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Abstract
FaSST is an RDMA-based system that provides dis-
tributed in-memory transactions with serializability and
durability. Existing RDMA-based transaction processing
systems use one-sided RDMA primitives for their ability
to bypass the remote CPU. This design choice brings sev-
eral drawbacks. First, the limited flexibility of one-sided
RDMA reduces performance and increases software com-
plexity when designing distributed data stores. Second,
deep-rooted technical limitations of RDMA hardware
limit scalability in large clusters. FaSST eschews one-
sided RDMA for fast RPCs using two-sided unreliable
datagrams, which we show drop packets extremely rarely
on modern RDMA networks. This approach provides
better performance, scalability, and simplicity, without re-
quiring expensive reliability mechanisms in software. In
comparison with published numbers, FaSST outperforms
FaRM on the TATP benchmark by almost 2x while using
close to half the hardware resources, and it outperforms
DrTM+R on the SmallBank benchmark by around 1.7x
without making data locality assumptions.

1 Introduction
“Remote procedure calls (RPC) appear to be a useful paradigm.”

— Birrel & Nelson, 1984

Serializable distributed transactions provide a power-
ful programming abstraction for designing distributed
systems such as object stores and on-line transaction pro-
cessing (OLTP) systems. Although earlier work in this
space sacrificed strong transactional semantics for perfor-
mance [9], recent systems have shown that transactions
can be fast in the datacenter [12, 28, 7, 5].1 The key en-
ablers are high-speed networks and lightweight network
stacks (i.e., kernel bypass). In addition, these systems
exploit Remote Direct Memory Access (RDMA) for its
low latency and CPU efficiency. A common thread in
these systems is that they make extensive use of one-sided
RDMA operations that bypass the remote CPU. The in-
tent behind this decision is to harness one-sided RDMA’s
ability to save remote CPU cycles.

1We discuss only distributed transactions in this paper, so we use the
more general but shorter term transactions.

In this paper, we explore whether one-sided RDMA is
not the best choice for designing transaction processing
systems. First, there is a gap between the paradigm of
one-sided RDMA, and capabilities needed for efficient
transactional access to remote data stores. One-sided
RDMA provides only remote reads, writes, and atomic op-
erations, whereas accessing data stores typically involves
traversing data structures such as hash tables and B-Trees.
In general, these structures consist of an index for fast
lookup, and the actual data, requiring two or more RDMA
reads to access data. This leads to lower throughput and
higher latency, and reduces the net CPU savings from
remote CPU bypass [15]. The key technique to overcome
this gap is to flatten the data structure, by either ignor-
ing the index [5], merging the data with the index [12],
or caching the index [12, 28, 7] at all servers. Each of
these variants has an associated cost in generality and sys-
tem performance. Second, the connection-oriented nature
of current one-sided RDMA implementations typically
requires CPU cores to share local NIC queue pairs for
scalability [11], reducing local per-core RDMA through-
put by several factors, and the net benefit of remote CPU
bypass.

We show that there is a better primitive for transactions:
remote procedure calls (RPCs) over two-sided unreliable
datagram messages. RPCs involve the remote CPU in
message processing and are more flexible than one-sided
RDMA, allowing data access in a single round trip [15].
However, previous RPC implementations over RDMA
either performed poorly (e.g., up to 4x worse than one-
sided RDMA in FaRM [12]), or were specialized (e.g.,
HERD’s RPCs [15] deliver high performance for all-to-
one communication where one server handles RPCs from
many clients). A key contribution of this work is FaSST
RPCs: an all-to-all RPC system that is fast, scalable, and
CPU-efficient. This is made possible by using RDMA’s
datagram transport that provides scalability, and allows
“Doorbell batching” which saves CPU cycles by reduc-
ing CPU-initiated PCIe bus transactions. We show that
FaSST RPCs provide (1) up to 8x higher throughput, and
13.9x higher CPU efficiency than FaRM’s RPCs (Sec-
tion 4.5), and (2) 1.7–2.15x higher CPU efficiency, or
higher throughput, than one-sided READs, depending on



whether or not the READs scale to clusters with more
than a few tens of nodes (Section 3.3).

Using an unreliable transport layer requires handling
packet loss. In RDMA networks such as InfiniBand, how-
ever, packet loss is extremely rare because the underlying
link layer provides reliability. We did not observe any
lost packets in our experiments that transmitted over 50
PB of network data on a real-world InfiniBand cluster
with up to 69 nodes. Nevertheless, packet loss can occur
during hardware failures, and corner cases of the link-
layer’s reliability protocol. We detect these losses using
coarse-grained timeouts triggered at the RPC requester,
and describe how they can be handled similarly to con-
ventional machine failures.

FaSST is a new transaction processing system built
on FaSST RPCs. It uses optimistic concurrency con-
trol, two-phase commit, and primary-backup replica-
tion. Our current implementation supports transactions
on an unordered key-value store based on MICA [18],
and maps 8-byte keys to opaque objects. We evalu-
ate FaSST using three workloads: a transactional ob-
ject store, a read-mostly OLTP benchmark called TATP,
and a write-intensive OLTP benchmark called Small-
Bank. FaSST compares favorably against published per-
machine throughput numbers. On TATP, FaSST outper-
forms FaRM [12] by 1.87x when using close to half
the hardware (NIC and CPU) resources. On SmallBank,
FaSST outperforms DrTM+R [7] by 1.68x with similar
hardware without making data locality assumptions. The
source code for FaSST and the experiments in this paper is
available at https://github.com/efficient/fasst.

2 Background
2.1 Fast distributed transactions
This section outlines the environment that we target with
FaSST. FaSST aims to provide distributed transactions
inside a single datacenter where a single instance of the
system can scale to a few hundred nodes. Each node in the
system is responsible for a partition of the data based on
a primary key, and nodes operate in the symmetric model,
whereby each node acts both as a client and a server.
For workloads with good data locality (e.g., transactions
that only access data in one partition), the symmetric
model can achieve higher performance by co-locating
transactions with the data they access [11, 12].

FaSST targets high-speed, low-latency key-value trans-
action processing with throughputs of several million
transactions/sec and average latencies around one hun-
dred microseconds on common OLTP benchmarks with
short transactions with up to a few tens of keys. Achieving
this performance requires in-memory transaction process-
ing, and fast userspace network I/O with polling (i.e.,
the overhead of a kernel network stack or interrupts is

unacceptable). We assume commercially available net-
work equipment: 10-100 Gbps of per-port bandwidth and
≈ 2 µs end-to-end latency.

Making data durable across machine failures requires
logging transactions to persistent storage, and quick re-
covery requires maintaining multiple replicas of the data
store. Keeping persistent storage such as disk or SSDs
on the critical path of transactions limits performance.
Similar to recent work, FaSST assumes that the transac-
tion processing nodes are equipped with battery-backed
DRAM [12], though future NVRAM technologies, if fast
enough, would also work.

Finally, FaSST uses primary-backup replication to
achieve fault tolerance. We assume that failures will
be handled using a separate fault-tolerant configuration
manager that is off of the critical path (the Vertical Paxos
model [17]), similar to recent work on RDMA-based
distributed transactions [12, 7]. We do not currently im-
plement such a configuration manager.

2.2 RDMA
RDMA is a networking concept of which several im-
plementations exist. The Virtual Interface Architecture
(VIA) is a popular model for user-level, zero-copy net-
working [13], and forms the basis of current commod-
ity RDMA implementations such as InfiniBand, RoCE
(RDMA over Converged Ethernet), and iWARP (internet
Wide Area RDMA Protocol). VIA NICs provide user
processes with virtual interfaces to the network. VIA is
fundamentally connection-oriented: a connection must
be established between a pair of virtual interfaces before
they are allowed to communicate. This design decision
was made by VIA architects to simplify VIA implemen-
tations and reduce latency [13]. The discussion in this
paper, and some of our contributions are specific to VIA-
based RDMA implementations; we discuss other, non-
commodity RDMA implementations in Section 7.1.

In VIA-based RDMA implementations, virtual inter-
faces are called queue pairs (QPs), each consisting of a
send queue and a receive queue. Processes access QPs by
posting verbs to these queues. Two-sided verbs—SEND
and RECV—require involvement of the CPU at both the
sender and receiver: a SEND generates a message whose
data is written to a buffer specified by the receiver in a pre-
posted RECV. One-sided verbs—READ, WRITE, and
ATOMIC—bypass the remote CPU to operate directly on
remote memory.

