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Abstract

Providing online access to sensitive data makes web

servers lucrative targets for attackers. A compromise of any

of the web server’s scripts, applications, or operating sys-

tem can leak the sensitive data of millions of customers. Un-

fortunately, many systems for stopping data leaks require

considerable effort from application developers, hindering

their adoption.

In this work, we investigate how such leaks can be pre-

vented with minimal developer effort. We propose CLAMP,

an architecture for preventing data leaks even in the

presence of web server compromises or SQL injection

attacks. CLAMP protects sensitive data by enforcing strong

access control on user data and by isolating code running

on behalf of different users. By focusing on minimizing

developer effort, we arrive at an architecture that allows

developers to use familiar operating systems, servers, and

scripting languages, while making relatively few changes to

application code – less than 50 lines in our applications.

1. Introduction

To decrease costs and increase consumer convenience, busi-

nesses and governments make increasingly large amounts

of sensitive information available online [7,16]. While con-

venient, online services are attractive targets for attackers,

since a single flaw in a service’s implementation can leak

the sensitive data of millions of users [9, 22, 27]. Indeed,

a recent study of over 500 data breaches found that 73%

were the result of external attacks [28].

The growth of web services is aided by the availabil-

ity of commodity web application stacks that simplify

development and deployment. For example, the Linux,

Apache, MySQL, Perl/PHP (LAMP) stack provides a turn-

key system that allows even inexperienced programmers to

quickly and easily deploy a full-blown web service. As a

result, this model, ubiquitous in online services, tends to

promote features and ease of use at the cost of security.

While LAMP-style stacks simplify development, they

significantly increase the size of an application’s Trusted

Computing Base (TCB), the collection of code that must

be correct to prevent a data leak. The TCB of a typical web

application includes not only the large operating system

and webserver codebases, but also a vast collection of

scripts and third-party libraries. These scripts parse input,

perform access control, and generate dynamic content, and

yet this code is often written by inexperienced program-

mers and seldom subject to peer review. Unfortunately,

the monolithic LAMP-style approach means that a single

vulnerability anywhere in a web application’s software

stack will often expose all user data.

In this work, we describe CLAMP, an architecture that

adds data Confidentiality to the LAMP model while retain-

ing the ease of use that has made it so popular. CLAMP

prevents web server compromises from leaking sensitive

user data by (1) ensuring that a user’s sensitive data can

only be accessed by code running on behalf of that user,

and (2) isolating code running on behalf of different users.

While previous work has explored techniques to prevent

data leaks (Section 8), these approaches typically require

significant programmer effort to port existing code to new

APIs. In this work, we explore the extent to which we

can reduce a developer’s burden for securing current web

applications. We find that, by focussing on the specific

environment of web applications, we can greatly simplify

the adoption of data protection. In particular, instead of

dynamically tracking which pieces of code and data a user

has touched, we bundle everything the user might touch

into an isolated environment, making enforcement (and

adoption) much simpler. While this approach may not work

in all application domains, for web applications, CLAMP

allows web developers to continue using the operating

systems, applications, and coding platforms to which they

are accustomed, with minimal changes to application code;

we changed less than 50 lines of code in our applications.

We developed a prototype using platform virtualization

(based on the Xen hypervisor [1]) to isolate system com-

ponents on the web server. A trusted User Authentication

module verifies user identities and instantiates a new virtual

web server instance for each user. The database queries

issued by a particular virtual web server are constrained by

a trusted Query Restrictor to access only the data for the

user assigned to that web server.

Our experience adapting three real-world LAMP appli-

cations to use CLAMP demonstrates the benefits of an

architecture designed for compatibility with web appli-

cation stacks. It took us less than two hours to adapt

osCommerce, a popular open-source e-commerce LAMP

application used by over 14,000 stores [19], to work on

CLAMP. MyPhpMoney [3], a personal finance manager,

required comparable effort. HotCRP [10], a web application

used to manage the paper review process for academic

conferences (including IEEE S&P 2009), offered us a



‘worst-case’ test of porting complexity, due to its highly

configurable policies that determine what data (e.g., author

names) should be considered private. Despite having no

previous exposure to the software, we fully ported HotCRP

to CLAMP; the port changed six lines of code, and devel-

oping the access control policy took less than two days.

Finally, our unoptimized prototype suggests that the user-

perceived slowdown due to CLAMP’s use of virtualization

is not prohibitive (typical request latency for osCommerce

is 5-10 ms slower than native). While platform virtual-

ization increases hardware resource requirements, ongoing

research has already demonstrated significant efficiency

gains [5, 13, 15]. As Moore’s law continues to reduce the

price of CPU cores and memory, CLAMP will be increas-

ingly attractive in comparison to the costs of rewriting

applications or, worse yet, dealing with a large-scale data

leak. Just as e-commerce websites currently accept the

increased overhead of SSL as a good security trade-off, the

$5.4 million price-tag for a median-sized data leak [21,28]

may justify CLAMP’s increased hardware requirements.

2. Problem Definition

2.1. Goals

Our primary goal is to prevent a web server compromise

from leaking sensitive user data. We achieve this goal

by ensuring that sensitive data in the database is only

released to code running on behalf of a user who has

authenticated successfully and has legitimate access to

that data. We then protect this code from code operating

on behalf of other users. We aim to enable these strong

data protection guarantees for commodity web applications

while minimizing the porting effort required.

2.2. Assumptions

Vulnerable Web Server. The adversary can exploit vul-

nerabilities in the web server such that she can run arbitrary

code with root privileges.

Sensitive Data Definition. A developer of the web ser-

vice can accurately identify the sensitive data contained

within the database and accurately map the data to the

user to whom it belongs. CLAMP will only protect data

that is explicitly identified as sensitive. As we show in

Sections 4 and 6, developers already implicity identify such

information in their database schemas and application code.

Thus, making the labels explicit for CLAMP is a relatively

simple process compared with previous approaches.

User Authentication. An uncompromised web server can

accurately identify the users of the web service. CLAMP’s

design is orthogonal to the problem of user authentication,

and hence does not address other attacks (such as phishing

or cross-site scripting) that compromise user authentication

without compromising the webserver.

No Insider Attacks. While code on the webserver may

contain vulnerabilities, we assume it does not already

contain malicious code. CLAMP is not designed to prevent

attacks by insiders who have legitimate access to change

the web server’s code.

For ease of exposition, we also assume that the site pro-

tected by CLAMP employs one or more webservers that

connect to a database executing on a dedicated machine.

However, CLAMP can also be applied to more complex,

multi-tiered architectures. At each tier, a trusted component

isolates code running on behalf of different users. Trusted

components coordinate to ensure that only processes work-

ing for the same user can communicate with each other.

2.3. The Problems with LAMP

LAMP typically refers to the combination of the Linux op-

erating system, an Apache web server, a MySQL database,

and a collection of PHP or Perl scripts. In this paper, we use

LAMP to refer more generally to the dynamic manipulation

and delivery of content generated from data stored in a

database. Our model encompasses web applications using

other languages (e.g., Python and Ruby), databases (e.g.,

PostgreSQL), web servers (e.g., Microsoft’s IIS), and OSes

(e.g., Windows and BSD).

In a LAMP application, the scripts on the web server

typically make all access control decisions. These scripts

are configured to access the database using a privileged

account. As a result, the database is powerless to defend

itself from a compromised web server. The web server’s

large TCB and the tendency to spread access control logic

throughout a web application’s scripts makes it particularly

difficult to verify whether the intended access restrictions

are actually enforced, even when the webserver has not

been compromised.

