried
against the Bloom filter, what is the probability that y
will be inserted in S’7

This false positive rate depends on the standard
Bloom filter parameters: the number of items inserted
into the filter, the number of hash functions, and the
array size. Furthermore, recall that an item is inserted
into the second Bloom filter if and only if it matches the
first Bloom filter. The feed-forward false positive rate
therefore also depends on the number of items tested
against the first Bloom filter multiplied by the match
rate of the first filter.

Assume for now that true postives (items that actu-
ally match a pattern that we care about) are rare. Let
m be the number of bits in the first array, let k& be the
number of hashes used for every item insertion/search
in it, and let m’ and &’ be the corresponding parameters
for the second Bloom filter. If n = |S] is the number
of items inserted, then the false positive probability of
the first filter is PLY™" = function(n, m, k). The feed-
forward false positive probability will then be P{4¢"2 ~
function(PL™ x number of queries,m’, k') (we ex-
plain the approximation below).

Assuming perfectly uniform hash functions, after
inserting n items into the first Bloom filter, the proba-
bility that any particular bit is still O in the first array
is: Py = (1 — %)Im The probability of a false positive
when searching in the Bloom filter is then:

kn k
: 1
Ppp = Pliltert — (1 — py)~ = (1 - <1 - >)

m

We begin by ignoring true positives (in most appli-
cations the number of true positives is negligible when
compared to the number of false positives), but we fac-
tor them in in the next section. For now, we consider
Prit = Prp + Prp = Ppp. We approximate the proba-
bility that a bit is 0 in the second array, after w queries,
by using the expectation for the number of false positive
queries in the first filter (w - Ppp):

1 k'wPFp
Pl =~ (1 — m’>

Thus, the probability that an item in S will be
selected to be part of S’ (as a feed-forward false positive)
is:

l > 2 k/
Pfeed—fwdFP = P}{izpter = (1 — PO/) ~

k'w(lfe’k"/m)k
()
m/

R w (] —kn/m\k K
(176 w(l-e))

This expression is represented in figure 4 as a
function of w/m, for different values of k and m/n,
in the case where ¥ = k and m’ = m. The feed-
forward false positive probability is small, and it can be
drastically reduced by small adjustments to the feed-
forward Bloom filter parameters: For example, consider
a target feed-forward false-positive probability of 1%
when searching for 3 million patterns (i.e., we want
around 30,000 patterns for exact matching). With
10 MB bit vectors and five hash functions for each
bit vector (k = k' = 5) we can scan 67 GB of text
and not surpass the target feed-forward false positive
probability. With 10 MB bit vectors and k = k' = 6, we
can scan 156 GB of text. With 20 MB bit vectors and
still six hash functions we can scan 14 terabytes of text
and still select only under 1% of the patterns for exact
matching.

K’

Q

3.3 Factoring in True Positives. Intuitively, it is
not the number of true positive tests (against the first
Bloom filter) that affects the feed-forward false positive
rate, but the percentage of items that generate them.
For example, if only one item generates all the true
positives, then at most k' bits will be set in the second
bit array.

Assume that there are n’ items from S that will
generate true positives (we usually expect %/ to be
small). Then the probability that a bit is 1 in the second
bit array because of the true positive tests is:

1 k'n’
PLTP =1- <1 — m’)

In conclusion, the probability that a bit is set in the
second array, after w tests that are not true positives
and any number of tests that are true positives, is:

Pl =P{rp+ (1= P 7p)(1-F)

where Pj has the expression presented in the previous
section.

The probability of a feed-forward false positive
becomes:

feed-forward false positive rate

200 300 400 500 600 700 800 900 1000

w/m

0 100

09
0.8
0.7 1
0.6
05 1
04
03 f
021
0.1

m/n =10

__,,./m

0 100 200 300 400 500 600 700 800 900 1000

w/m

feed-forward false positive rate

Figure 4: The feed-forward false positive rate as a
function of w/m for m/n = 20 and varying k (up),
and k = 4 and varying m/n (down). For both cases we
consider ¥’ = k and m’ = m.