RDMA transports can be connected or connectionless.
Connected transports offer one-to-one communication be-
tween two queue pairs: to communicate with N remote
machines, a thread must create N QPs. These transports
provide one-sided RDMA and end-to-end reliability, but
do not scale well to large clusters. This is because NICs
have limited memory to cache QP state, and exceeding

https://github.com/efficient/fasst


SEND/RECV WRITE READ/ATOMIC

RC 3 3 3

UC 3 3 7

UD 3 7 7

Table 1: Verbs supported by each transport type. RC, UC, and
UD stand for Reliable Connected, Unreliable Connected, and
Unreliable Datagram, respectively.

the size of this state by using too many QPs causes cache
thrashing [11]. Connectionless (datagram) transports are
extensions to the connection-oriented VIA, and support
fewer features than connected transports: they do not pro-
vide one-sided RDMA or end-to-end reliability. However,
they allow a QP to communicate with multiple other QPs,
and have better scalability than connected transports as
only one QP is needed per thread.

RDMA transports can further be either reliable or unre-
liable, although current commodity NICs do not provide
a reliable datagram transport. Reliable transports provide
in-order delivery of messages and return an error in case
of failure. Unreliable transports achieve higher perfor-
mance by avoiding acknowledgment packets, but do not
provide reliability guarantees or return an error on net-
work failures. Modern high-speed networks, including
Mellanox’s InfiniBand and Intel’s OmniPath, also provide
reliability below the transport layer [3, 6]. Their link layer
uses flow control to prevent congestion-based losses, and
retransmissions to prevent bit error-based losses. Infini-
Band’s physical layer uses Forward Error Correction to
fix most bit errors, which themselves are rare. For ex-
ample, the bit error rate of the InfiniBand cables used
in our clusters is less than 10−15. Therefore even unre-
liable transports, which lack end-to-end reliability, lose
packets extremely rarely: we did not lose any packets in
around 50 PB of unreliable data transfer (Section 3.4).
Note that link-layer flow control in these networks can
cause congestion collapse in rare scenarios, leading to
low throughput, but not dropped packets.

Current RDMA implementations provide three main
transports: Reliable Connected (RC), Unreliable Con-
nected (UC), and Unreliable Datagram (UD). Table 1
shows the subset of verbs supported by implementations
of each transport. Not all transport layers provide all
types of verbs, so choosing a verb means accepting the
limitations of the available transports. Note that only con-
nected transports provide one-sided verbs, limiting the
scalability of designs that use these verbs.

3 Choosing networking primitives
We now describe the rationale behind our decision to build
an RPC layer using two-sided datagram verbs. We show
that RPCs are:

Name Hardware

CX3 Mellanox ConnectX-3 (1x 56 Gb/s InfiniBand
ports), PCIe 3.0 x8, Intel® Xeon® E5-2450
CPU (8 cores, 2.1 GHz), 16 GB DRAM

CIB Mellanox Connect-IB (2x 56 Gb/s InfiniBand
ports), PCIe 3.0 x16, Intel® Xeon® E5-2683-
v3 CPU (14 cores, 2 GHz), 192 GB DRAM

Table 2: Measurement clusters

1. Fast: Although READs can outperform similarly-
sized RPCs on small clusters, RPCs perform better
when accounting for the amplification in size or num-
ber of READs required to access real data stores.

2. Scalable: Datagram RPC throughput and CPU use
remains stable as the cluster size increases, whereas
READ performance degrades because READs must
use connected transport with today’s NICs.

3. Simple: RPCs reduce the software complexity re-
quired to design distributed data stores and transac-
tions compared to one-sided RDMA-based systems.

3.1 Advantage of RPCs
Recent work on designing distributed data stores over
RDMA-capable networks has largely focused on how
to use one-sided RDMA primitives. In these designs,
clients access remote data structures in servers’ memory
using one or more READs, similar to how one would
access data in local memory. Various optimizations help
reduce the number of READs needed; we discuss two
such optimizations and their limitations below.

Value-in-index: FaRM [11, 12] provides hash table ac-
cess in ≈ 1 READ on average by using a specialized index
that stores data adjacent to its index entry, allowing data
to be READ with the index. However, doing so ampli-
fies the size of the READ by a factor of 6–8x, reducing
throughput [15]. This result highlights the importance of
comparing the application-level capabilities of network-
ing primitives: although micro-benchmarks suggest that
READs can outperform similar-sized RPCs, READs re-
quire extra network traffic and/or round-trips due to their
one-sided nature, tipping the scales in the other direction.

Caching the index: DrTM [28, 7] caches the index of
its hash table at all servers in the cluster, allowing single-
READ GETs; FaRM [12] uses a similar approach for its
B-Tree. Although this approach works well when the
workload has high locality or skew, it does not work in
general because indexes can be large: Zhang et al. re-
port that indexes occupy over 35% of memory for popular
OLTP benchmarks in a single-node transaction processing
system [30]; the percentage is similar in our implemen-
tation of distributed transaction processing benchmarks.
In this case, caching even 10% of the index requires each
machine to dedicate 3.5% of the total cluster memory



capacity for the index, which is impossible if the clus-
ter contains more than 100/3.5 ≈ 29 nodes. The Cell
B-Tree [21] caches B-Tree nodes 4 levels above the leaf
nodes to save memory and reduce churn, but requires
multiple round trips (∼ 4) when clients access the B-Tree
using READs.

RPCs allow access to partitioned data stores with two
messages: the request and the reply. They do not re-
quire message size amplification, multiple round trips,
or caching. The simplicity of RPC-based programming
reduces the software complexity required to take advan-
tage of modern fast networks in transaction processing:
to implement a partitioned, distributed data store, the user
writes only short RPC handlers for a single-node data
store. This approach eliminates the software complexity
required for one-sided RDMA-based approaches [11, 21].
For example, in this paper, we use MICA’s hash table
design [18] for unordered key-value storage. We made
only minor modifications to the MICA codebase to sup-
port distributed transactions. In the future, we plan to use
Masstree [19] for ordered storage.

3.2 Advantage of datagram transport
Datagram transport allows each CPU core to create one
datagram QP that can communicate with all remote cores.
Since the number of QPs is relatively small (as many
as the number of cores), providing each core exclusive
access to QPs is possible without overflowing the NIC’s
cache. Providing exclusive access to QPs with connected
transport, however, is not scalable: In a cluster with N ma-
chines and T threads per machine, doing so requires N ∗T
QPs at every machine, which may not fit in the NIC’s
queue pair cache. Threads can share QPs to reduce the
QP memory footprint [11]. Sharing QPs reduces CPU ef-
ficiency because threads contend for locks, and the cache
lines for QP buffers bounce between their CPU cores. The
effect can be dramatic: in our experiments, QP sharing
reduces the per-core throughput of one-sided READs by
up to 5.4x (Section 3.3.2). Similarly, FaRM’s RPCs that
use one-sided WRITEs and QP sharing become CPU-
bottlenecked at 5 million requests/sec (Mrps) per ma-
chine [12]. Our datagram-based RPCs, however, do not
require QP sharing and achieve up to 40.9 Mrps/machine,
and even then they are bottlenecked by the NIC, not CPU
(Section 3.3.1).

In comparison with connected transports, datagram
transport confers a second important advantage in addi-
tion to scalability: Doorbell batching reduces CPU use.
We describe this feature in a simplified form here; a de-
tailed discussion is available in our earlier paper [16].
User processes post operations to the NIC by writing
to a per-QP Doorbell register on the NIC over the PCIe
bus, specifying the number of new operations on that QP.
This write is relatively expensive for the CPU because

it requires flushing the write buffers, and using memory
barriers for ordering. In transactional systems, however,
applications can amortize this cost by issuing multiple
RDMA work requests at a time. Examples include read-
ing or validating multiple keys for multi-key transactions,
or sending update messages to the replicas of a key. With
a datagram QP, the process only needs to ring the Doorbell
once per batch, regardless of the individual message des-
tinations within the batch. With connected QPs, however,
the process must ring multiple Doorbells—as many as the
number of destinations appearing in the batch. Note that
Doorbell batching does not coalesce packets at the RDMA
layer (i.e., it does not put multiple application-level re-
quests in a single RDMA packet); Doorbell batching also
does not add latency because we do it opportunistically,
i.e., we do not wait for a batch of messages to accumulate.