3. Architecture

In this work, we aim to protect the database component of

a LAMP system from compromises of the web server or

applications running on it. To overcome the weaknesses

of LAMP described in Section 2.3, we identify three

interdependent principles necessary to provide information-

flow control in web applications (see Figure 1). First, we

must accurately identify the code running on behalf of

each authenticated user. Such identification can only be

meaningful if we enforce isolation between code acting

for different users. Finally, code acting on behalf of a user

should only be authorized to view data appropriate for that

user. Below, we provide an overview of how the CLAMP

architecture achieves these principles, followed by a more

detailed examination of CLAMP’s components.



Principle Description Provided By

Code Identity Binds executing server code to a user’s identity User Authenticator (UA)

Code Isolation Isolates code running on behalf of different users CLAMP Isolation Layer

Data Access Control Prevents one user from retrieving another user’s data

from the database

Query Restrictor (QR)

Figure 1. Principles for preventing data leaks. The rightmost column indicates which CLAMP component satisfies each principle.

3.1. CLAMP Design Overview

The primary challenge in developing the CLAMP archi-

tecture is to provide the principles from Figure 1 while

requiring a minimal amount of developer effort. We meet

this challenge using two key insights.

First, existing web applications already contain the

access-control logic necessary to authenticate users and

authorize data access; however, a vulnerability anywhere

in the web server’s TCB can compromise this security-

critical code. With CLAMP, we extract the existing user

authentication logic and bundle it into an isolated User

Authenticator (UA). We also extract the data access control

logic and bundle it into an isolated Query Restrictor (QR)

that mediates all web server access to the database. This

approach allows us to recycle existing code and logic while

simultaneously improving the security and auditability of

these critical components.

Second, much of the complexity of applying general-

purpose information-flow techniques (Section 8) to web

applications arises from the fact that such systems track

information flow at a fine granularity. However, for most

web applications, a coarse-grained approach suffices. In-

deed, rather than try to identify which particular pieces of

memory, processes, or code segments a given user is using

at any particular moment, CLAMP transparently assigns

each user to an entire virtual web server that handles

all of her interaction with the website. Thus, the virtual

web server can be treated as a black box with a single

label (the user’s identity). All activity, including database

requests, from that web server can be attributed to that

user, and hence CLAMP ensures that it only operates on

data belonging to that user. By isolating the virtual web

servers from one another, CLAMP ensures that any damage

a user does to her web server will only impact that one

user; i.e., even if the user compromises her web server, she

can retrieve only her own sensitive data from the database.

Furthermore, a legitimate user cannot be affected by the

actions of any other user, preventing a compromised virtual

web server from extracting sensitive data from another

user’s virtual web server.

3.2. CLAMP Component Details

At a high level (Figure 2), clients contact the web appli-

cation using SSL, and the Dispatcher assigns each client

to a fresh virtual web server. When a user authenticates
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Figure 2. CLAMP Architecture. Clients connect to the
web application via the Dispatcher, which maps each SSL
connection to a fresh virtual web server (a WebStack). The
WebStack authenticates to the User Authenticator which up-
dates the mapping of WebStack identity to user identity. The
Query Restrictor limits a WebStack’s view of the database to
only include data belonging the WebStack’s user.

to her virtual web server, the web server presents the

user’s authentication credentials (e.g., the user name and

password) to the User Authenticator (UA). The UA verifies

the credentials and labels the web server with the user’s

identity, providing code identity. The Query Restrictor

(QR) mediates the virtual web servers’ access to the

database based on the label assigned to each authenticated

virtual web server, hence providing data access control.

Finally, CLAMP provides strong isolation between the

virtual web servers and strictly controls communication

between CLAMP components. CLAMP allows each virtual

web server to communicate with the UA and the QR

but prevents the virtual web servers from communicating

directly with the database or with each other. The database

is completely isolated, except from the QR, and both the

UA and QR are isolated from the Internet.

Below, we provide additional details on each component

from Figure 2, starting with a discussion of how each

component is isolated from the rest.

3.2.1. CLAMP Isolation Layer. The Isolation Layer

isolates code acting on behalf of different users by instan-

tiating a separate virtual web server (a WebStack) for each

user and enforcing isolation between the WebStacks. It also

restricts communication between the CLAMP components

as shown in Figure 2 (and in more detail in Figure 4). Sec-

tion 6.5 describes our implementation of these restrictions.

The code isolation required for CLAMP can be provided

by mechanisms such as user-level processes, a chroot

jail, or even threads within a Java virtual machine. For

our prototype, we use platform virtualization (e.g., Xen [1]



or VMware ESX Server [29]); each WebStack operates

inside its own virtual machine. Other isolation primitives

would present different tradeoffs with respect to isolation,

performance, and compatibility.

Compared with a higher-level isolation primitive, plat-

form virtualization has several benefits. First, it makes

our prototype instantly compatible with a wide range of

existing LAMP applications. For example, the WebStack

may run Apache on top of Linux, or it could equally run

Microsoft’s IIS on top of Windows. Developers can use

existing tools, such as VMware’s Converter1 or Parallels’

Transporter,2 to create a WebStack directly from an existing

physical web server. Second, leveraging the inherent iso-

lation between code running in different VMs eliminates

the need to rewrite server code not originally designed to

strictly isolate user data. Finally, platform virtualization im-

proves security, since an attacker seeking to break per-user

isolation must not only compromise root-privileged code

on the WebStack, but must also exploit the significantly

more limited hypervisor interface to the virtualization layer.

While using a VMM introduces additional memory and

CPU load, our benchmarks (Section 7) indicate that an

efficient hypervisor coupled with VM memory sharing can

make these overheads tolerable.

3.2.2. Dispatcher. The Dispatcher allocates a fresh Web-

Stack whenever a new client connects to the server and

forwards all requests from that client to the same WebStack.

For web applications that use HTTPS (our primary focus),

the Dispatcher can use the SSL session ID to identify

which TCP connections originate from the same client’s

browser. A non-HTTPS Dispatcher might instead rely on

a cryptographic session cookie to achieve the same result.

To reduce load, the Dispatcher forwards requests for the

public portions of a site (e.g., non-HTTPS pages) to a single

WebStack that handles such requests on behalf of all users.

3.2.3. Virtual Web Servers (WebStacks). Each Web-

Stack is instantiated from a master image of the web-server

software stack and is dedicated to a single client or user.

If administrative changes are made to the web content

or configuration, the master can be modified, and newly

instantiated WebStacks will reflect these changes. Since

data must not propagate from a user’s WebStack back to the

master image, work done on behalf of one user cannot be

cached to improve another user’s performance. However,

caching can be done proactively by updating the master

memory image to include, for example, the page displaying

a new product promotion.

CLAMP maintains an identity for each WebStack, which

must be a valid user’s identity to enable access to sensitive

information in the database. When first instantiated by the

Dispatcher, WebStacks default to a restricted identity that

1. http://www.vmware.com/products/converter/

2. http://www.parallels.com/en/products/desktop/features/transporter/

can only access public information in the database. This

allows a user to, for example, browse products prior to

login. Section 4 describes these data access policies.

To acquire a user’s identity, a WebStack must authen-

ticate to the UA. This requires a small patch3 to the

web application’s code to forward the user’s authentication

credentials (e.g., user name and password) to the UA. Once

the UA verifies the credentials, the WebStack is labeled

with the identity of the authenticated user.

