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1 Introduction

Power is becoming an increasingly large financial and
scaling burden for computing and society. The costs of
running large data centers are becoming dominated by
power and cooling to the degree that companies such as
Microsoft and Google have built new data centers close
to large and cost-efficient hydroelectric power sources [8].
Studies have projected that by 2012, 3-year data center
energy costs will be double that of server equipment ex-
penditures [15]. Power consumption and related cooling
costs have become a primary design constraint at all levels,
limiting the achievable density of data centers and large
systems, and pushing processor manufacturers towards
alternative architectures. While power constraints have
pushed the processor industry toward multi-core archi-
tectures, power-efficient alternatives to traditional disk
and DRAM-based cluster architectures have been slow to
emerge.

As a power-efficient alternative for data-intensive com-
puting, we propose a cluster architecture called a Fast
Array of Wimpy Nodes, or FAWN. A FAWN consists
of a large number of slower but efficient nodes that
each draw only a few watts of power, coupled with low-
power storage—our prototype FAWN nodes are built from
500MHz embedded devices with CompactFlash storage
that are typically used as wireless routers, Internet gate-
ways, or thin clients.

Through our preliminary evaluation, we demonstrate
that a FAWN can be up to six times more efficient than
traditional systems with Flash storage in terms of queries
per joule for seek-bound applications and between two
to eight times more efficient for I/O throughput-bound
applications (§3).

Long-lasting, fundamental trends in the scaling of com-
putation and energy suggest that the FAWN approach will
become dominant for increasing classes of workloads.
First, as we show in §4, slower processors are more effi-
cient: they use fewer joules of energy per instruction than
higher speed processors. Second, dynamic power scaling
techniques are less effective than reducing a cluster’s peak
power consumption. We conclude with an analysis of the
design space for seek-bound workloads, showing how one
should use a FAWN architecture for various dataset sizes
and desired query rates (§5).

2 Data-intensive Computing
Data-intensive applications have recently become a focus
in the systems research community, with a resurgence in
interest on how to store, retrieve, and process massive
amounts of data. These data-intensive workloads are often
I/O-bound, and can be broadly classified into two forms:
seek-bound and scan-bound workloads.

Seek-bound workloads are exemplified by read-
intensive workloads with random access patterns for small
objects from a large corpus of data. These seek-bound
workloads are growing in importance and in popularity
with existing and emerging Internet applications. Many of
these applications exist in an environment where stringent
response time requirements preclude heuristics such as
caches or data layout clustering.

The corresponding random seeks generated by these
workloads are poorly suited to conventional disk-based ar-
chitectures where magnetic hard disks limit performance:
Access times for a random small block of data on a mag-
netic disk average 3 to 5 ms, providing only 200-300
requests per second per disk.

Driven by the need to perform millions of random ac-
cesses per second [5], social networking and blogging
sites such as LiveJournal and Facebook have already been
forced to create and maintain large cluster-based memory
caches such as memcached [6]. The same challenges are
also faced by e-commerce sites such as Amazon, which
have catalogs of hundreds of millions or more objects,
mostly accessed by a unique object ID [4]. As we show
in §5, storing this large amount of data entirely in DRAM
is often more costly than storing the data on disk.

Scan-bound Workloads: The second class of data-
intensive workloads we consider is exemplified by large-
scale data-analysis. Analysis of large, unstructured
datasets is becoming increasingly important in logfile anal-
ysis, data-mining, and for large-data applications such as
machine learning. Many of these workloads are charac-
terized by very simple computations (e.g., word counts
or grep) over the entire dataset. These workloads are,
at first glance, well suited to platter-based disks, which
provide fast sequential I/O. In many cases, however, the
I/O capability provided by a typical drive or small RAID
array is insufficient to saturate a modern high-speed, high-
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System / Storage QPS Watts Queries/sec
Watt

Embedded Systems
Alix3c2 / Sandisk(CF) 1697 4 424
Soekris / Sandisk(CF) 334 3.75 89

Traditional Systems
Desktop / Mobi(SSD) 5800 83 69.9
MacbookPro / HD 66 29 2.3
Desktop / HD 171 87 1.96

Table 1: Query rates and power costs using differ-
ent machine configurations. Power measured using a
WattsUp meter (http://wattsupmeters.com).

power CPU. As a result, performance is limited by the
speed at which the storage system can deliver data to the
processors.

As one example of scan-bound workloads under-
utilizing CPUs, Yahoo won the Terabyte Sort (TeraSort)
benchmark in 2008 using a Hadoop cluster with nearly
4000 disks, sorting 1TB of records in 209 seconds [18].
Google subsequently completed the benchmark 3 times
faster, using a similar number and type of nodes but with
3 times as many disks [9]. These numbers suggest that
much of the speed improvement can be attributed to im-
proving the rate that data can be delivered to the processor
from storage, and that the high-speed, high-power CPUs
used in the first example were under-utilized.