Pjecd—fwarp = (P])F

Figure 5 presents the same cases as the first graph in
figure 4, and shows how the feed-forward false positive
rate is affected if %' = 0.5. We conclude that the effect
of the true positives is small even if a relatively large
percent (50%) of patterns are present in the corpus.

3.4 Cache-partitioned Bloom Filters. Consider a
machine with a simple memory hierarchy: a small cache
memory?* that can be accessed rapidly and a large main
memory that is accessed more slowly. In the cases we
examine, hits in the Bloom filter are rare. A Bloom
filter miss requires one or more lookups in the bit array,
where the number of lookups is inversely proportional

TFor a multi-level cache hierarchy this will usually be the

largest cache.

! T=> e
s > s N R ——
o 01 e k=6
2 ! /48 N —
8_ 0.01 ." / » ol /
2 0001 sy
< H s
2 / & /
3 §
= d
Z0.0001 Eff
(5]
R

le-05

0 100 200 300 400 500 600 700 800 900 1000

w/m

Figure 5: The feed-forward false positive rate as a
function of w/m for m/n = 20 and varying k (k' = k
and m’ = m). The dashed lines show the effect of 50%
of the items generating true positives. Note that the y
axis uses a logarithmic scale.

to the fraction of bits that are set to 1—the filter returns
“NO” when it finds the first 0 bit. These lookups,
therefore, have a computational cost to hash the data
and compute the Bloom filter bit index, and a memory
lookup cost that depends upon whether the lookup hits
in L2 cache and whether it incurs a TLB miss. Because
of the large cost penalty for cache misses, reducing the
number of cache misses for negative Bloom filter lookups
can substantially reduce the total running time. We
therefore propose an improvement to Bloom filters that
we call cache-partitioned Bloom filters.

The bit array for a cache-partitioned Bloom filter
is split into two components: a small bit array that fits
completely in cache and a large bit array that resides
only in main memory. The first s hash functions hash
into the small cache-resident array, while the other
q = k—s functions hash only into the non-cache-resident
part. Unlike for the regular Bloom filter, in cache-
partitioned filters most accesses are made to the part
that resides in cache: the first bits checked are always
in cache, and most of the time one of them will be 0,
which will allow the lookup to abort.

Cache behavior. We assume that the cache uses an
approximation of least-recently-used with some degree
of set associativity (> 2). As a result, pages for the
cache-resident part of the filter are likely to remain in
cache. We ensure this further by doing non-temporal
reads® when accessing the non-cache resident part of
the bit array.

5We accomplish this using non-temporal prefetches with the
prefetchNTA instruction available for Intel CPUs.

TLB behavior. We use the large pages support
available in most modern processors to ensure that the
number of pages required by the bit array is smaller
than the number of TLB entries. Avoiding TLB miss
penalties improves speed by 15%. This optimization
also simplifies our analysis because it lets us ignore TLB
effects.

After inserting n patterns in the filter, the proba-
bility that any particular bit is 1 in the cache resident

part is: P, =1— (1 — %)Sn For the non-resident part,

. . . qn
the corresponding probability is: Py, =1 — (1 — %) .
Therefore, the expected time spent per Bloom filter

lookup is:
Eltiookup] = te + tePre + tPE + .+t Pi 4

timPE 4t PPl 4 ...+t PEPL =

1— P; 1-P¢
. c tmps 1m
1—p, e P,

To refine this model further, note that for CPUs
that perform branch prediction, the branch predictor
will be wrong every time a bit vector access hits a set
bit, thus incurring a branch misprediction penalty %,.
The expected lookup time becomes:

t

1-P; 1- P
Etoo up] = te le thS 1m
[l kp] 1_P1c+ 1Cl_P17rL+
1-P§ 1- PY
t ¢ 14 ps_im
p(].—Plc + 1c]-_131777,

This expression can be used to predict the best
values for the parameters of cache-partitioned Bloom
filters, as shown in seciton 4.4.

3.5 Fast Rolling Hash Functions. Besides the
cache behavior, another possible bottleneck in a Bloom
filter implementation is the computation of the hash
functions.