3.3 Performance considerations
Two recent projects study the relative performance of
RPCs and one-sided RDMA. In the asymmetric setting
where multiple clients send requests to one server, HERD
shows that RPCs perform similarly to READs [15]. In
HERD, clients send requests to the server via WRITEs
over UC; the server responds with SENDs over UD. This
approach scales well with the number of clients because
the number of active queue pairs at the server is small.
The server’s UC QPs are passive because the server’s
CPU does not access them; these passive QPs consume
little memory in the NIC. The active UD QPs are few in
number.

Unfortunately, as noted by Dragojevic et al. [12],
HERD’s RPC design does not scale well in the symmetric
setting required for distributed transactions, where every
machine issues requests and responses. This scenario
requires many active UC QPs on each node for sending
requests. In FaRM’s experiments [12] in the symmetric
setting, READs outperform their RPCs by 4x.

We now present experimental results showing that
FaSST’s RPCs are a better choice than one-sided RDMA
for distributed transactions. The design and implementa-
tion of our RPC system is discussed in detail in Section 4;
here, we use it to implement basic RPCs where both the
request and reply are fixed-size buffers. We first compare
the raw throughput of RPCs and one-sided READs by
using a small cluster where READs do not require QP
sharing. Next, we compare their performance on more
realistic, medium-sized clusters.

Clusters used: To show that our results generalize to a
range of RDMA hardware, we use two clusters with dif-
ferent NICs and CPU processing power (Table 2). The
clusters are named after the initials of their NIC. CX3 is
a shared Emulab [29] cluster with 192 nodes; our experi-
ments used up to 69 nodes, depending on the availability
of nodes. CX3 nodes have a ConnectX-3 NIC and an



Intel SandyBridge CPU with 8 cores. CIB is a private
cluster with 11 nodes. CIB nodes have a more powerful
Connect-IB NIC that provides 2x more bandwidth and
around 4x higher message rate than a ConnectX-3 NIC.
They also have a more powerful, 14-core Intel Haswell
CPU.

Experiment setup: We use a cluster of machines in a
symmetric setting, i.e., every machine issues requests
(RPC requests or READs) to every other machine. For
READs without QP sharing, each thread creates as many
RC QPs as the number of machines, and issues READs
to randomly chosen machines. We evaluate RPC perfor-
mance for two request batch sizes (1 and 11) to show the
effect of Doorbell batching for requests. We prevent RPC
request coalescing (Section 4) by sending each request in
a batch to a different machine; this restricts our maximum
batch size on CIB to 11.

We compare RPC and READ performance for different
response sizes; for RPCs, the request size is fixed at 32
bytes, which is sufficient to read from FaSST’s data stores.
We report millions of requests per second per machine
(Mrps/machine). Note that for RPCs, each machine’s
CPU also serves responses to requests from other ma-
chines, so the number of messages sent by a machine is
approximately twice the request rate that we report. Our
results show that:

1. FaSST RPCs provide good raw throughput. For
small messages up to 56 bytes, RPCs deliver a sig-
nificant percentage of the maximum throughput of
similar-sized READs on small clusters: 103–106%
on CX3 and 68–80% on CIB, depending on the re-
quest batch size. When accounting for the amplifica-
tion in READ size or number required to access data
structures in real data stores, RPCs deliver higher
raw throughput than READs.

2. On medium-sized clusters, if READs do not share
QPs, RPCs provide 1.38x and 10.1x higher through-
put on CIB and CX3, respectively. If READs do
share QPs, their CPU efficiency drops by up to 5.4x,
and RPCs provide 1.7–2.15x higher CPU efficiency.

These experiments highlight the sometimes dramatic dif-
ference in performance between micro-benchmarks and
more realistic settings.

3.3.1 On small clusters

To measure the maximum raw throughput of READs,
we use 6 nodes so that only a small number of QPs are
needed even for READs: each node on CX3 (8 cores) and
CIB (14 cores) uses 48 and 84 QPs, respectively. We use
11 nodes for RPCs to measure performance with a large
request batch size—using only 6 nodes for RPCs would
restrict the maximum non-coalesced request batch size to
6. (As shown in Section 3.3.2, using 11 nodes for READs
gives lower throughput due to cache misses in the NIC,
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(b) CIB cluster (Connect-IB NIC)

Figure 1: Small clusters: Throughput comparison of FaSST
RPCs (11 nodes) and READs (6 nodes). Note that the two
graphs use a different Y scale.

so we use fewer nodes to measure their peak throughput.)
Figure 1 shows Mrps/machine for READs and RPCs on
the two clusters.

Raw throughput: Depending on the request batch size,
FaSST RPCs deliver up to 11.6–12.3 Mrps on CX3, and
34.9–40.9 Mrps on CIB. READs deliver up to 11.2 Mrps
on CX3, and 51.2 Mrps on CIB. The throughput of both
RPCs and READs is bottlenecked by the NIC: although
our experiment used all cores on both clusters, fewer cores
can achieve similar throughput, indicating that the CPU
is not the bottleneck.

Comparison with READs: Although RPCs usually de-
liver lower throughput than READs, the difference is
small. For response sizes up to 56 bytes, which are
common in OLTP, RPC throughput is within 103–106%
of READ throughput on CX3, and 68–80% of READ
throughput on CIB, depending on the request batch size.
For larger responses, READs usually outperform our
RPCs, but the difference is smaller than 4x, as is the case
for FaRM’s one-sided RPCs. This is because FaSST’s
RPCs are bottlenecked by the NIC on both clusters,
whereas FaRM’s RPCs become CPU-bottlenecked due to
QP sharing (Section 3.3.2). As noted above, these “raw”
results are only baseline micro-benchmarks; the follow-
ing paragraphs consider the numbers in the context of
“real-world” settings.

Effect of multiple READs: In all cases (i.e., regardless
of cluster used, response size, and request batch size),
RPCs provide higher throughput than using 2 READs.
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Figure 2: Comparison of FaSST RPC and READ throughput,
and the number of QPs used for READs with increasing emu-
lated cluster size.

Thus, for any data store/data structure that requires two or
more READs, RPCs provide strictly higher throughput.

Effect of larger READs: Consider, for example, a hash
table that maps 8-byte keys to 40-byte values (this config-
uration is used in one of the database tables in the TATP
benchmark in Section 6) on CX3. For this hash table,
FaRM’s single-READ GETs require approximately 384-
byte READs (8x amplification) and can achieve up to 6.5
Mrps/machine on CX3. With FaSST RPCs, these key-
value requests can be handled in one RPC with an 8-byte
request and a 40-byte response (excluding header over-
heads), and can achieve 11.4–11.8 Mrps/machine (over
75% higher) before the ConnectX-3 NIC becomes the
bottleneck. On CIB, 384-byte READs achieve 23.1 Mrps,
whereas FaSST RPCs achieve 34.9–40.9 Mrps (over 51%
higher).

3.3.2 On medium-sized clusters

Measuring the impact of one-sided RDMA’s poor scala-
bility requires more nodes. As the CIB cluster has only 11
physical machines, we emulate the effect of a larger clus-
ter by creating as many QPs on each machine as would
be used in the larger cluster. With N physical nodes, we
emulate clusters of N ∗ M nodes for different values of
M . Instead of creating N QPs, each worker thread creates
N ∗ M QPs, and connects them to QPs on other nodes.
Note that we only do so for READs because for FaSST’s
RPCs, the number of local QPs does not depend on the
number of machines in the cluster.

Figure 2 compares READ and RPC throughput for
increasing emulated cluster sizes. We use 32-byte READs
and RPC requests and responses. Note that the peak
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Figure 3: Per-thread READ throughput with QP sharing (CIB)

READ throughput in this graph is lower than Figure 1 that
used 6 nodes. This is because NIC cache misses occur
with as few as 11 nodes. On CX3, READ throughput
drops to 24% of its peak with as few as 22 emulated nodes.
On CIB, READs lose their throughput advantage over
RPCs on clusters with 33 or more nodes. The decline with
Connect-IB NICs is more gradual than with ConnectX-3
NICs. This may be due to a larger cache or better cache
miss pipelining [10] in the Connect-IB NIC. Section 7.2
discusses the possible impact of future NIC and CPU
hardware on queue pair scalability.