When a WebStack determines that the user has ended her

interaction with the web application (e.g., when the user

clicks on a logout link or an inactivity timer expires), it

sends a termination notice to the QR. The QR removes the

mapping from WebStack to user identity, uses the Isolation

Layer’s management interface to destroy the WebStack, and

forwards the termination notice to the Dispatcher, which

closes its connection to the client and WebStack.

To preserve logging data, the web server in each Web-

Stack is configured to write its logs to an append-only

database. All major web servers provide this functionality.

3.2.4. User Authenticator (UA). Because the WebStacks

are untrusted, CLAMP uses a special-purpose module, the

UA, to authenticate users. When the WebStack provides

the UA with the user’s credentials, the UA performs the

same verification check that the web server would normally

do. For instance, the UA may check that the hash of the

supplied password matches the user’s entry in the database,

which the UA accesses via the QR. Thus, creating the UA

for a particular LAMP application is straightforward. We

simply extract the existing user authentication logic from

the application and replace it with calls to the UA.

3.2.5. Query Restrictor (QR) + Database. The QR (see

Section 4 for details) ensures that a WebStack can only

access database content for which its identity is authorized.

Since only the UA can change a WebStack’s identity, even a

fully compromised WebStack (or a WebStack with a SQL-

injection vulnerability) cannot access unauthorized data.

4. The Query Restrictor

The Query Restrictor (QR) is a trusted module that re-

stricts virtual web servers’ (WebStacks’) access to sensi-

tive database content. In our implementation, the QR is

a specialized SQL proxy that interposes on all database

traffic without requiring changes to the WebStacks. When

a WebStack acting on behalf of a user attempts to connect

to the database, the QR instead connects the client to a

separate restricted database tailored specifically to that

user. This restricted database has a schema identical to that

of the full database, but contains no sensitive data except

data available to that WebStack’s user. The QR builds a

restricted database by interpreting a web application’s data

3. For our applications (Section 6), the patch added 5-10 lines of code.



Table Name Schema

Users cust id, email, pw hash

Orders cust id, order id, cc num

Shipments order id, address

(a) Example Database Tables

Table Access Predicate

Users cust id = UID

Orders cust id = UID

Shipments Shipments.order id = Orders.order id

and Orders.cust id = UID

(b) Policy for the schema in Figure 3(a).

Figure 3. Example database with its access policy.

access policy, which enumerates sensitive tables in the

database and indicates, for a given user, what rows the user

can legitimately access. Using existing database function-

ality, CLAMP can provide these restricted databases effi-

ciently, without the need to populate temporary databases

or perform expensive copies.

We now describe how to associate database entries with

specific users and how data access policies enable a generic

QR to protect sensitive data.

4.1. Identifying a User’s Sensitive Data

To construct a restricted database for a particular user,

the QR must be able to identify the data that belongs to

that user. Fortunately, any multi-user web application must

already explicitly or implicitly tag each user’s data so that

it can be retrieved when the user logs into the website.

For instance, database tables containing user information

typically include a user identifier (UID) field that enables

the application to differentiate one user’s data from an-

other’s. For example, the simplified online shopping cart

schema shown in Figure 3(a) uses the cust id value as a

UID. Even tables that do not explicitly contain a UID are

implicitly linked back to a single user. For instance, each

row in the ‘Shipments’ table links back to a single customer

via order id field shared between the ‘Shipments’ table and

the ‘Orders’ table.

While this example is simple, in our sampling of real-

world schemas, we found the task of attributing sensi-

tive data to a system-wide UID value to be surprisingly

straightforward, even in large systems. Developers often

intentionally design database schemas to minimize the

complexity of the code to retrieve user data.

CLAMP, using data access policies as described below,

relies on this same UID value to identify what data a

WebStack acting on behalf of a particular user is permitted

to access. The QR learns of a new binding between a

WebStack and a UID from the UA, which reports each

successful authentication request made by a WebStack.

With this approach, CLAMP effectively implements ac-

cess control policies identical to those intended by the

application developer, but with two key improvements.

First, CLAMP provides a straightforward way to express

and audit access control policies using a single policy

file instead of using checks scattered throughout the code.

Second, CLAMP’s QR enforces access control in a small

isolated module that is robust to web-server compromises.

4.2. Data Access Policies

The QR uses a data access policy and the UID of a Web-

Stack to construct the user’s restricted database. The data

access policy encapsulates application-specific knowledge

of the database’s schema, and hence allows the QR’s imple-

mentation to be independent of the application’s schema.

The policy is parameterized based on the user’s UID and

describes which tables and potentially which rows within

those tables the user can access. More specifically, the data

access policy for a database consists of an access predicate

P for each table in the database. In other words, if access

predicate PT is applied to table T in the full database, then

the restricted database table TR will contain only the rows

that match the predicate.

Read Restrictions. Access to an entire table can be

permitted or denied using the predicates ‘True’ or ‘False’.

The more interesting case is when a WebStack is permitted

to access some, but not all, rows in a table. For example,

applying the predicate ‘cust id = UID’ to the ‘Orders’ table

indicates that the restricted database for a WebStack asso-

ciated with a particular UID contains only the rows of the

table where the value of column ‘cust id’ is equal to that

UID. Such a policy would prevent a malicious WebStack

from accessing sensitive credit card numbers (‘cc num’

values) stored with orders for other users. Figure 3(b) shows

a complete data access policy for the example schema.

In more complex schemas, a table may contain sensitive

data without having a column specifying a UID. Data

specific to a user is accessed with a SQL inner join.4 A

single “join” predicate could refer to many tables in the

worst case. Fortunately, the joins required by a CLAMP

access predicate directly map to joins the developer must

already implement in order to enforce those access controls

at the application layer. Since database schemas are often

created in tandem with the software, the developer has a

strong incentive to keep access control simple. The data ac-

cess policies for osCommerce, MyPhpMoney, and HotCRP

(see Section 6 and Appendices A and B) provide further

evidence that crafting access policies is straightforward for

anyone familiar with the database schema.

4. An SQL inner join combines two tables A and B into a new table
that has a row for each pair of rows in the original tables (i.e., A×B).
Inner joins are often subject to an SQL “where” clause requiring that the
value of a column X in A matches the value of a column Y in B.



Write Restrictions. CLAMP’s access policies also con-

trol whether a user may modify (update, insert, or delete)

rows in her restricted database, since modifying database

contents can have important confidentiality implications.

For example, a malicious WebStack that could change

the passwords of other users could then authenticate as

those users and access their data. Thus, for each restricted

database, the CLAMP policy specifies whether the database

is read-only (the default), fully modifiable, or modifiable

only in conformance with the restricted database’s access

predicate. The last option ensures that any user modi-

fications match the predicate that defines the restricted

database. For example, if the access predicate restricts the

database to only contain rows with the user’s UID, then

updates and inserts will only succeed if they include the

appropriate UID.

One additional complication arises if the schema con-

tains “link tables”. Link tables allow the database to express

many-to-many relationships. For example, a conference-

management application may need to associate multiple au-

thor accounts with a single paper entry. To do so, a database

designer might create a table (e.g., Author2Paper) with

two columns, one for author ID and one for paper ID. Each

author on a paper would have a single row in the table

associating their user ID with the paper’s ID. The access

restrictions on the paper table will then depend on the pres-

ence of an appropriate “link” entry in the Author2Paper

table associating the paper with its authors.