3 A Fast Array of Wimpy Nodes

We propose the Fast Array of Wimpy Nodes (FAWN)
architecture, which uses a large number of “wimpy” nodes
that act as data storage/retrieval nodes. These nodes use
energy-efficient low-power processors combined with low-
power storage and a small amount of DRAM.

We have explored two preliminary workloads to under-
stand how a FAWN system can be constructed. The first,
FAWN-SEEK, examines exact key-value queries at large
scale such as those seen in memcached and Amazon’s
Dynamo [4]. The second, FAWN-SCAN, examines un-
structured text mining queries similar to those expressed
in frameworks such as Hadoop and MapReduce.

To understand the feasibility of a FAWN architecture,
we evaluated several candidate node systems in their abil-
ity to satisfy random key-value lookups and simple scan
processing.

FAWN-SEEK Performance: Table 1 shows the rate at
which these nodes could service requests for random keys
from an on-disk dataset, via the network. The best embed-
ded system (Alix3c2) using CompactFlash (CF) storage
was six times more power-efficient (in queries/joule) than
even the low-power desktop node with a modern SATA-
based Flash device.

FAWN-SCAN Performance: We have performed two

preliminary studies of scan-bound workloads. First, we
look at the distributed sort benchmark provided by the
Hadoop framework. Sorting 1 GB of data on one Alix3c2
node took 160 seconds while consuming only 4 W, pro-
viding a sort efficiency of 1.6MB per joule. In contrast, a
traditional desktop machine with magnetic disk required
only 53 seconds but consumed 130 W, a sort efficiency of
0.2MB per joule—eight times less efficient.

Next, we examine a workload derived from a machine
learning application that takes a massive-data approach
to semi-supervised, automated learning of word classi-
fication. The problem reduces to counting the number
of times each phrase, from a set of thousands to mil-
lions of phrases, occurs in a massive corpus of sentences
extracted from the Web. Our results are promising but
challenging. FAWN converts a formerly I/O-bound prob-
lem into a CPU-bound problem, which requires great
algorithmic and implementation attention to work well.
The Alix3c2 wimpies can grep for a single pattern at
25MB/sec, close to the maximum rate the CF can provide.
However, searching for thousands or millions of phrases
with the naive Aho-Corasick algorithm in grep becomes
memory-bound (and exceeds the capacity of the wimpy
nodes, with unpleasant results).

We have optimized this search using a rolling hash func-
tion and large bloom filter to provide a one-sided error
grep (false positive but no false negatives) that achieves
roughly twice the power efficiency (bytes per second per
watt) as a conventional node. However, this efficiency
came at the cost of considerable implementation effort.
Our experience suggests that efficiently using wimpy
nodes for some scan-based workloads will require the
development of easy-to-use frameworks that provide com-
mon, heavily-optimized data reduction operations (e.g.,
grep, multi-word grep, etc) as primitives. This represents
an exciting avenue of future work: while speeding up
hardware is difficult, programmers have long excelled at
finding ways to optimize CPU-bound problems.

4 Why FAWN?

A FAWN’s maximum power consumption is many times
lower than a modern DRAM and disk-based cluster while
serving identical workloads. Several trends in power and
scaling suggest that the FAWN approach will continue to
be an energy-efficient approach to building clusters for
years to come.

1. The Increasing CPU-I/O Gap. One constant and con-
sternating trend over the last few decades is the increas-
ing gap between CPU performance and I/O bandwidth.
The “memory wall” remains a challenge in scaling perfor-
mance with both CPU frequency and with increasing core
counts [13]. For data-intensive computing workloads, stor-
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Figure 1: Max speed (MIPS) vs. Instruction effi-
ciency (MIPS/W) in log-log scale. Numbers gathered
from publicly-available spec sheets and manufacturer
product websites.

age, network, and memory bandwidth bottlenecks often
cause low CPU utilization.

To efficiently run I/O-bound data-intensive, computa-
tionally simple applications, FAWN uses wimpy proces-
sors selected to reduce I/O-induced idle cycles while main-
taining high performance. The reduced processor speed
then benefits from a second trend:

2. CPU power consumption grows faster than speed.
Techniques to mask the CPU-memory bottleneck come
at the cost of energy efficiency. Branch prediction, spec-
ulative execution, and increasing the amount of on-chip
caching all require additional processor die area; mod-
ern processors dedicate as much as half their die to L2/3
caches [11]. These techniques do not increase the speed of
basic computations, but do increase power consumption,
making faster CPUs less energy efficient.