Sharing QPs: Fewer QPs are required if they are shared
between worker threads, but doing so drastically reduces
the CPU efficiency of one-sided RDMA. QP sharing is
typically implemented by creating several sets of N QPs,
where each set is connected to the N machines [11]. A
machine’s threads are also grouped into sets, and threads
in a set share a QP set.

We measure the loss in CPU efficiency as follows. We
use one server machine that creates a tuneable number
of QPs and connects them to QPs spread across 5 client
machines (this is large enough to prevent the clients from
becoming a bottleneck). We run a tuneable number of
worker threads on the server that share these QPs, issuing
READs on QPs chosen uniformly at random.

We choose the number of QPs and threads per set based
on a large hypothetical cluster with 100 nodes and CIB’s
CPUs and NICs. A Connect-IB NIC supports ≈ 400 QPs
before READ throughput drops below RPC throughput
(Figure 2). In this 100-node cluster, the 400 QPs are
used to create 4 sets of 100 connections (QPs) to remote
machines. CIB’s CPUs have 14 cores, so sets of 3–4
threads share a QP set.

Figure 3 shows per-thread throughput in this experi-
ment. For brevity, we only show results on CIB; the loss
in CPU efficiency is comparable on CX3. The hypotheti-
cal configuration above requires sharing 100 QPs among
at least 3 threads; we also show other configurations that
may be relevant for other NICs and cluster sizes. With
one thread, there is no sharing of QPs and throughput
is high—up to 10.9 Mrps. Throughput with QP sharing
between 3 threads, however, is 5.4x lower (2 Mrps).

This observation leads to an important question: If the
increase in CPU utilization at the local CPU due to QP



sharing is accounted for, do one-sided READs use fewer
cluster-wide CPU cycles than FaSST’s RPCs that do not
require QP sharing? We show in Section 4 that the answer
is no. FaSST’s RPCs provide 3.4–4.3 Mrps per core on
CIB—1.7–2.15x higher than READs with QP sharing
between 3 threads. Note that in our symmetric setting,
each core runs both client and server code. Therefore,
READs use cluster CPU cycles at only the client, whereas
RPCs use them at both the client and the server. However,
RPCs consume fewer overall CPU cycles.

3.4 Reliability considerations
Unreliable transports do not provide reliable packet deliv-
ery, which can introduce programming complexity and/or
have performance implications (e.g., increased CPU use),
since reliability mechanisms such as timeouts and retrans-
missions must be implemented in the software RPC layer
or application.

To understand FaSST’s approach to handling potential
packet loss, we make two observations. First, we note that
transaction processing systems usually include a recon-
figuration mechanism to handle node failures. Reconfigu-
ration includes optionally pausing ongoing transactions,
informing nodes of the new cluster membership, replay-
ing transaction logs, and re-replicating lost data [12]. In
FaSST, we assume a standard reconfiguration mechanism;
we have not implemented such a mechanism because this
paper’s contribution is not in that space. We expect that,
similar to DrTM+R [7], FaRM’s recovery protocol [12]
can be adapted to FaSST.

The second observation is that in normal operation,
packet loss in modern RDMA-capable networks is ex-
tremely rare: in our experiments (discussed below), we
observed zero packet loss in over 50 PB of data trans-
ferred. Packets can be lost during network hardware fail-
ures, and corner cases of the link/physical layer reliability
protocols. FaSST’s RPC layer detects these losses using
coarse-grained timeouts maintained by the RPC requester
(Section 4.3).

Based on these two observations, we believe that an
acceptable first solution for handling packet loss in FaSST
is to simply restart one of the two FaSST processes that
is affected by the lost RPC packet, allowing the recon-
figuration mechanism to make the commit decision for
the affected transaction. We discuss this in more detail in
Section 5.1.

3.4.1 Stress tests for packet loss

Restarting a process on packet loss requires packet losses
to be extremely rare. To quantify packet loss on real-
istic RDMA networks, we set up an experiment on the
CX3 cluster, which is similar to real-world clusters with
multiple switches, oversubscription, and sharing. It is
a shared cluster with 192 machines arranged in a tree

topology with seven leaf and two spine switches, with an
oversubscription ratio of 3.5. The network is shared by
Emulab users. Our largest experiment used 69 machines
connected to five leaf switches.

Threads on these machines use UD transport to ex-
change 256-byte RPCs. We used 256-byte messages to
achieve both high network utilization and message rate.
Threads send 16 requests to remote threads chosen uni-
formly at random, and wait for all responses to arrive
before starting the next batch. A thread stops making
progress if a request or reply packet is lost. Threads rou-
tinely output their progress messages to a log file; we
manually inspect these files to ensure that all threads are
making progress.

We ran the experiment without a packet loss for approx-
imately 46 hours. (We stopped the experiment when a log
file exhausted a node’s disk capacity.) The experiment
generated around 100 trillion RPC packets and 33.2 PB of
network data. Including other smaller-scale experiments
with 20–22 nodes, we have transferred over 50 PB of
network data without a lost packet.

While we observed zero packet loss, we detected sev-
eral reordered packets. Using sequence numbers em-
bedded in the RPC packets, we observed around 1500
reordered packets in 100 trillion packets transferred. Re-
ordering happens due to multi-path in CX3: although
there is usually a single deterministic path between each
source and destination node, the InfiniBand subnet man-
ager sometimes reconfigures the switch routing tables to
use different paths.

4 FaSST RPCs
FaSST’s RPCs are designed for transaction workloads
that use small (∼ 100 byte) objects and a few tens of
keys. This layer abstracts away details of RDMA, and
is used by higher-layer systems such as our transaction
processing system. Key features of FaSST’s RPCs include
integration with coroutines for efficient network latency
hiding, and optimizations such as Doorbell batching and
message coalescing.

4.1 Coroutines
RDMA network latency is on the order of 10 µs under
load, which is much higher than the time spent by our
applications in computation and local data store accesses.
It is critical to not block a thread while waiting for an RPC
reply. Similar to Grappa [22], FaSST uses coroutines (co-
operative multitasking) to hide network latency: a corou-
tine yields after initiating network I/O, allowing other
coroutines to do useful work while the RPC is in flight.
Our experiments showed that a small number (∼ 20) of
coroutines per thread is sufficient for latency hiding, so
FaSST uses standard coroutines from the Boost C++ li-



brary instead of Grappa’s coroutines, which are optimized
for use cases with thousands of coroutines. We measured
the CPU overhead to switch between coroutines to be
13–20 ns.

In FaSST, each thread creates one RPC endpoint that
is shared by the coroutines spawned by the thread. One
coroutine serves as the master; the remaining are workers.
Worker coroutines only run application logic and issue
RPC requests to remote machines, where they are pro-
cessed by the master coroutine of the thread handling the
request. The master coroutine polls the network to iden-
tify any newly-arrived request or response packets. The
master computes and sends responses for request pack-
ets. It buffers response packets received for each worker
until all needed responses are available, at which time it
invokes the worker.

4.2 RPC interface and optimizations

A worker coroutine operates on batches of b ≥ 1 requests,
based on what the application logic allows. The worker
begins by first creating new requests without performing
network I/O. For each request, it specifies the request
type (e.g., access a particular database table, transaction
logging, etc.), and the ID of destination machine. After
creating a batch of requests, the worker invokes an RPC
function to send the request messages. Note that an RPC
request specifies the destination machine, not the destina-
tion thread; FaSST chooses the destination thread as the
local thread’s ID–based peer on the destination machine.
Restricting RPC communication to between thread peers
improves FaSST’s scalability by reducing the number of
coroutines that can send requests to a thread (Section 4.4).

Request batching. Operating on batches of requests has
several advantages. First, it reduces the number of NIC
Doorbells the CPU must ring from b to 1, saving CPU
cycles. Second, it allows the RPC layer to coalesce mes-
sages sent to the same destination machine. This is partic-
ularly useful for multi-key transactions that access multi-
ple tables with same primary key, e.g., in the SmallBank
benchmark (Section 6). Since our transaction layer parti-
tions tables by a hash of the primary key, the table access
requests are sent in the same packet. Third, batching re-
duces coroutine switching overhead: the master yields to
a worker only after receiving responses for all b requests,
reducing switching overhead by a factor of b.