When using Bloom filters for scanning text, most
implementations employ rolling hash functions to easily
update the hash values based on the characters sliding
out of, and into the current window. The classic
rolling hash function used in the Rabin-Karp algorithm
computes the hash value of a string as the value of the
corresponding ASCII sequence in a large base. This
computation, however, requires multiplications and the
expensive modulo operation, and can thus have a high
overhead.

An inexpensive and effective rolling hash method is
hashing by cyclic polynomials [9]. It uses a substitution
box to assign random 32-bit values to characters, and
combines these values with bit-wise rotations and the

exclusive-OR operation, avoiding expensive multiplica-
tions and modulo operations.

In our implementation, we use cyclic polynomial
hashing to obtain two distinct hash values for each win-
dow. We then use the idea of Kirsch and Mitzenmacher
[17] and quickly compute all the other hashes as linear
combinations of these two values. Our hash computa-
tions are therefore very efficient.

4 Evaluation

We run our tests on a 2.4 GHz Intel Core 2 Quad Q6600
CPU with split 8 MB L2 cache (each core has access to
only 4 MB), and 4 GB of RAM memory. The optimal
cache-partitioned configuration for this setup is: 2 MB
and two hash functions for the resident part, 32 MB
and three hash functions for the non-resident part (see
section 4.4 for details about choosing these parameters).
For the feed-forward Bloom filter, both bit vectors have
the same size. All tests are performed with a warm file
system buffer cache. Every time we compare with grep,
we discount the grep initialization time. The results
were averaged over four runs and the standard deviation
was always smaller than 5% of the mean.

4.1 Overall Performance. We compare our algo-
rithm with grep version 2.5.4, run as fgrep, which
is optimized for fixed-string patterns. We use cache-
optimized feed-forward Bloom filters for the first phase,
and grep for the second phase. We report aggregate
throughput and memory consumption. In this compar-
ison we use the following three workloads:

Read the Web: The Read the Web project [1]
aims at building a probabilistic knowledge base using
the content of the Web. The workload that we use in
our evaluation consists in determining semantic classes
for English words by putting those words in phrases
with similar structure and finding the relative frequen-
cies of these phrases in Web documents. In total, there
are approximately 4.5 million phrases that we search
in 244 MB of Web documents. Note that, because of
the way they were built, the patterns are very similar,
which means that this workload is almost the best case
for grep and the worst case for the feed-forward Bloom
filter. Around 85% of these patterns are over 19 charac-
ters, so we choose the first 19 characters of each phrase
(that is long enough) to put in the Bloom filter. The re-
sults presented in figure 6 (top graph) are for phrase sets
that do not contain any short patterns. Since the distri-
bution of pattern lengths is highly application-specific,
we present results for experiments with short patterns
separately, in section 4.2.

Random ASCII text: We search for random 19-
character strings consisting of printable ASCII charac-

ters in a random corpus. Each line of the corpus has
118 characters (resulting in 100 Bloom filter lookups
per line) and there are one million lines in the corpus.
Since there is no redundancy in the patterns, and the
probability that a pattern will be found in the corpus
is very small, this workload represents the best case for
Bloom filters, but the worst case for grep. The results
are presented in figure 6 (bottom graph).

100 : : 4000
. CPBF + grep throughput ——
I FFBF + grep throughput === 1 3600
80 |* grep throughput e 3900
> % CPBF + grep memory == o
oA * grep memory s -1 2800 n
60 [, rep memgry e 42400 5
ER) 2000 &
= =]
240 s 1600§
= 1200
20 800
= 400
0 g\?.‘.....---o X 0
le+06 2e+06 3e+06 4e+06
Number of phrases
100 ‘ ‘ 4000
CPBF + grep throughput ——
1 FFBF + grep throughput -~ 1 3600
80 grep throughput =% 1 350
@ CPBF + grep memory
I grep'memory ---=-=- | 2800 2
260 | E +.gfep memory e 1 2400 =
E} o 1 2000 =
‘gl) s\“@» ®eea., g
3 40 + I 3 1600 ﬁ
= &]
& w » 1200
20 & 1 800
1 400
QUUTY DRCOTIE DUDURTINS JNODCTINT ST 0
le+06 2e+06 3e+06