Unfortunately, if we apply the straightforward predicate-

based approach to link tables, an adversary can gain

access to other users’ sensitive data. For example, the

Author2Paper table would normally have an access

predicate that forbids the insertion of rows unless those

rows have the current user’s UID. However, an adver-

sary could exploit this by inserting a new row into the

Author2Paper table with her own UID but with the ID

of someone else’s paper. The access predicate on the paper

table, which relies on the Author2Paper table, would

then allow the adversary to access that paper.

Fortunately, we can extend our basic predicates to protect

link tables by applying two simple rules. New links (i.e.,

entries in the link table) may only be added if 1) the

object of the link has no existing links (e.g., a new paper

entry was just inserted), or 2) the current user already

has an existing link to the object of the new link. The

second condition allows a user to associate other users with

an entry she created. For example, the author who first

creates a paper entry may associate other users with that

paper. We can automatically identify link tables that require

these extended restrictions by searching for writable tables

that appear in the WHERE clause of another table’s read

restriction policy.

In our experiments (Section 6), we found that these

modification restrictions sufficed to protect user data.

4.3. Authentication Classes

The above description assumes that database requests are

made on behalf of a user of the web application. This

assumption, however, is sometimes violated, e.g., by new

users registering for the first time or by privileged admin-

istrative consoles that offer broad access to sensitive data

to special users identified as administrators.

CLAMP provides the flexibility to handle these scenarios

by using authentication classes. WebStacks are tagged with

an authentication class identifier (e.g., new, user, admin)

as well as a UID, and the QR enforces a different data

access policy depending on the class of the requesting

WebStack. For example, at a university, students should

only be permitted to access their own schedules, but

teaching assistants may be allowed to access the list of all

of the students in the particular class they are assisting with.

Meanwhile, a professor should be able to view and update

the grades for the students in her class, but not the grades

for other classes or other students. Each of these roles can

be encapsulated by a customized data access policy.

Authentication classes also permit WebStacks to access

the database prior to authentication, for example, to retrieve

generic data like product descriptions or promotions. For

this reason, the QR also has a special nobody policy that

denies access to all tables containing sensitive data. Users

registering with a web application for the first time may

also be members of the nobody class until they have

registered as a user of the system, at which point their

WebStack can be upgraded to a user class and labeled

appropriately with the newly created UID.

4.4. Enforcing Data Access Control

WebStacks have neither network-level access to the

database nor database login credentials, meaning that Web-

Stacks must communicate with the database through the

QR proxy or not at all.

For each valid authentication request seen by the UA,

the UA passes a (WebStackID, UID, class) triple to the

QR, which stores the mapping in its WebStack-associations

table (see Figure 2). When the QR receives a database

connection request from WebStacki, the QR finds the

corresponding classi and UIDi values in its associations

table. The QR then uses the data access policy defined for

classi to instantiate a temporary database containing only

data accessible by user UIDi.

The QR leverages standard database features—database

views and user permissions—to efficiently limit WebStack

access to sensitive data based on data access policies. Re-

lational databases already implement views using efficient

mechanisms that automatically translate view queries into

queries on the full database. Thus, no temporary databases

or expensive copies are required for CLAMP to implement

data access policies. We discuss additional details, includ-

ing support for data modifications, in Section 6.2.
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Figure 4. Permitted Communication. Each row indi-

cates whether the component in the left column may

communicate with the component in the top row. Note

that communication is not necessarily symmetric.

5. Security Analysis

CLAMP relies on trusted system components to enforce its

security properties. These CLAMP components have three

primary sources of attack robustness: a reduced trusted

computing base (TCB), a minimized interface for each

component of the TCB, and defense-in-depth. CLAMP

reduces its TCB by selecting only the code/policy it must

trust for data protection and extracting it from the web

server stack into small modules with minimal interfaces.

These smaller chunks are more amenable to static analysis

or audit and are more easily (re)written using programming

languages that facilitate secure coding. By reducing the

interfaces to trusted components, CLAMP minimizes their

attack surfaces and simplifies their implementation. Fi-

nally, CLAMP incorporates defense-in-depth using a tiered

communication structure designed to enhance isolation

(Figure 4). The result is an architecture that requires the

compromise of at least two distinct component types (a

WebStack and a more trusted component) to gain access to

the database.

Below, we consider the security impact of an attacker

compromising each component (Compromise Result) in

CLAMP and each component’s vulnerability to an attack

(Attack Surface). We also consider additional attacks, such

as Denial-of-Service and covert channels.

5.1. Dispatcher

Compromise Result: Because the Dispatcher holds the

server’s SSL private key and terminates all SSL connec-

tions, its compromise gives an attacker complete control

over all active client sessions. An attacker could sniff

sensitive data including login credentials, and extract any

sensitive data the web application exposes during normal

operation. However, users who do not connect while the

Dispatcher is compromised are not at risk. Thus, the

Dispatcher is in the TCB for active users. A Dispatcher

compromise does not help the attacker launch a subsequent

attack on the UA or the QR, since it is not directly

connected to either component (Figures 2 and 4).

Attack Surface: The Dispatcher, which listens for incoming

SSL connections on a TCP port, is the only CLAMP

component that is directly accessible from the Internet. Its

attack surface is limited to the VM OS’s TCP stack and

the SSL implementation running on top of it (in our case,

OpenSSL) since no other ports are externally accessible.

The Dispatcher application itself reads and writes socket

data without inspecting the contents.

5.2. Web server Virtual Machine (WebStack)

Compromise Result: The compromise of a WebStack ex-

poses any sensitive data that the WebStack has retrieved

from the database on behalf of the user. However, since

the WebStack is vulnerable to attacks only from the client

for whom it is retrieving data, no invalid data access

occurs. Thus, the WebStack is not in CLAMP’s TCB. A

compromise of a WebStack may be a stepping stone to

attack the UA or QR.

Attack Surface: Vulnerabilities either in the HTTP server

itself or in web application code can lead to the compromise

of a WebStack. The size of its code base and the complexity

of the interface it exposes make the web server a prime

target for compromise. (This is the major class of attacks

that CLAMP is designed to thwart.) Because each user re-

ceives a fresh WebStack image independent of other clients

and because the Dispatcher sends traffic from each SSL

connection to a unique WebStack that is isolated from all

other WebStacks, no party except the user herself can even

reach a particular WebStack. As a result, assuming that

the pristine WebStack does not contain malware, legitimate

users need not worry about other parties compromising

their WebStack.

5.3. User Authenticator (UA)

Compromise Result: A malicious UA can assign arbitrary

UID and class identifier credentials to any WebStack. As

a result, an attacker that compromises both a WebStack

and the UA could let the WebStack iteratively masquerade

as each legitimate user, eventually extracting all sensitive

user information from the database. Note that without com-

promising a WebStack, the UA cannot communicate with

external systems. For web applications with an “admin”

class, a compromised UA could also escalate the privilege

of the malicious WebStack to increase information access.

As a result, the UA is included in CLAMP’s TCB.

Attack Surface: The UA is only reachable by an attacker

that has successfully compromised a WebStack. The UA’s

interface is extremely narrow: it accepts UDP data from

WebStacks consisting solely of user credentials. The UA

then passes this data to the application-specific user au-



thentication code. Thus, the interface exposed to WebStacks

includes the IP/UDP stack of the OS and an easily verifiable

(fewer than 200 lines of code) authentication server.