Response batching: Similar to request batching, FaSST
also uses batching for responses. When the master corou-
tine polls the NIC for new packets, it typically receives
more than one packet. On receiving a batch of B request
packets, it invokes the request handler for each request,
and assembles a batch of B response packets. These re-
sponses are sent using one Doorbell. Note that the master

does not wait for a batch of packets to accumulate before
sending responses to avoid adding latency.

Cheap RECV posting: FaSST’s RPCs use two-sided
verbs, requiring RECVs to be posted on the RECV queue
before an incoming SEND arrives. On our InfiniBand
hardware, posting RECVs requires creating descriptors in
the host-memory RECV queue, and updating the queue’s
host-memory head pointer. No CPU-initiated PCIe trans-
actions are required as the NIC fetches the descriptors
using DMA reads. In FaSST, we populate the RECV
queue with descriptors once during initialization, after
which the descriptors are not accessed by the CPU; new
RECVs re-use descriptors in a circular fashion, and can
be posted with a single write to the cached head pointer.
Doing so required modifying the NIC’s device driver, but
it saves CPU cycles.

It is interesting to note that in FaSST, the NIC’s RECV
descriptor DMA reads are redundant, since the descriptors
never change after initialization. Avoiding these DMA
reads may be possible with device firmware changes or
with future programmable NICs; doing so will likely give
FaSST’s RPCs a large throughput boost [16].

4.3 Detecting packet loss

The master coroutine at each thread detects packet loss for
RPCs issued by its worker coroutines. The master tracks
the progress of each worker by counting the number of
responses received for the worker. A worker’s progress
counter stagnates if and only if one of the worker’s RPC
packets (either the request or the response) is lost: If a
packet is lost, the master never receives all responses for
the worker; it never invokes the worker again, preventing
it from issuing new requests and receiving more responses.
If no packet is lost, the master eventually receives all
responses for the worker. The worker gets invoked and
issues new requests—we do not allow workers to yield to
the master without issuing RPC requests.

If the counter for a worker does not change for timeout
seconds, the master assumes that the worker suffered a
packet loss. On suspecting a loss, the master kills the
FaSST process on its machine (Section 5.1). Note that,
before it is detected, a packet loss affects only the progress
of one worker, i.e., other workers can successfully commit
transactions until the loss is detected. This allows us to
use a large value for timeout without affecting FaSST’s
availability. We currently set timeout to one second. In
our experiments with 50+ nodes, we did not observe a
false positive with this timeout value. We observed false
positives with significantly smaller timeout values such
as 100 ms. This can happen, for instance, if the thread
handling the RPC response gets preempted [12].



4.4 RPC limitations
Although FaSST aims to provide general-purpose RPCs,
we do currently not support workloads that require mes-
sages larger than the network’s MTU (4 KB on our In-
finiBand network). These workloads are likely to be
bottlenecked by network bandwidth with both RPC- and
one-sided RDMA-based designs, achieving similar per-
formance. This limitation can be addressed in several
performance-neutral ways if needed.2

FaSST also restricts each coroutine to one message per
destination machine per batch; the message, however, can
contain multiple coalesced requests. This restriction is
required to keep the RECV queues small so that they can
be cached by the NIC. Consider a cluster with N nodes, T
threads per node, and c coroutines per thread. For a given
thread, there are N peer threads, and N ∗ c coroutines
that can send requests to it. At any time, each thread
must provision as many RECVs in its RECV queue as the
number of requests that can be sent to it. Allowing each
coroutine m messages per destination machine requires
maintaining (N ∗c∗m) RECVs per RECV queue. A fairly
large cluster with N = 100, c = 20, and T = 14 requires
14 RECV queues of size 2000∗m at each machine. m = 1
was sufficient for our workloads and worked well in our
experiments, but significantly larger values of m reduce
RPC performance by causing NIC cache thrashing.

Supporting a larger cluster may require reducing RECV
queue size. This can be achieved by reducing the number
of requests allowed from a local thread to a particular
remote machine from c to some smaller number; a corou-
tine yields if its thread’s budget for a remote machine is
temporarily exhausted. This will work well with large
clusters and workloads without high skew, where the prob-
ability of multiple coroutines sending requests to the same
remote machine is small.

4.5 Single-core RPC performance
We showed in Section 3.3 that FaSST RPCs provide good
per-NIC throughput. We now show that they also pro-
vide good single-core throughput. To measure per-core
throughput, we run one thread per machine, 20 coroutines
per thread, and use 32-byte RPCs. We use all 11 avail-
able machines on CIB; we use 11 machines on CX3 for
comparison. We evaluate RPC performance with multiple
request batch sizes. To prevent request coalescing by our
RPC layer, we choose a different machine for each request
in the batch.

For our RPC baseline, we use a request batch size
of one, and disable response batching. We then enable
the request batching, cheap RECV posting, and response

2Infrequent small but > 4KB messages could be segmented in the
RPC layer. Alternately, a three-message exchange wherein the sender
requests that the recipient use a one-sided READ to obtain a large
message payload could be used.
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Figure 4: Per-core RPC throughput as optimizations 2–6 are
added

batching optimizations in succession. Figure 4 shows
the results from this experiment. Note that the batching
optimizations do not apply to READs, because Doorbells
cannot be batched across the connected QPs. For brevity,
we discuss only CIB here.

Even without any optimizations, FaSST RPCs are more
CPU-efficient than READs with QP sharing: our base-
line achieves 2.6 Mrps, whereas READs achieve up to 2
Mrps with QP sharing between 3 or more threads (Fig-
ure 3). With a request batch size of 3 and all optimizations
enabled, FaSST RPCs achieve 4 Mrps—2x higher than
READs. Peak RPC throughput with one request per batch
is 3.4 Mrps (not shown).

With 11 requests per batch, FaSST RPCs achieve 4.3
Mrps. At this request rate, each CPU core issues 17.2
million verbs per second on average: 4.3 million SENDs
each for requests and responses, and 8.6 million for their
RECVs. This large advantage over one-sided READs
(which achieve 2 million verbs per second) arises from
FaSST’s use of datagram transport, which allows exclu-
sive access to QPs and Doorbell batching.

Comparison with FaRM RPCs: FaRM’s RPCs achieve
up to 5 Mrps with one ConnectX-3 NIC and 16 CPU
cores [11]. Their throughput does not increase notice-
ably when another ConnectX-3 NIC is added [12], so
we expect them to provide ≈ 5 Mrps with a Connect-IB
NIC. FaSST RPCs can achieve 34.9–40.9 Mrps (Figure 1),
i.e., up to 8x higher throughput per NIC. FaRM’s RPCs
achieve 5/16 = 0.31 Mrps per core; FaSST can achieve
3.4–4.3 Mrps per core depending on the request batch
size (up to 13.9x higher).

5 Transactions
FaSST provides transactions with serializability and dura-
bility on partitioned distributed data stores. FaSST’s data
stores map 8-byte keys to opaque application-level objects.
Each key is associated with an 8-byte header, consisting
of a lock bit, and a 63-bit version number. The header
is used for concurrency control and for ordering commit
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Figure 5: Layout of main and overflow buckets in our MICA-
based hash table

log records during recovery. Several keys can map to the
same header.

We have implemented transactions for an unordered
key-value store based on MICA [18]. The key-value
store uses a hash table composed of associative buckets
(Figure 5) with multiple (7–15) slots to store key-value
items. Each key maps to a main bucket. If the number
of keys mapping to a main bucket exceeds the bucket
capacity, the main bucket is dynamically linked to a chain
of overflow buckets. The header for all keys stored in a
main bucket and its linked overflow buckets is maintained
in the main bucket.

In FaSST, worker coroutines run the transaction logic
and act as transaction coordinators. FaSST’s transaction
protocol is inspired by FaRM’s, with some modifications
for simplicity. FaSST uses optimistic concurrency control
and two-phase commit for distributed atomic commit, and
primary-backup replication to support high availability.
We use the Coordinator Log [24] variant of two-phase
commit for its simplicity. Figure 6 summarizes FaSST’s
transaction protocol. We discuss the protocol’s phases in
detail below. All messages are sent using FaSST RPCs.
We denote the set of keys read and written by the trans-
action by R (read set) and W (write set) respectively. We
assume that the transaction first reads the keys it writes,
i.e., W ⊆ R.