Number of phrases

Figure 6: Comparison between scanning text with
cache-partitioned Bloom filters, feed-forward Bloom fil-
ters and grep for the Read the Web project (top graph)
and random ASCII text (bottom graph). The CPBF
and FFBF throughputs include the first (filter) and sec-
ond (grep cleanup) phase. The FFBF also contains the
cache-partitioned optimization (i.e., FFBF is a cache-
partitioned feed-forward Bloom filter, whereas CPBF is
just a cache-partitioned Bloom filter). At 2.5 million
random ASCII phrases, grep runs out of memory on
our system.

DNA: This consists in looking for 200,000 random
DNA sequences of various lengths in the genomes of

three strains of Streptococcus Suis [2] . Our goal is to
assess the limitations of our approach for a potentially
important application which has the particularity that
the alphabet is very small (four base pairs). Our method
(feed-forward, cache-partitioned Bloom filter in the first
phase and grep in the second) performs increasingly
better for DNA sequences larger than 10 base pairs—it
generates a 17x speedup for 15 base pairs.

Comparisons between the memory requirements of
the two approaches (FFBF + grep versus simple grep)
for the Read the Web and random text workloads are
also presented in figure 6 (the cache-partitioned Bloom
filter without the feed-forward technique (CPBF) +
grep requires only 34 MB of memory more than grep—
i.e., the size of the bit vector.

As expected, feed-forward Bloom filters are much
better than grep for the random text workload. Grep
builds a very large DFA because the alphabet is large
and all symbols occur in the pattern set with almost
equal frequency, while the feed-forward Bloom filter
only needs to run the first pass, since there are no
patterns false positives (even if there are false positive
matches in the corpus).

The Read the Web scenario is more favorable to
grep because there are many similar patterns (i.e. the
first 19 characters that we use to build the feed-forward
Bloom filter are the same for many patterns), so the
number of patterns that must be checked in the second
phase is large. Even so, feed-forward Bloom filters
perform substantially better.

Grep works well for DNA lookups because the
alphabet is very small (four symbols)—and usually the
patterns are short, so the DFA that grep builds is
small. Furthermore, with patterns containing only four
distinct characters, the hash values computed in the
FFBF algorithm will be less uniform. However, as the
size of the sequences increases, the relative performance
of FFBFs improves, making them a viable solution even
in this setting.

Initialization time, while discounted from the re-
sults presented in figure 6, is always substantially
smaller for feed-forward Bloom filters—e.g., 18 s for
our algorithm versus 70 s for grep, for the random text
workload, at the 2 million patterns point.

We have also applied feed-forward Bloom filters to
virus scanning. The results, reported in [7], show an
overall speed improvement of 2X to 4x, while at the
same time using less than half the memory, overall.

8We do not claim this to be representative of workloads in
bioinformatics, even though popular sequence alignment algo-
rithms, such as BLAST, start with a multiple-patterns matching

phase.

4.2 The Impact of Short Patterns. We repeat the
comparison with grep for the Read the Web workload
at the 4 million phrases point, but this time 15% of
the phrases are shorter than 19 characters. Simple
grep achieves a throughput of 6.4 MB/s. Using FFBFs
and searching for the short patterns in a separate grep
scan, achieves an aggregate throughput of 6.7 MB/s. A
better strategy is to apply the feed-forward technique
recursively. For example, using three FFBFs—one for
patterns at least 19 characters, another for patterns
at least 14 characters and at most 18, and another
for patterns between 10 and 13 characters long—and
a separate scan for the shortest patterns (shorter than
10 characters in length), we can achieve a throughput
of 8.3 MB/s.

In practice, the short patterns scan can be per-
formed in parallel with the FFBF scan. In our test
however, we ran them sequentially in order to maintain
a fair comparison with the single threaded grep.