5.4. Query Restrictor (QR)

Compromise Result: The QR has full access to the database,

meaning that its compromise exposes all of a web applica-

tion’s sensitive data. The QR is part of CLAMP’s TCB.

Attack Surface: Like the UA, network level access to the

QR interface is only possible via a compromised WebStack.

The QR receives simple network messages from the UA to

add WebStack-associations and from WebStacks to remove

associations. As with the UA, such simple server code per-

mits manual verification. The QR interface, however, also

includes the code to proxy WebStack database connections.

Our analysis of the full-fledged open source MySQL proxy

we use in our implementation suggests that a bare-bones

proxy capable of acting as a QR would require under 5,000

lines of code. Manually auditing and/or rewriting the proxy

in a robust programming language would be drastically

easier than a similar procedure for a WebStack and its

significant server software stack.

The QR uses database views to enforce database access

policies. Unfortunately, specific database implementations

may have vulnerabilities that allow an attacker to gain full

access to a database from a view. While patches for the

database software will presumably be issued eventually, it

may actually be easier and faster to patch the QR until the

database patch can be tested and deployed.

5.5. Database

Compromise Result: A database compromise yields all

sensitive data to the attacker, so the database is also in

CLAMP’s TCB.

Attack Surface: The QR is the only module permitted to

communicate with the database. This provides defense-

in-depth, as a compromise of web server code neither

exposes database credentials nor provides a channel for

direct network communication with or attacks upon the

database server. An attacker must compromise at least two

components to gain direct access to the database.

5.6. Isolation Layer

Compromise Result: CLAMP must trust a security kernel,

in our prototype a VMM, both to isolate WebStacks from

each other and to protect trusted components like the UA

and QR. A compromised Isolation Layer could take over

these trusted components, exposing all sensitive data. The

Isolation Layer is in CLAMP’s TCB.

Attack Surface: When instantiated with a VMM, the Iso-

lation Layer is difficult to compromise, since a malicious

guest OS sees only a well-defined virtual hardware inter-

face. The code size of popular VMMs such as Xen [1]

is typically several orders of magnitude smaller than a

commodity OS, or security architectures that apply to the

OS (e.g., Flume [11] and SELinux [25,26]). Recent counts

estimate Xen at 83K lines of code [14] versus nearly 5

million for the Linux kernel [32]. While these numbers

can be reduced by trimming unnecessary functionality, the

Linux kernel is likely to remain significantly larger than

the Xen VMM. Using a specialized microkernel, such

as L4 [6], would reduce the TCB by another order of

magnitude.

Another potential route to Isolation Layer compromise

is its management interface. Only the QR can access this

interface (in order to recycle WebStacks that have finished

a client session). Since a QR compromise already exposes

all sensitive data, the internal management interface does

not provide a useful attack vector.

5.7. Other Potential Attacks

Covert Channels and Side Channels. To prevent data

leaks, we must consider CLAMP’s vulnerability both to

covert channels (surreptitious communication between two

malicious entities) and to side channels (data leaked by an

honest party). Since users have no interest in using a covert

channel to leak their own data, and since a WebStack can

only be compromised by the user on whose behalf it is

acting, covert channels are not a primary concern.

However, we do not wish a compromised WebStack

to be able to extract sensitive data about other users

via side channels. To prevent such leaks, we rely on

the Isolation Layer. In our prototype, a VMM strictly

isolates the memory assigned to each WebStack and can

enforce strong performance isolation between VMs [1]. By

manipulating each VM’s perception of time, the VMM can

further limit the size of any side or covert channels that

may be present [8]. Thus, side channels will provide an

extremely limited amount of bandwidth.

Denial of Service (DoS) Attacks. Assigning each user to

her own WebStack potentially leaves CLAMP vulnerable

to resource exhaustion or DoS attacks. For example, an

attacker can keep a WebStack in memory by sending peri-

odic HTTP requests that simulate user activity. To consume

resources, the attacker must keep WebStacks in memory.

However, such attacks require the adversary to control a

considerable number of user accounts, as a WebStack is

only assigned after a user logs into the website. In security-

sensitive applications, a user’s account is often tied to a

real-world object or identity. For example, many banks

require a customer to be physically present to open an

account. This binding between an account and a physical

identity thwarts an attacker who tries to create hundreds

of accounts in order to waste resources on the server. DoS

attacks can also be mitigated by the Isolation Layer using

constraints on resources assigned to any one WebStack.



Even with these techniques to limit resource consump-

tion, CLAMP still requires more resources per user than an

insecure site. Still, we envision CLAMP’s use in scenarios

where security is a priority, and the extra computing

resources required to guarantee availability may be an

acceptable cost. For example, this is true of SSL-enabled

web servers today. Many web hosts have decided to devote

the extra resources needed for SSL, even to the point of

investing in special-purpose hardware (e.g., network cards

that offload SSL computation). In the future, we plan to

investigate additional techniques to further mitigate the

effects of DoS attacks.

Security with Shared Database Content. Some content

in web-application databases may be legitimately writable

by any client, and may later be returned to other clients

as HTML (e.g., user reviews). An attacker who injects

malicious HTML or javascript might be able to modify

the behavior of a web page so that it submits sensitive data

to an untrusted server. While “scrubbing” user-submitted

content could detect many such attacks, a more reliable

defense is to isolate user-generated content from poten-

tially sensitive content using iframe HTML elements –

an approach that is widely used in so-called “mash-up”

sites today [31]. Many sites with highly sensitive user data

already avoid shared user content, obviating this concern.

6. Implementation

We have developed a proof-of-concept implementation

of the CLAMP architecture and applied it to osCom-

merce [19], MyPhpMoney [3], and HotCRP [10]. os-

Commerce is an e-commerce web application currently

in use by over 14,000 online merchants [19], making it

(to the best of our knowledge) the most widely used

open-source e-commerce web application. MyPhpMoney

is a personal finance management application. HotCRP is

conference management software that has been employed

for numerous conferences (including this one) and allows

conference organizers to configure a wide range of options

to control information access. Below (and in our perfor-

mance evaluation in Section 7), we focus on the more

widely used osCommerce. We defer detailed discussion of

MyPhpMoney to Appendix A and HotCRP to Appendix B.

Below, we describe the implementation of each compo-

nent. We evaluate CLAMP’s performance in Section 7.

6.1. User Authenticator (UA)

Our experience creating User Authenticator modules for

osCommerce, MyPhpMoney, and HotCRP demonstrates

that “porting” an existing LAMP application to CLAMP is

simple. We implemented the UA in its own VM based on a

minimal Debian Linux installation. The UA is divided into

two components: (1) a generic UDP server that accepts re-

quests and communicates with the QR; and (2) application-

specific code that implements user authentication. The

generic server is under 50 lines of PHP code and is used

for all web applications.

To implement authentication specific to osCommerce,

we readily identified three PHP files with login func-

tionality (login.php, create_account.php, and

admin/login.php) and moved the password checking

code to the UA. This involved less than 150 lines of code,

all of which were taken directly from osCommerce. In each

of the three PHP files, we replaced the login code with

three lines of PHP to make simple UDP calls to the UA

with authentication credentials.

MyPhpMoney and HotCRP proved similarly straightfor-

ward: the user authentication code was readily identified,

and each application required changes to fewer than 10

lines of code (see Appendices A and B).