1. Read and lock: The transaction coordinator begins
execution by reading the header and value of keys from
their primaries. For a key in W , the coordinator also re-
quests the primary to lock the key’s header. The flexibility
of RPCs allows us to read and lock keys in a single round
trip. Achieving this with one-sided RDMA requires 2
round trips: one to lock the key using an ATOMIC opera-
tion, and one to read its value [7]. If any key in R or W is
already locked, the coordinator aborts the transaction by
sending unlock RPCs for successfully locked keys.

2. Validate: After locking the write set, the coordinator
checks the versions of its read set by requesting the ver-
sions of R again. If any key is locked or its version has
changed since the first phase, the coordinator aborts the
transaction.

3. Log: If validation succeeds, the transaction can com-
mit. To commit a transaction, the coordinator replicates

c
c

C

P1

B1

P2

B2

L1

Execute phase Commit phase

c

2. Validate

c

3. Log

c
c

4. Commit
   backup

Serialization point Committed

1. Read + lock 5. Commit
    primary

Figure 6: FaSST’s transaction protocol with tolerance for one
node failure. P1 and P2 are primaries and B1 and B2 are their
backups. C is the transaction coordinator, whose log replica is
L1. The solid boxes denote messages containing application-
level objects. The transaction reads one key from P1 and P2,
and updates the key on P2.

its commit log record at f + 1 log replicas so that the
transaction’s commit decision survives f failures. The
coordinator’s host machine is always a log replica, so we
send f RPCs to remote log replicas. The commit log
record contains W ’s key-value items and their fetched
versions.

4. Commit backup: If logging succeeds, the coordina-
tor sends update RPCs to backups of W . It waits for an
ACK from each backup before sending updates to the
primaries. This wait ensures that backups process up-
dates for a bucket in the same order as the primary. This
ordering is not required in FaRM, which can drop out-of-
order bucket updates as each update contains the contents
of the entire bucket. FaSST’s updates contain only one
key-value item and are therefore smaller, but cannot be
dropped.

5. Commit primary: After receiving all backup ACKs,
the coordinator sends update RPCs to the primaries of
W . On receiving an update, a primary updates the key’s
value, increments its version, and unlocks the key.

Similar to existing systems [12, 28], FaSST omits val-
idation and subsequent phases for single-key read-only
transactions.

5.1 Handling failures and packet loss
Currently, the FaSST implementation provides serializ-
ability and durability, but not high availability. Similar
to prior single-node transaction systems [27], we have
implemented the normal case datapath (logging and repli-
cation) to the extent that fast recovery is possible, but we
have not implemented the actual logic to recover from a
machine failure. We assume that FaRM’s mechanisms to
detect and recover from machine failures, such as leases,
cluster membership reconfiguration, log replay, and re-
replication of lost data can be adapted to FaSST; we dis-



cuss how packet losses can be handled below. Note that
our implementation is insensitive to packet reordering
since each RPC message is smaller than the network’s
MTU.

We convert a packet loss to a machine failure by killing
the FaSST process on the machine that detects a lost
RPC packet (Section 4.3). The transaction affected by the
lost packet will not make progress until the killed FaSST
process is detected (e.g., via leases); then the transaction’s
commit/abort decision will be handled by the recovery
mechanism. This basic scheme can be improved (e.g., the
victim node can be re-used to avoid data re-replication
since it need not reboot), but that is not the focus of our
work.

In Section 3.4, we measured the packet loss rate of
our network at less than one in 50 PB of data. Since
we did not actually lose a packet, the real loss rate may
be much lower, but we use this upper-bound rate for a
ballpark availability calculation. In a 100-node cluster
where each node is equipped with 2x56 Gbps InfiniBand
and transfers data at full-duplex bandwidth, 50 PB will be
transferred in approximately 5 hours. Therefore, packet
losses will translate to less than 5 machine failures per
day. Assuming that each failure causes 50 ms of down-
time as in FaRM [12], FaSST will achieve five-nines of
availability.

5.2 Implementation
We now discuss details of FaSST’s transaction implemen-
tation. Currently, FaSST provides transactions on 8-byte
keys and opaque objects up to 4060 bytes in size. The
value size is limited by our network’s MTU (4096 bytes)
and the commit record header overhead (36 bytes). To ex-
tend a single-node data store for distributed transactions,
a FaSST user writes RPC request handlers for pre-defined
key-value requests (e.g., get, lock, put, and delete). This
may require changes to the single-node data store, such as
supporting version numbers. The user registers database
tables and their respective handlers with the RPC layer
by assigning each table a unique RPC request type; the
RPC subsystem invokes a table’s handler on receiving a
request with its table type.

The data store must support concurrent local read and
write access from all threads in a node. An alternate de-
sign is to create exclusive data store partitions per thread,
instead of per-machine partitions as in FaSST. As shown
in prior work [18], this alternate design is faster for lo-
cal data store access since threads need not use local
concurrency control (e.g., local locks) to access their ex-
clusive partition. However, when used for distributed
transactions, it requires the RPC subsystem to support
all-to-all communication between threads, which reduces
scalability by amplifying the required RECV queue size
(Section 4.4). We chose to sacrifice higher CPU efficiency

Nodes NICs CPUs (cores used, GHz)

FaSST (CX3) 50 1 1x E5-2450 (8, 2.1 GHz)
FaRM [12] 90 2 2x E5-2650 (16, 2.0 GHz)
DrTM+R [7] 6 1 1x E5-2450-v3 (8, 2.3 GHz)

Table 3: Comparison of clusters used to compare published
numbers. The NIC count is the number of ConnectX-3 NICs.
All CPUs are Intel® Xeon ® CPUs. DrTM+R’s CPU has 10
cores but their experiments use only 8 cores.

on small clusters for a more pressing need: cluster-level
scalability.

5.2.1 Transaction API

The user writes application-level transaction logic in a
worker coroutine using the following API.

AddToReadSet(K, *V) and AddToWriteSet(K, *V,
mode) enqueue key K to be fetched for reading or writing,
respectively. For write set keys, the write mode is either
insert, update, or delete. After the coroutine returns from
Execute (see below) the value for key K is available in
the buffer V. At this point, the application’s transaction
logic can modify V for write set keys to the value it wishes
to commit.

Execute() sends the execute phase-RPCs of the trans-
action protocol. Calling Execute suspends the worker
coroutine until all responses are available. Note that the
AddToReadSet and AddToWriteSet functions above do
not generate network messages immediately: requests are
buffered until Execute is called. This allows the RPC
layer to send all requests in with one Doorbell, and coa-
lesce requests sent to the same remote machine. Applica-
tions can call Execute multiple times in one transaction
after adding more keys. This allows transactions to choose
new keys based on previously fetched keys.

Execute fails if a read or write set key is locked. In
this case, the transaction layer returns failure to the appli-
cation, which then must call Abort.

Commit() runs the commit protocol, including vali-
dation, logging and replication, and returns the commit
status. Abort() sends unlock messages for write set keys.

6 Evaluation
We evaluate FaSST using 3 benchmarks: an object store,
a read-mostly OLTP benchmark, and a write-intensive
OLTP benchmark. We use the simple object store bench-
mark to measure the effect of two factors that affect
FaSST’s performance: multi-key transactions and the
write-intensiveness of the workload. All benchmarks in-
clude 3-way logging and replication, and use 14 threads
per machine.

We use the other two benchmarks to compare against
two recent RDMA-based transaction systems, FaRM [12]
and DrTM+R [7]. Unfortunately, we are unable do a



direct comparison by running these systems on our clus-
ters. FaRM is not open-source, and DrTM+R depends on
Intel’s Restricted Transactional Memory (RTM). Intel’s
RTM is disabled by default on Haswell processors due to
a hardware bug that can cause unpredictable behavior. It
can be re-enabled by setting model-specific registers [28],
but we were not permitted to do so on the CIB cluster.

For a comparison against published numbers, we use
the CX3 cluster which has less powerful hardware (NIC
and/or CPU) than used in FaRM and DrTM+R; Table 3
shows the differences in hardware. We believe that the
large performance difference between FaSST and other
systems (e.g., 1.87x higher than FaRM on TATP with
half the hardware resources; 1.68x higher than DrTM+R
on SmallBank without locality assumptions) offsets per-
formance variations due to system and implementation
details. We also use the CIB cluster in our evaluation to
show that FaSST can scale up to more powerful hardware.