4.3 The Benefit of Individual Optimizations.

Feed-forward. Figure 6 presents the results of
comparing cache-partitioned feed-forward Bloom filters
with cache-partitioned Bloom filters (no feed-forward)
for random text and Read the Web workloads. The no-
feed-forward implementation gains time by not having
to process the phrases after filtering the corpus, but
needs an expensive grep cleanup phase using all the
phrases. Although the FFBF-based implementation
achieves higher throughput only for the random text
case, it uses much less memory for both workloads. This
is important because the amount of available memory
limits the size of the pattern set that we can search
for. For example, we are not able to search for 2.5
million phrases on a machine with 4 GB of RAM, in the
random text case. Even the Read the Web workload
is problematic for a low-power system—with 1 GB of
RAM we can search for no more than 1 million phrases.

Figure 7 shows the benefits of each of the following
three optimizations: cache-partitioning, non-temporal
reads, and super pages.

Cache-partitioning. Cache-partitioning is the
optimization that provides the biggest speed-up. Note
that we used more hash functions for the partitioned fil-
ters because, even if this made them slightly slower, we
wanted their false positive rate to be at least as small
as that of the non-partitioned filter. Table 1 compares
the false positive rates of the two Bloom filter variants
for 3 million phrases.

Super pages. Using super pages provides an al-
most constant time reduction, since most of the TLB
misses are triggered by one of the first Bloom filter
lookups—even the cache-resident part of the filter is too

6 ;
- SP (classic BF) time ——
5r CP+SP (no NTR) time —— 1
CP+NTR (no SP) time ——
4t CP+SP+NTR time —=—]
H
2 - 4
] - 4
0

0 500000 1le+06 1.5e+06 2e+06 2.5e+06 3e+06

Number of phrases

Figure 7: The graph shows the benefit of each opti-
mization: CP (cache-partitioning), SP (super pages),
and NTR (non-temporal reads). The filters were run
on 114 MB of random ASCII text, for different numbers
of 19-characters phrases. The cache-partitioned filters
use five hash functions (two of which are for the cache-
resident part) while the non-partitioned filter uses four.
They are of similar size: 32 MB for the non-partitioned
Bloom filter, and 2 4+ 32 MB for the cache-partitioned
ones.

Filter Type ‘ # Hashes ‘ FP Rate ‘ Throughput

Classic 4 0.205% 19 MB/s
Partitioned 4 0.584% | 41.2 MB/s
Partitioned 5 0.039% | 41.1 MB/s

Table 1: FP rates for cache-partitioned and classic

Bloom filters, for random text, 3M phrases.

large for all its 4 KB pages to fit in the TLB.

Non-temporal reads. As the number of phrases
increases, the non-temporal reads optimization becomes
more important, because there are more accesses to
the non-resident part of the filter. When non-temporal
reads are not used, these accesses determine fragments
of the cache-resident part to be evicted from cache,
and this produces cache misses during the critical first
lookups.

4.4 Choosing Parameters for Feed-Forward
Bloom Filters. In this section we describe the way
we choose the feed-forward Bloom filter parameters.

The size of the bit vectors and their partitioning
depend on:

e The amount of memory we are willing to allocate
for the filter.

e The number of TLB entries for super pages. If the
required number of super pages is too large, there
will be a TLB miss penalty that will add to the
average filter lookup time.

e The size of the largest CPU cache. We determined
empirically that for CPUs with large caches, the
filter is faster when we don’t use the entire cache.
This is because there will usually be some cache
contention between the Bloom filter and other pro-
cesses or other parts of the program (e.g. reading
the input data). In our case, since our hash func-
tions are faster if the size of their codomain is a
power of 2, we used half of the available L2 cache.
For CPUs with small caches on the other hand,
using less than the entire cache may produce too
many false positives in the first part of the filter for
cache-partitioning to provide any benefit.

The sizes of the two bit vectors used by the feed-
forward Bloom filter may differ. However, if memory is
not very limited, making them equal is convenient for
the reasons presented above.