6.2. Query Restrictor (QR)

Our QR is implemented as an extension to mysql-proxy,5

one of MySQL’s Enterprise Tools. The mysql-proxy is

designed to monitor and optionally transform the database

connections it proxies. Each event of significance (e.g.,

initial handshake, authorization exchange, or SQL query)

prompts a call to a user-supplied Lua script. We modified

the proxy to improve its scalability. We also added func-

tionality to accept calls from the UA to add and remove

mappings between WebStack identities and user identities.

After trimming unused functionality, the proxy consists of

less than 5,000 lines.

We implemented the QR functionality as a Lua script

consisting of 294 lines of code. The Lua script tracks

the WebStack identities. When a WebStack first connects,

the QR assigns it to a temporary database (preallocated

before the QR starts). The temporary database is populated

with views of the main database’s tables. These views are

represented internally by MySQL as select statements; thus,

they require little state, and they do not duplicate data.

Once a user logs in, the QR customizes the temporary

database’s views based on the WebStack’s identity and

the data access policy supplied by an administrator. For

example, if the user’s UID is 124, then the view of

the Orders table would be customized (using the SQL

command ALTER VIEW) such that it contains only rows

where user_id = 124. Subsequent connections from the

same WebStack are routed to the same temporary database

(avoiding customization) until the WebStack is recycled and

given a new identity.

Whenever the WebStack attempts to connect to the

database machine, the QR rewrites the WebStack’s autho-

rization SQL commands to use a temporary MySQL user

who only has access to the temporary database assigned

to the WebStack. Thus, each WebStack sees only its own

5. http://forge.mysql.com/wiki/MySQL Proxy



temporary database, and cannot access any of the other tem-

porary databases or the main database itself. Hence, the QR

does not need to modify the WebStack’s database queries,

since they will be processed against the temporary database

that only contains sensitive information for the WebStack’s

user. In addition, because the views in the temporary

database have the same names as the tables in the original

database, all of the queries generated by the web application

work as they did before. Thus, the QR’s functionality

is transparent to the code in the WebStacks. The QR’s

transparency enables QR reuse across web applications.

We use the same QR for osCommerce, MyPhpMoney, and

HotCRP by simply loading the appropriate policy files.

We also use existing database functionality to control

data modifications (update, insert, delete). By default, we

use existing database-level access restrictions to limit the

temporary MySQL user to SELECT statements, effectively

making the temporary database read-only. To allow modifi-

cations, we can grant the MySQL user insert, update, and/or

delete rights on a per-table basis, a feature supported by all

major databases.

However, databases differ in how they handle writable

views. MySQL, Microsoft SQL Server, and Oracle

Database all permit writable views and support the stan-

dard SQL clause (WITH CHECK OPTION) during view

creation. This clause causes the database to automatically

check that all inserts and updates conform with the pred-

icate used to define the view. These databases do prohibit

modifications to views that use functions (e.g., SUM) that

destroy the one-to-one mapping between rows in the view

and rows in the underlying database. Fortunately, since

CLAMP uses views to present a subset of the existing rows

in the database, its view definitions do allow modification.

In the case of link tables (discussed in Section 4.2),

MySQL’s view implementation will not allow the types of

restrictions we require. To work around these restrictions,

we currently duplicate the data in the link tables, using

triggers to maintain data consistency. Fortunately, in the

applications we examined, link tables are rare and contain

relatively little data. PostgreSQL is one major database that

does not directly support updateable views. However, it

allows the creation of rules that rewrite modifications of a

view’s content into appropriate actions on other tables, and

hence could be made to support CLAMP’s access policies.

6.3. Data Access Policies

Of the 47 tables in the osCommerce database, we identified

7 that contain sensitive data (either related to customers

or their orders). Thus, each policy file contains 7 lines,

one for each table. We crafted policies for three access

classes: user, admin, and nobody. The admin class

(used by the store’s owner) was given full access to the

tables with sensitive data, while the nobody class was

given no access. The user policy (Figure 5) restricts the

Table Restriction

address book customers id = UID

customers customer id = UID

customers info customer info id = UID

customers basket customer id = UID

customers basket attributes customer id = UID

products notifications customer id = UID

orders customer id = UID

Figure 5. osCommerce User Data Access Policy

data in each sensitive table based on a customer id value

used as an index in all 7 tables. Even as newcomers to

osCommerce, we found it straightforward to identify the

tables with sensitive information and to craft the policy

files. Altogether, this effort required less than an hour.

The data access policy for MyPhpMoney proved simi-

larly effortless (Appendix A). HotCRP’s extremely flexible

and configurable access model makes it a worst case for

data policy development, and indeed, it took considerably

more work. Nonetheless, a few days of effort proved

sufficient (Appendix B).

6.4. Dispatcher

The Dispatcher VM has two virtual network interfaces:

one connecting to the Internet and another connecting

to the virtual LAN segment containing the WebStacks.

The Dispatcher is approximately 750 lines of C++ code

built on top of the OpenSSL library. To simplify our

prototype implementation, the Dispatcher is co-located with

a VM pool manager, which notifies the Dispatcher when a

WebStack is finished and when a clean replacement is ready

(our full design places this functionality within the QR

to provide defense-in-depth). Additionally, the Dispatcher

forwards non-SSL (port 80) traffic to a special, unprivileged

WebStack that serves public, non-sensitive data.

6.5. Isolation Layer

Our prototype implementation of the CLAMP architecture

uses the Xen 3.1.0 VMM [1] to isolate server compo-

nents, though as we note in Section 3.2.1, other isolation

techniques offer viable alternatives. The prototype uses a

master WebStack to create a read-only file system from

which each ramdisk-based WebStack is instantiated. This

maximizes performance by removing the hard disk from the

performance-critical path, and minimizes the time required

to refresh a WebStack between clients.

Ideally, refreshing a WebStack (after a client’s session

has terminated) should be implemented using the delta vir-

tualization technique developed by Vrable et al. to enable

a single machine to serve as a honeypot for thousands of

IP addresses [30]. Delta virtualization refers to the ability

to fork (similar to a process-level fork) a running reference

VM many times, using copy-on-write memory sharing to



minimize the memory footprint of additional VMs. For

systems such as honeypots and our WebStacks, the memory

savings can be substantial, since all WebStacks are identical

until client activity influences their execution. In addition,

WebStacks can be instantiated so rapidly that we can

fork additional WebStacks on demand, i.e., in response to

incoming client connections.

Unfortunately, due to bugs and instabilities in the delta-

virtualization version of Xen, we were unable to test the

throughput of our implementation using delta virtualization.

Thus, to simulate CLAMP’s throughput with a stable

version of delta virtualization, we create a pool of 50

static WebStacks and assign each one 64 MB of RAM.

When a client terminates a connection to a WebStack,

the Dispatcher waits an amount of time equal to the

time needed to destroy and then fork a new VM using

delta-virtualization, and then reuses the existing WebStack.

Without delta virtualization, CLAMP would have to start

new WebStacks from scratch.

The VMM also enforces the communication restrictions

shown in Figure 4. With Xen, the Domain 0 VM provides

the backend driver for the network cards in the guest VMs.

Hence, all communication between CLAMP components

travels through Domain 0, and Domain 0 can always

authoritatively identify a packet’s source. Thus, we assign

each VM a unique IP address and then use iptables in

Domain 0 to prevent VMs from spoofing their IP addresses

and to control which VMs can communicate.