TATP is an OLTP benchmark that simulates a telecom-
munication provider’s database. It consists of 4 database
tables with small key-value pairs up to 48 bytes in size.
TATP is read-intensive: 70% of TATP transactions read
a single key, 10% of transactions read 1–4 keys, and
the remaining 20% of transactions modify keys. TATP’s
read-intensiveness and small key-value size makes it well-
suited to FaRM’s design goal of exploiting remote CPU
bypass: 80% of TATP transactions are read-only and do
not involve the remote CPU. Although TATP tables can
be partitioned intelligently to improve locality, we do not
do so (similar to FaRM).

SmallBank is a simple OLTP benchmark that sim-
ulates bank account transactions. SmallBank is write-
intensive: 85% of transactions update a key. Our imple-
mentation of SmallBank does not assume data locality.
In DrTM+R, however, single-account transactions (com-
prising 60% of the workload) are initiated on the server
hosting the key. Similarly, only a small fraction (< 10%)
of transactions that access two accounts access accounts
on different machines. These assumptions make the work-
load well-suited to DrTM+R’s design goal of optimizing
local transactions by using hardware transactional mem-
ory, but they save messages during transaction execution
and commit. We do not make either of these assumptions
and use randomly chosen accounts in all transactions.

Although the TPC-C benchmark [26] is a popular
choice for evaluating transaction systems, we chose not
to include it in our benchmarks for two reasons. First,
TPC-C has a high degree of locality: only around 10% of
transactions (1% of keys) access remote partitions. The
speed of local transactions and data access, which our
work does not focus on, has a large impact on TPC-C per-
formance. Second, comparing performance across TPC-C
implementations is difficult. This is due to differences in
data structures (e.g., using hash tables instead of B-Trees
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Figure 7: Object store performance. The solid and patterned
bars show transaction throughput and RPC request rate, respec-
tively. The Y axis is in log scale.

for some tables), interaction of the benchmark with sys-
tem optimizations (e.g., FaRM and DrTM+R use caching
to reduce READs, but do not specify cache hit rates), and
contention level (DrTM+R uses 1 TPC-C “warehouse”
per thread whereas FaRM uses ≈ 7, which may reduce
contention).

6.1 Object store
We create an object store with small objects with 8-byte
keys and 40-byte values. We scale the database by using
1 million keys per thread in the cluster. We use work-
loads with different read and write set sizes to evalu-
ate different aspects of FaSST. An object store work-
load in which transactions read r keys, and update w of
these keys (on average) is denoted by O(r,w); we use
O(1,0), O(4,0), and O(4,2) to evaluate single-key read-
only transactions, multi-key read-only transactions, and
multi-key read-write transactions. All workloads choose
keys uniformly at random; to avoid RPC-level coalescing,
keys are chosen such that their primaries are on different
machines. Figure 7 shows FaSST’s performance on the
object store workloads on the two clusters.

6.1.1 Single-key read-only transactions

With O(1,0) FaSST achieves 11.0 million transactions
per second (Mtps) per machine on CX3. FaSST is bottle-
necked by the ConnectX-3 NIC: this throughput corre-
sponds to 11.0 million RPC requests per second (Mrps),
which is 96.5% of the NIC’s maximum RPC throughput
in this scenario.

On CIB, FaSST achieves 32.3 Mtps/machine and
is CPU-limited. This is because O(1,0) does not al-
low Doorbell batching for requests, leading to low per-
core throughput. Although CIB’s CPUs can saturate
the NIC without request Doorbell batching for an RPC
microbenchmark that requires little computation (Sec-
tion 3.3.1), they cannot do so for O(1,0) which requires
key-value store accesses.

Comparison: FaRM [12] reports performance for the
O(1,0) workload. FaRM uses larger, 16-byte keys and



32-byte values. Our FaSST implementation currently
supports only 8-byte keys, but we use larger, 40-byte
values to keep the key-value item size identical. Using
16-byte keys is unlikely to change our results.3

FaRM achieves 8.77 Mtps/machine on a 90-node clus-
ter with O(1,0). It does not saturate its 2 ConnectX-3
NICs and is instead bottlenecked by its 16 CPU cores.
FaSST achieves 1.25x higher per-machine throughput
with 50 nodes on CX3, which has close to half of FaRM’s
hardware resources per node (Table 3). Although O(1,0)
is well-suited to FaRM’s design goal of remote CPU
bypass (i.e., no transaction involves the remote CPU),
FaRM performs worse than FaSST. Note that with FaRM’s
hardware—2 ConnectX-3 NICs and 16 cores—FaSST
will deliver higher performance; based on our CIB results,
we expect FaSST to saturate the two ConnectX-3 NICs
and outperform FaRM by 2.5x.

6.1.2 Multi-key transactions

With multi-key transactions, FaSST reduces per-message
CPU use by using Doorbell batching for requests. With
O(4,0), FaSST achieves 1.5 and 4.7 Mtps/machine on
CX3 and CIB, respectively. (The decrease in Mtps from
O(1,0) is because the transactions are larger.) Similar to
O(1,0), FaSST is NIC-limited on CX3. On CIB, however,
although FaSST is CPU-limited with O(1,0), it becomes
NIC-limited with O(4,0). With O(4,0) on CIB, each
machine generates 37.9 Mrps on average, which matches
the peak RPC throughput achievable with a request batch
size of 4.

With multi-key read-write transactions in O(4,2),
FaSST achieves 0.78 and 2.3 Mtps/machine on CX3 and
CIB, respectively. FaSST is NIC-limited on CX3. On
CIB, the bottleneck shifts to CPU again because key-value
store inserts into the replicas’ data stores are slower than
lookups.

Comparison: FaRM does not report object store results
for multi-key transactions. However, as FaRM’s con-
nected transport does not benefit from Doorbell batching,
we expect the gap between FaSST’s and FaRM’s perfor-
mance to increase. For example, while FaSST’s RPC
request rate increases from 32.3 Mrps with O(1,0) to
37.9 Mrps with O(4,0), the change in FaRM’s READ
rate is likely to be negligible.

6.2 TATP
We scale the TATP database size by using one million
TATP “subscribers” per machine in the cluster. We use
all CPU cores on each cluster and increase the number
of machines to measure the effect of scaling. Figure 8

3On a single node, FaSST’s data store (MICA) delivers similar GET
throughput (within 3%) for these two key-value size configurations.
Throughput is higher with 16-byte keys, which could be because MICA’s
hash function uses fewer cycles.
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Figure 8: TATP throughput
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Figure 9: SmallBank throughput

shows the throughput on our clusters. On CX3, FaSST
achieves 3.6 Mtps/machine with 3 nodes (the minimum
required for 3-way replication), and 3.55 Mtps/machine
with 50 nodes. On CIB, FaSST’s throughput increases
to 8.7 Mtps/machine with 3–11 nodes. In both cases,
FaSST’s throughput scales linearly with cluster size.

Comparison: FaRM [12] reports 1.55 Mtps/machine for
TATP on a 90-node cluster. With a smaller 50-node clus-
ter, however, FaRM achieves higher throughput (≈ 1.9
Mtps/machine) [1]. On 50 nodes on CX3, FaSST’s
throughput is 87% higher. Compared to O(1,0), the
TATP performance difference between FaSST and FaRM
is higher. TATP’s write transactions require using FaRM’s
RPCs, which deliver 4x lower throughput than FaRM’s
one-sided READs, and up to 8x lower throughput than
FaSST’s RPCs (Section 4.5).

6.3 SmallBank
To scale the SmallBank database, we use 100,000 bank
accounts per thread. 4% of the total accounts are accessed
by 90% of transactions. (Despite the skew, the work-
load does not have significant contention due to the large
number of threads, and therefore “bank accounts” in the
workload/cluster.) This configuration is the same as in
DrTM [28]. Figure 9 shows FaSST’s performance on
our clusters. FaSST achieves 1.57–1.71 Mtps/machine
on CX3, and 4.2–4.3 Mtps/machine on CIB, and scales
linearly with cluster size.