The number of hash functions affects not only the
false positive rate of the filter, but also its speed—even
with the efficient hash function computation scheme
that we use, too many hash functions may cause
too many memory accesses, while too few hash func-
tions for the cache resident part will determine many
tests against non-cache-resident memory. The expected
lookup time model that we presented in section 3.4 is
useful for determining how many hash functions to use
in each section of the feed-forward Bloom filter, if we
aim for optimal speed. Figure 8 shows a comparison
between the speed of the fastest filter and that of the
filter that uses the settings recommended by our model.”

After determining the settings that provide the best
speed, the desired false positive rate can be achieved
by increasing the number of hash functions in the
non-resident part—assuming a low true positive rate,
lookups in this section have little influence on the speed
of the filter. Notice the large decrease of the false
positive rate reported in table 1 after adding just one
more hash function to the non-resident section of the
filter.

Finally, the last parameter we need to determine
is how to partition the input corpus, i.e., how many
input items (e.g. text lines) to scan before performing
the grep cleanup phase. A coarse partitioning implies
fewer cleanup runs, while a finer partitioning determines

The parameters that we used for modeling the behavior of

the Intel Core 2 Quad Q6600 CPU are: 14 cycles for an L1 miss,
165 cycles for an L2 miss and 6 cycles for a branch misprediction.

S, _‘ﬁnl---ll"“ eLt
095 M,
T o
engg
'9 0.9 I 2 P P G T T Ll .--....
=
é optimal
v (0.85 s=1, q=1 ====tw==n q
S:2, q:l TS T11]
s=2, q=2
s=3, g=1
08 $=3, q=2 ===r@=em i
predicted (s=2, q=1) =——e—
075 1 1 1 1 1
0 500000 1le+06 1.5e+06 2e+06 2.5e+06 3e+06

Number of phrases

Figure 8: The ratio between the speed of scanning using cache-partitioned Bloom filters with different numbers
of hash functions and the speed of the optimal (fastest) setting. The filtered corpus contains 114 MB of random
ASCII text. The predicted line shows the speed of the filter using the setting that the mathematical model of the

average filter lookup time deems to be the fastest.

these runs to be shorter, because the feed-forward false
positive rate will be smaller, as explained in section 3.2.
As seen in section 4.1, this is highly application specific,
and therefore we do not attempt to find a general
solution. We mention that for workloads approaching
the ideal case (i.e., patterns that are very different
from each other), the partitioning can be vey coarse
(hundreds of gigabytes or even terabytes, as seen in
section 3.2).

5 Conclusion

We have presented a new algorithm for exact pattern
matching based on two Bloom filter enhancements: (1)
feed-forward and (2) CPU architecture aware design and
implementation. This algorithm substantially reduces
scan time and memory requirements when compared
with traditional DFA-based multiple pattern matching
algorithms, especially for large numbers of patterns that
generate relatively few matches.

6 Acknowledgments

We thank Christos Faloutsos, Kanat Tangwongsan,
Srinivasan Seshan and the anonymous reviewers for
their helpful suggestions. This work was supported

by the National Science Foundation under grant CCF-
0964474 and by CyLab at Carnegie Mellon under grant
DAAD19-02-1-0389 from the Army Research Office.

References

[1] Read the Web Project Webpage. http://rtw.ml.
cmu.edu/readtheweb.html.

[2] Streptococcus Suis Sequencing Webpage.
//www.sanger.ac.uk/Projects/S_suis.

http:

8] A. V. Ao AND M. J. CORASICK, Efficient
string matching: An aid to bibliographic search,
Communications of the ACM, 18 (1975), pp. 333~
340.

[4] D. G. ANDERSEN, J. FRANKLIN, M. KAMINSKY,
A. PHANISHAYEE, L. TAN, AND V. VASUDEVAN,
FAWN: A fast array of wimpy nodes, in Proc. 22nd
ACM Symposium on Operating Systems Principles
(SOSP), Big Sky, MT, Oct. 2009.