A FAWN cluster’s slower CPUs dedicate more transis-
tors to basic operations. These CPUs execute significantly
more instructions per joule (or instructions/sec per Watt)
than their faster counterparts (Figure 1). For example, a
Xeon 7350 operates 4 cores at 2.66GHz, consuming about
80W. Assuming optimal pipeline performance (4 opera-
tions per cycle), this processor optimistically operates at
530M instructions/joule—if it can issue enough instruc-
tions per clock cycle and does not stall or mispredict.
A single-core XScale StrongARM processor running at
800MHz consumes 0.5W, providing 1600M instructions
per joule. The performance-to-power ratio of the XScale
is three times that of the Xeon, and is likely higher given
real-world pipeline performance for data-intensive appli-
cations. Tellingly, this difference is more severe when
considered as I/O operations per joule: the XScale has a
260MHz memory bus; the Xeon has a 1GHz memory bus,
five times faster but at 160 times the power.
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Figure 2: Processor efficiency when adding fixed
0.1W system overhead.

3. Dynamic power scaling on traditional systems is
surprisingly ineffective. “Energy-proportional” systems
attempt to ensure that systems dynamically scale back
power usage with decreasing load (e.g., operating at 20%
utilization should use 20% of peak power). We argue
that reducing peak power is more effective than dynamic
power scaling for several reasons.

First, dynamic voltage and frequency scaling (DVFS)
benefits for CPUs are now quite limited. A primary
energy-saving benefit of DVFS was its ability to reduce
voltage as it reduced frequency, but modern CPUs already
operate near the voltage floor. Also, transistor leakage
currents quickly become a dominant power cost, which
drops much more slowly as frequency is reduced [3].

Second, non-processor components have begun to dom-
inate energy consumption in data centers [1], requiring
that all components be scaled back with demand, includ-
ing device controllers and power supplies. Despite im-
provements to power scaling technology, systems remain
most power-efficient when operating at peak power [19].
Given the difficulty of scaling all system components,
we must therefore consider “constant factors” for power
when calculating a system’s instruction efficiency. Fig-
ure 2 plots processor efficiency when adding a fixed 0.1W
cost for system components such as Ethernet. Because
powering 10Mbps Ethernet dwarfs the power consump-
tion of the tiny sensor-type processors that consume only
micro-Watts of power, their efficiency drops significantly.
The best operating point exists in the middle of the curve,
where the fixed costs are amortized while still providing
energy-efficiency.

Newer techniques aim for energy proportionality by
turning machines off and using VM consolidation, but
the practicality of these techniques is still being explored.
Many large-scale systems often operate below 50% utiliza-
tion, but opportunities to go into deep sleep states are few
and far between [1], while “wake-up” or VM migration
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penalties can make these techniques less energy-efficient.
Also, VM migration may not apply for some applications,
e.g., if datasets are held entirely in DRAM to guarantee
fast response times.

Even if techniques for dynamically scaling below peak
power were effective, operating below peak power capac-
ity has one more drawback:

4. Peak power consumption limits data center density.
Data centers must be provisioned for a system’s maximum
power draw. This requires investment in infrastructure,
including worst-case cooling requirements, provisioning
of batteries for backup systems on power failure, and
proper gauge power cables. FAWN significantly reduces
maximum power draw in comparison to traditional cluster
systems that provide equivalent performance, thereby re-
ducing infrastructure cost, reducing the need for massive
overprovisioning, and removing one limit to the achiev-
able density of data centers.

Finally, energy proportionality alone is not a panacea:
systems ideally should be both proportional and efficient
at 100% load. In this paper, we show that there is signif-
icant room to improve energy efficiency, and the FAWN
approach provides a simple way to do so.

5 Alternatives: When FAWN?
Next, we address when one should use a FAWN or a
traditional system by estimating the three-year total cost
of ownership for a cluster serving a seek-bound workload.

A cluster needs enough nodes to both hold the entire
dataset and to serve a particular query rate. For a dataset
of DS gigabytes and a query rate QR, the number of nodes
in a cluster is:

N = max(
DS
gb

node

,
QR
qr

node
)

We define the 3-year total cost of ownership (TCO) for
an individual node as the sum of the capital cost and the
3-year power cost at 10 cents per kWh.

If a cluster’s TCO grows linearly with the number of
nodes, the ratio of dataset size to query rate informs the
relative importance between storage size and query rate.
For large dataset size to query rate ratios, the number of
nodes required is dominated by the storage capacity per
node: the important metric is the total cost per GB for an
individual node. Conversely, for small datasets with high
query rates, the per-node query capacity dictates the num-
ber of nodes: the dominant metric is queries per second
per dollar. Between these extremes, systems must provide
the best tradeoff between per-node storage capacity, query
rate, and power cost.