Comparison: DrTM+R [7] achieves 0.93 Mtps/machine
on a cluster similar to CX3 (Table 3), but with more pow-
erful CPUs. FaSST outperforms it by over 1.68x on CX3,
and over 4.5x on CIB. DrTM+R’s lower performance
comes from three factors. First, ATOMICs lead to a funda-
mentally slower protocol. For example, excluding logging
and replication, for a write-set key, DrTM+R uses four
separate messages to read, lock, update, and unlock the
key; FaSST uses only two messages. Second, as shown
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Figure 10: TATP latency on CIB

in our prior work, ATOMICs perform poorly (up to 10x
worse than READs) on the ConnectX-3 NICs [16] used
in DrTM+R; evaluation on Connect-IB NICs may yield
better performance, but is unlikely to outperform FaSST
because of the more expensive protocol. Third, DrTM+R
does not use queue pair sharing, so their reported perfor-
mance may be affected by NIC cache misses.

6.4 Latency
For brevity, we discuss FaSST’s latency only for TATP
on CIB. Figure 10 shows FaSST’s median and 99th per-
centile latency for successfully committed TATP transac-
tions. To plot a throughput-latency curve, we vary the re-
quest load by increasing the number of worker coroutines
per thread from 1 to 19; each machine runs 14 threads
throughout. We use at most 19 worker coroutines per
thread to limit the RECV queue size required on a (hypo-
thetical) 100-node cluster to 2048 RECVs (Section 4.4).
Using the next available RECV queue size with 4096
RECVs can cause NIC cache misses for some workloads.
With one worker coroutine per thread, the total transaction
throughput is 19.7 Mtps with 2.8 µs median latency and
21.8 µs 99th percentile latency. Since over 50% of com-
mitted transactions in TATP are single-key reads, FaSST’s
median latency at low load is close to the network’s RTT.
This shows that our batching optimizations do not add
noticeable latency. With 19 worker coroutines per thread,
cluster throughput increases to 95.7 Mtps, and median and
99th percentile latency increase to 12.6 µs and 87.2 µs,
respectively.

7 Future trends
7.1 Scalable one-sided RDMA
A key limitation of one-sided RDMA on current com-
modity hardware is its low scalability. This limitation
itself comes from the fundamentally connection-oriented
nature of the Virtual Interface Architecture. Two attempts
at providing scalable one-sided RDMA are worth men-
tioning.

DCT: Mellanox’s Dynamically Connected Transport [2]
(DCT) preserves their core connection-oriented design,

but dynamically creates and destroys one-to-one connec-
tions. This provides software the illusion of using one
QP to communicate with multiple remote machines, but
at a prohibitively large performance cost for our work-
loads: DCT requires three additional network messages
when the target machine of a DCT queue pair changes: a
disconnect packet to the current machine, and a two-way
handshake with the next machine to establish a connec-
tion [8]. In a high fanout workload such as distributed
OLTP, this increases the number of packets associated
with each RDMA request by around 1.5x, reducing per-
formance.

A detailed evaluation of DCT on CIB is available in
FaSST’s source code repository. Here, we discuss DCT’s
performance in the READ rate benchmark used in Sec-
tion 3.3.1. We use 6 machines and 14 threads per ma-
chine, which issue 32-byte READs to machines chosen
uniformly at random. We vary the number of outstanding
READs per thread, and the number of DCT QPs used by
each thread. (Using only one DCT QP per thread limits its
throughput to approximately one operation per multiple
RTTs, since a QP cannot be used to READ from multiple
machines concurrently. Using too many DCT QPs causes
cache NIC misses.) We achieve only up to 22.9 Mrps per
machine—55.3% lower than the 51.2 Mrps achievable
with standard READs over the RC transport (Figure 1).

Portals: Portals is a less-widespread RDMA specifica-
tion that provides scalable one-sided RDMA using a con-
nectionless design [4]. Recently, a hardware implementa-
tion of Portals—the Bull eXascale Interconnect [10]—has
emerged, currently available only to HPC customers. The
availability of scalable one-sided RDMA may reduce the
performance gap between FaSST and FaRM/DrTM+R.
However, even with scalable one-sided RDMA, trans-
action systems that use it will require large or multiple
READs to access data stores, reducing performance. Fur-
ther, it is likely that RPC implementations that use scal-
able one-sided WRITEs will provide even better perfor-
mance than FaSST’s two-sided RPCs by avoiding the NIC
and PCIe overhead of RECVs. However, WRITE-based
RPCs do not scale well on current commodity hardware.

In this paper, we took an extreme position where we
used only RPCs, demonstrating that remote CPU bypass
is not required for high performance transactions, and
that a design using optimized RPCs can provide better
performance. If scalable one-sided RDMA becomes com-
monly available in the future, the best design will likely
be hybrid of RPCs and remote bypass, with RPCs used
for accessing data structures during transaction execu-
tion, and scalable one-sided WRITEs used for logging
and replication during transaction commit.



7.2 More queue pairs
Our experiments show that the newer Connect-IB NIC
can cache a larger number of QPs than ConnectX-3 (Fig-
ure 2). Just as advances in technology yield NICs that
are faster and have more/better cache, newer CPUs will
also have more cores. We showed earlier that sharing
QPs between only 2 threads causes CPU efficiency to
drop by several factors (Figure 3). Avoiding QP sharing
with next-generation CPUs (e.g., 28 cores in Intel’s up-
coming Skylake processors) on a 100-node cluster will
require NICs that can cache 2800 QPs—7 times more
than Connect-IB’s 400 QPs. This trend lends additional
support to datagram-based designs.

7.3 Advanced one-sided RDMA
Future NICs may provide advanced one-sided RDMA
operations such as multi-address atomic operations, and
B-Tree traversals [23]. Both of these operations require
multiple PCIe round trips, and will face similar flexibility
and performance problems as one-sided RDMA (but over
the PCIe bus) if used for high-performance distributed
transactions. On the other hand, we believe that “CPU
onload” networks such as Intel’s 100 Gbps OmniPath [6]
are well-suited for transactions. These networks provide
fast messaging over a reliable link layer, but not one-sided
RDMA, and are therefore cheaper than “NIC offload”
networks such as Mellanox’s InfiniBand. FaSST requires
only messaging, so we expect our design to work well
over OmniPath.

8 Related work
High-performance RDMA systems: FaSST draws
upon our prior work on understanding RDMA perfor-
mance [16], where we demonstrated the effectiveness of
Doorbell batching for RDMA verbs. A number of recent
systems have used one-sided verbs to build key-value
stores and distributed shared memory [20, 21, 11, 21].
These systems demonstrate that RDMA is now a practical
primitive for building non-HPC systems, though their one-
sided designs introduce additional complexities and per-
formance bottlenecks. FaSST’s two-sided RPC approach
generalizes our approach in HERD [15]. HERD used a
hybrid of unreliable one-sided and two-sided RDMA to
implement fast RPCs in a client-server setting; FaSST
extends this model to a symmetric setting and further
describes a technique to implement reliability.

Distributed transactions in the datacenter: Like
FaSST, FaRM [12] uses primary-backup replication and
optimistic concurrency control for transactions. FaRM’s
design (unlike FaSST) is specialized to work with their
desire to use one-sided RDMA verbs. FaRM also pro-
vides fast failure detection and recovery, and a sophis-
ticated programming model, which was not a goal of

this work. Several projects use one-sided ATOMICs for
transactions [28, 7, 5]. Though an attractive primitive,
ATOMICs are slow on current NICs (e.g., ConnectX-3
serializes all ATOMIC operations [16]), use connected
QPs, and fundamentally require more messages than an
RPC-based approach (e.g., separate messages are needed
to read and lock a key). Calvin [25] uses conventional
networking without kernel bypass, and is designed around
avoiding distributed commit. Designs that use fast net-
works, however, can use traditional distributed commit
protocols to achieve high performance [12, 28].

9 Conclusion
FaSST is a high-performance, scalable, distributed in-
memory transaction processing system that provides se-
rializability and durability. FaSST achieves its perfor-
mance using FaSST RPCs, a new RPC design tailored
to the properties of modern RDMA hardware that uses
two-sided verbs and datagram transport. It rejects one of
the seemingly most attractive properties of RDMA—CPU
bypass—to keep its communication overhead low and its
system design simple and fast. The combination allows
FaSST to outperform recent RDMA-based transactional
systems by 1.68x–1.87x with fewer resources and mak-
ing fewer workload assumptions. Finally, we provide the
first large-scale study of InfiniBand network reliability,
demonstrating the rarity of packet loss on such networks.
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