[5] B. H. BLoowM, Space/time trade-offs in hash cod-
ing with allowable errors, Communications of the
ACM, 13 (1970), pp. 422-426.

http://rtw.ml.cmu.edu/readtheweb.html
http://rtw.ml.cmu.edu/readtheweb.html
http://www.sanger.ac.uk/Projects/S_suis
http://www.sanger.ac.uk/Projects/S_suis

[6]

[11]

[13]

[14]

[15]

[16]

R. S. BOYER AND J. S. MOORE, A fast string
searching algorithm, Communications of the ACM,
20 (1977), pp. 762-772.

S. K. CHA, I. MORARU, J. JANG, J. TRUELOVE,
D. BRUMLEY, AND D. G. ANDERSEN, SplitScreen:
Enabling efficient, distributed malware detection, in
Proc. 7th USENIX NSDI, San Jose, CA, Apr. 2010.

B. CHAzELLE, J. KiLiaAN, R. RUBINFELD,
A. TaL, anND O. Boy, The bloomier filter: An
efficient data structure for static support lookup
tables, in In Proceedings of the Fifteenth Annual
ACM-STAM Symposium on Discrete Algorithms
(SODA), 2004, pp. 30—-39.

J. D. COHEN, Recursive hashing functions for n-
grams, ACM Transactions on Information Systems,
15 (1997), pp. 291-320.

S. COHEN AND Y. MATIAS, Spectral bloom filters,
in Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data, ACM,
2003, pp. 241-252.

B. COMMENTZ-WALTER, A string matching algo-
rithm fast on the average, in Proceedings of the
6th Colloquium, on Automata, Languages and Pro-
gramming, London, UK, 1979, Springer-Verlag,
pp. 118-132.

L. Fan, P. Cao, J. ALMEIDA, AND A. 7Z.
BRODER, Summary cache: A scalable wide-area
Web cache sharing protocol, in Proc. ACM SIG-
COMM, Vancouver, British Columbia, Canada,
Sept. 1998, pp. 254-265.

F. Hao, M. KobpiaLAM, AND T. V. LAKSHMAN,
Building high accuracy bloom filters using parti-
tioned hashing, SIGMETRICS Performance Eval-
uation Review, (2007), pp. 277-288.

R. M. KArRP AND M. O. RABIN, Efficient random-
ized pattern-matching algorithms, IBM Journal of
Research Developments, (1987), pp. 249-260.

S. Kim AND Y. KiM, A Fast Multiple String-
Pattern Matching Algorithm, in Proceedings of the
17th AoM/IAoM Conference on Computer Science,
1999.

A. KIRSCH AND M. MITZENMACHER, Distance-
sensitive bloom filters, in In Proceedings of the
Eighth Workshop on Algorithm Engineering and
Experiments (ALENEX), 2006.

[17] ——, Less hashing, same performance: Building

[18]

a better bloom filter, Random Structures & Algo-
rithms, 33 (2008), pp. 187-218.

P.-c. LiN, Z.-x. L1, Y.-D. LIN, AND Y.-C. LAI,
Profiling and accelerating string matching algo-
rithms in three network content security applica-
tions, IEEE Communications Surveys & Tutorials,
8 (2006).

H. MANGALAM, tacg - a grep for dna, BMC
Bioinformatics, 3 (2002), p. 8.

R. MuTH AND U. MANBER, Approzimate multiple
string search, in Proceedings CPM’96, LNCS 1075,
Springer-Verlag, 1996, pp. 75-86.

F. Purze, P. SANDERS, AND S. JOHANNES,
Cache-, hash- and space-efficient bloom filters, in
Experimental Algorithms, Springer Berlin / Hei-
delberg, 2007, pp. 108-121.

S. Wu AND U. MANBER, A fast algorithm for
multi-pattern searching, Tech. Rep. TR-94-17, De-
partment of Computer Science, University of Ari-
zona, 1994.

	Introduction
	Background and Related Work
	Multiple Pattern Search.
	Bloom Filters.
	Comparison with Regular Expression Matching.

	Design and Implementation
	Overview.
	Feed-forward Bloom Filters.
	Factoring in True Positives.
	Cache-partitioned Bloom Filters.
	Fast Rolling Hash Functions.

	Evaluation
	Overall Performance.
	The Impact of Short Patterns.
	The Benefit of Individual Optimizations.
	Choosing Parameters for Feed-Forward Bloom Filters.

	Conclusion
	Acknowledgments