7. Evaluation

While our CLAMP prototype provides strong security ben-

efits via VMM isolation and QR database access control, it

comes at the expense of additional processing overhead.

As x86 virtualization becomes increasingly vital to IT

infrastructures, we expect this overhead to diminish. Ex-

perience also suggests that companies are willing to invest

additional hardware resources in exchange for tangible

security benefits (e.g., some e-commerce sites use dedi-

cated hardware to offload SSL processing). Alternatively,

CLAMP can utilize other isolation techniques with different

performance-security tradeoffs (Section 3.2.1).

We use our proof-of-concept prototype to estimate the

impact CLAMP may have on web server performance, both

in terms of web request latency (Section 7.1) and the overall

throughput of the system (Section 7.2). As explained in

Section 6.5, the current version of delta virtualization is

unreliable [30], and hence the throughput experiments use

static VMs to simulate the effects of delta virtualization.

A practical deployment of CLAMP would obviously

require improving the efficiency and robustness of delta

virtualization, developing better documentation, construct-

ing an installer, and creating a better management interface.

We believe these are all tractable tasks.

Experimental Setup. We run all of our experiments

against the same database installed on a dedicated machine.

We use MySQL 5.1.31 running on Debian Linux on a

2.00 GHz Pentium IV with 512 MB RAM. We run Xen

3.3 with a para-virtualized Linux kernel on a four-core

1.80 GHz AMD Opteron with 6 GB RAM. Our “native”

web server used as a baseline runs on the same AMD

machine, but with the Linux kernel running directly on the

hardware. Both the Xen VMs and the baseline installation

use version 2.6.18 of the Linux kernel. Our test client is

equipped with a 3.00-GHz Core 2 Duo and 2 GB of RAM.

Results Overview. Our results indicate that while our

current prototype imposes substantial request processing

overhead, the overall performance of the system remains

reasonable. The most significant overhead that our proto-

type faces comes from spawning new virtual machines.

Thus, efficient implementation of CLAMP using virtual-

ization will benefit from additional improvements in rapid

VM spawning, an area of active research [5, 13, 30]. We

focus on the results for osCommerce.

7.1. Latency

We use a series of macrobenchmarks to measure our

prototype’s impact on the latency of several classes of web

requests.

7.1.1. Macrobenchmarks. For these benchmarks, clients

retrieve osCommerce pages from either a “native” server

running directly on hardware or a CLAMP server as

described in Section 6. Both servers run on the same

hardware, use the same version of osCommerce, and access

the same database server. The servers’ caches are warmed

prior to measurements, and we report the average and

standard deviation of 50 trials for each request type.

These experiments measure the time it takes to complete

a single client’s first request to an unloaded server. The time

includes SSL establishment time, and, with CLAMP, the

time required for the Dispatcher to select and connect to

a WebStack. Since we assume the server is lightly loaded,

this WebStack can be pre-forked, and hence we do not

include the time needed to fork a WebStack. We discuss

forking overhead below in Section 7.2.2.

Figure 6 compares request latency with and without

CLAMP. The first two requests show the time to fetch

(with SSL, since we expect CLAMP applications to use

SSL) a small (8 KB) or a large (3 MB) static file that does

not require database access. The static file retrieval with

SSL reveals that the cost of SSL session establishment—a

cost companies accept today—dominates, and the CLAMP

prototype adds less than 2% overhead for small files. With

large files, Xen’s virtualized networking overhead reduces

performance, but overhead remains under 14% for 3MB

files. If an SSL connection has already been established,

then our CLAMP prototype adds 0.12 ms (16%) to small
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Commerce on native hardware versus our CLAMP prototype.
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files and 22 ms (20%) to large files. Improvements to

virtualized networking performance is an active area of

research [12, 15, 24].

The “Login” measurement quantifies the overhead from

the additional work that CLAMP performs when a user

logs in. The login page is SSL protected, makes several

database queries, and requires inter-VM communication

between WebStacks, the UA, and the QR. Importantly,

login times are only slightly longer (10 ms, or 10% longer)

using our CLAMP prototype. These results indicate that the

QR’s step of creating a restricted database for an individual

user does not increase login completion time excessively.

Finally, the “Database Read” test measures the time

required to load an SSL-protected PHP page that makes

20 unique database SELECT queries after the user has

logged in (and hence established an SSL connection), while

the “Database Modify” test measures the time required to

load an SSL-protected PHP page that makes 10 unique

database INSERT queries and 10 unique UPDATE queries

after the user has logged in. These tests represent the

most common use scenarios for a CLAMP application; the

CLAMP prototype adds only 7 ms (19% overhead) to pages

based on database reads and 5 ms (14% overhead) to pages

that make database modifications, amounts well below the

threshold at which users will notice a delay.

In microbenchmarks, we found that the use of MySQL’s

views added 50% overhead to read requests. Other

databases (e.g., PostgreSQL) offer better view performance,

with overheads of less than 7% on the same workload.

7.2. Throughput

As shown above, the CLAMP prototype only slightly

increases the latency of individual requests. The other

important metric is our prototype’s effect on the server’s

throughput (i.e., the number of users that can be handled

simultaneously), which is affected by both memory and

CPU resources.

7.2.1. WebStack Memory Usage. Unlike the native web

server, the number of simultaneous users that CLAMP can

support is limited by the number of WebStacks that fit in

memory. As discussed in Section 6.5, delta virtualization

creates a copy of a master WebStack using copy-on-

write memory sharing.6 Thus, the memory consumed by

a WebStack is limited to the number of unique memory

pages to which it writes.

To evaluate the effectiveness of this memory sharing, we

measure the amount of private memory (i.e., memory that

must be allocated to a WebStack after it writes to a memory

page) used by a WebStack. We warm the master WebStack

prior to forking the WebStacks that handle benchmark

requests. We perform experiments to benchmark WebStack

memory overhead involving small file requests (between 1

and 4 KB) and full osCommerce PHP page requests. The

osCommerce page requests involve retrieving embedded

images and issuing multiple database queries to generate

the resulting web page.

Figure 7 summarizes our results. The first data point

(Unique URL “0”) shows the memory usage of the forked

WebStack before it has served any requests. The subsequent

points show the memory usage of the forked WebStack 10

seconds after an additional unique URL is retrieved. The

line labeled Single Object shows that requesting individual

files increases only slightly (less than 1 MB) the amount of

memory consumed by a WebStack. The line labeled Com-

plete Page indicates that retrieval of complete osCommerce

pages increases the memory consumed by a WebStack by

approximately 1 MB.

These results indicate that even a client who browses

many image-rich and database intensive pages will only

incur a virtualization memory overhead of a few tens of

megabytes. Thus, if memory were the only bottleneck, our

server with 6 GB of RAM could support at most 500

simultaneous WebStacks (and hence authenticated users),

though each WebStack can handle multiple requests from

its user. However, in practice, we find that CLAMP hits

CPU resource limits before it reaches memory limits.

7.2.2. CPU Usage. CPU resources limit the rate at which

CLAMP can process client logins (due to the need to fork

new WebStacks), and the rate at which it can handle con-

nections from established users (due to context switching

between WebStacks).