To better understand these tradeoffs, we provide statis-
tics for several candidate systems in Table 2; we choose

System Cost W QPS Queries
Joule

GB
Watt

TCO
GB

TCO
QPS

Traditionals:
5-2TB HD $2K 250 1500 6 40 0.26 1.77
160GB PCIe SSD $8K 220 200K 909 0.7 53 0.04
64GB DRAM $3K 280 1M 3.5K 0.2 58 0.004

FAWNs:
2TB Disk $350 15 250 16 133 0.19 1.56
32GB SSD $550 7 35K 5K 4.6 17.8 0.016
2GB DRAM $250 7 100K 14K 0.3 134 0.003

Table 2: Traditional and FAWN node statistics

a cluster composed of traditional nodes (base power of
200W and base cost of $1000) or a FAWN system with
wimpy nodes (base power of 5W, $150), pairing each
node with several storage solutions. Costs for traditional
machines were calculated based on real quotes obtained
when building an 80-node traditional cloud computing
cluster, and then dividing by a factor of two to account
for even larger bulk discounts; costs for FAWN machines
were based on private communication with a large man-
ufacturer. These prices exclude the significant costs of
power and cooling infrastructure, further biasing against
FAWN nodes, which require significantly less power and
cooling for a given performance or storage requirement.

Traditional+Disk pairs a single server with five 2TB
high-speed disks capable of 300 queries/sec. Each disk
consumes 10W. Traditional+SSD uses two Fusion-IO
80GB Flash SSDs, each also consuming about 10W. Tra-
ditional+DRAM uses eight 8GB server-quality DRAM
modules, each consuming 10W.

FAWN+Disk nodes use one 2TB 7200RPM disk: we
assume wimpy nodes have fewer connectors available on
the board. FAWN+SSD uses one 32GB Intel SATA Flash
SSD, consuming 2W. FAWN+DRAM uses a single 2GB,
slower DRAM module, also consuming 2W.

Figure 3 shows which base system has the lowest cost
for a particular dataset size and query rate, with dataset
sizes between 100GB and 10PB and query rates between
100K and 1 billion per second. The dividing lines repre-
sent a boundary across which one system becomes more
favorable than another.

For large dataset to query rate ratios, FAWN+Disk pro-
vides the lowest TCO because it has the lowest total cost
per GB. Intriguingly, if they can be configured with suffi-
cient disks per node (over 50), a traditional system + disks
wins for exabyte-sized workloads with low query rates,
though this disappears off of our graph (and packing 50
disks per machine may harm reliability).

For small dataset to query rate ratios, FAWN+DRAM
costs the fewest dollars per queries/second, keeping in
mind that we do not examine workloads that fit entirely
in L2 cache on a traditional node. This observation is
similar to that made much earlier by the intelligent RAM
project, which coupled processors and DRAM to achieve
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Figure 3: Solution space for lowest 3-year TCO as a
function of dataset size and query rate.

similar benefits [2]. The wimpy nodes can only accept
2GB of DRAM per node, so for larger datasets, a tra-
ditional DRAM system provides a high query rate and
requires fewer nodes to store the same amount of data
(64GB vs 2GB per node). Wimpies designed to address
8GB or more of DRAM would equalize this ratio, making
FAWN+DRAM strictly superior to Traditional+DRAM for
these random-read workloads.

In the middle range, FAWN+SSDs provide the best bal-
ance of storage capacity, query rate, and total cost. As
SSD capacity improves, this combination is likely to con-
tinue expanding into the range served by FAWN+Disk; as
SSD performance improves, so will it reach into DRAM
territory. It is conceivable that FAWN+SSD could become
the dominant architecture for a wide range of workloads,
relegating the other architectures to niches for huge but
infrequently-accessed datasets, or tiny datasets with enor-
mous query rates.

Are traditional systems obsolete? We emphasize that
this analysis applies only to small, random access work-
loads. Sequential-read workloads are similar, but the con-
stants depend strongly on the per-byte processing required.
Traditional cluster architectures retain a place for CPU-
bound workloads, but we do note that architectures such
as IBM’s BlueGene successfully apply large numbers of
low-power, efficient processors to many supercomputing
applications [7]—but they augment their wimpy proces-
sors with custom floating point units and very low-latency,
high-bandwidth interconnects to do so.

6 Conclusion
The architectural motivation for FAWN borrows from a
long line of work on balanced computing [17], multi-
microprocessor systems for image processing [12], super-
computing [7], placing smarts near storage [10, 16, 2],
and creating arrays of cheap components to leverage “dis-
efficiencies” of scale [14]. FAWN takes advantage of a
sweet spot in processor efficiency for I/O intensive work-

loads that do not saturate modern CPUs, greatly reducing
both average and maximum power consumption. Given
the increasing importance of data-intensive and power-
efficient computing, we believe that FAWN is the right
approach for losing watts fast.
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