Logins. When a new user logs in, CLAMP must allocate

a new WebStack. We implement this by forking the mas-

ter WebStack image using the version of Xen developed

6. This does not create a security risk, since the master WebStack’s
memory image does not contain any sensitive data. Any modifications
made by a WebStack will be seen only by that particular WebStack.
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Figure 7. WebStack Memory Usage. With delta virtual-
ization, a WebStack’s memory usage grows as it handles
additional requests. Here, we measure that growth by fetch-
ing individual images (the “Single Object” line) and complete
osCommerce pages.

for the Potemkin Honeyfarm [30]. The Potemkin authors

report that VM forking requires approximately 500 ms,

and in our tests, we found that one CPU could fork two

WebStacks/second, while the native server can handle up

to 85 logins/second. While low, this approach is still faster

than launching a new WebStack, which takes an average

of 36 seconds. We also believe CLAMP’s results can be

improved using multi-core platforms and optimized forking

techniques [5, 30]. In addition, the Dispatcher can buffer

incoming client logins, allowing CLAMP to tolerate larger

bursts of users at the cost increasing the latency of the

HTTP response.

Connections. To measure the number of simultaneous

connections our prototype can support, we spawn 500

clients at a fixed rate, i.e., X clients per second. Each client

requests an SSL-protected PHP page that makes 10 unique

database queries. We measure the amount of time taken for

each client’s request, and we judge a request successful if

it completes in under two seconds. We define the system’s

overall throughput as the highest value of X for which

all 500 clients’ requests are successfully serviced. This

approach represents a worst-case scenario for CLAMP,

since each request must be directed to a different WebStack.

As explained in Section 6.5, we use 50 static WebStacks

to simulate the effects of delta virtualization.

On the native server (running directly on the hard-

ware), we measured a throughput of 83 connections/second,

while with our prototype, we measured a throughput of

35 connections/second (i.e., 42% of native). The main

sources of overhead are the virtualized networking, and the

expense of context switching between so many WebStacks.

Nonetheless, given the unoptimized state of our prototype,

and the security benefits CLAMP provides, we feel that

this performance is reasonable, given that it would allow

the server to process over three million requests per day.

8. Related Work

CLAMP focuses on tolerating the compromise of a web

server. It operates by restricting the flow of sensitive

data among code modules using virtualization. We omit

an extensive discussion of the significant prior work that

focuses on detecting and preventing exploits in network

servers; instead we focus on more closely related work in

information flow control.

Mandatory Access Control (MAC) partitions software

systems to protect data confidentiality and integrity by

limiting how components access one another (e.g., MUL-

TICS [23], SELinux [25,26] and AppArmor [20]). Recent

research has yielded more flexible MAC called distributed

information flow control (DIFC) [17]. DIFC is data-centric,

enabling security policy enforcement even if systems do

not provide strong protection via isolation. While DIFC

systems provide considerable expressive power, creating

applications within this model (or retrofitting legacy code

to use it) requires specialized knowledge of DIFC-specific

application platforms. For example, Asbestos [4] and HiS-

tar [33] propose a new OS and require applications to

be ported to use new DIFC-specific abstractions. Other

systems (e.g., Flume [11]) implement DIFC using system

call inter-positioning specific to a particular OS. Similarly,

specialized programming language constructs (e.g., JIF [17]

and SIF [2]) provide fine-grained DIFC, but only for

applications tailored to those constructs.

We observe that the high cost of adoption has hampered

the deployment of DIFC techniques in production systems,

and design CLAMP to be readily applicable to real-world

web applications. Although CLAMP does not provide all

of the properties of a full DIFC system (e.g., it does not

explicitly label data), our focus on the specific domain

of web applications allows CLAMP to protect user data,

while providing developers with the flexibility to select the

web application components (OS, web server, programming

language) that best fit their needs.

Commercial products are available that provide row-level

database access control [18], similar in spirit to our Query

Restrictor. Since these solutions may allow a compromised

web server to access sensitive data for all active users,

a CLAMP-like approach of extracting user authentication

into an isolated module and isolating code running on

behalf of different users is still desirable.

9. Conclusion

In this work, we have investigated techniques to secure

LAMP applications against a large number of threats while

requiring minimal changes to existing applications. We

developed the CLAMP architecture to isolate the large and

complex web server and scripting environments from a

small trusted computing base that provides user authen-

tication and data access control. CLAMP occupies a point



in the web security design space notable for its simplicity

for the web developer. Our proof-of-concept implementa-

tion indicates that porting existing LAMP applications to

CLAMP requires a minimal number of changes, and the

prototype can handle millions of SSL sessions per day.
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Appendix A.

Applying CLAMP to MyPhpMoney

This appendix describes the process by which we ported

MyPhpMoney [3], a personal finance manager, to CLAMP.

User Authenticator (UA). Porting MyPhpMoney was

straightforward. We identified password checking code

(less than 150 lines of code) in the original source and

copied it to the UA. We added calls to the UA to one

file (login.php) which handles user creation, login, and

logoff, adding less than 10 lines altogether. Finally, we

replaced two deprecated PHP database-access functions

with their modern equivalents. In total, identifying the rele-

vant code and making the necessary modifications required

about two hours.

Query Restrictor (QR). We use the same QR implemen-

tation for all CLAMP applications. The QR operations that

are unique to MyPhpMoney are specified by the appropriate

data access policies.

Data Access Policies. Developing access policies for

MyPhpMoney was also simple. We identified 7 tables that

contain sensitive data. Thus, each policy file contains 7

lines, one for each table. Since MyPhpMoney does not

include an administrative interface, we crafted policies for

two access classes: user and nobody. Altogether, this

effort required less than an hour.

Appendix B.

Applying CLAMP to HotCRP

We also ported the HotCRP conference management soft-

ware [10] to CLAMP. HotCRP allows authors to submit

papers and PC members to review, comment on, and

rank the papers. Porting HotCRP to CLAMP required

considerably more effort than our other examples.

User Authenticator (UA). Extracting the user authentica-

tion functions for HotCRP was straightforward, supporting

our hypothesis that the authentication functionality for most

websites is largely self-contained. We copied the login

functionality (approximately 40 lines of code) to the UA,

and added calls to the UA to one file (index.php) that

handles user creation, login, and logoff, adding less than 6

total lines of code. In total, creating the UA for HotCRP

required less than an hour of effort.

Query Restrictor (QR). As with our previous ports,

HotCRP required no changes to the QR. All of the HotCRP-

specific knowledge was captured in the data-access policies.

Data Access Policies. HotCRP defines many potential

user roles, and it is specifically designed for flexibility,

allowing PC Chairs to choose from a variety of secu-

rity policies. This flexibility adds to the complexity of

the software, raising the possibility of information leaks.

Indeed, the author of HotCRP expresses a desire for a

“flexible information flow control layer” in order to prevent

inadvertent information exposure [10].

With HotCRP, a user can be an author, an external

reviewer, a PC member, a PC Chair, a Chair’s Assistant,

or any combination of these. For example, a PC member

can be an author as well. To create access policies for

all of these potential roles, we first developed policies for

users that only fall into one category, for example, users

who are only authors. This gave us five access classes.

We then developed policies for “hybrid” users who act

in multiple roles. Not all permutations were needed. For

instance, the PC Chair has full access rights to all of the

data in the database. If the PC Chair is also an author,

she still retains all of her access rights. On the other hand,

PC members typically should not see reviews for papers

they have conflicts with, but authors can (after decisions

have been made) see the reviews for their own papers.

Fortunately, even for these cases, the hybrid policy proved

to be relatively straightforward to create, with most of

the tables simply using the same restrictions as the more

permissive role. In the end, we only added two hybrid

access classes.

The real challenge for porting HotCRP to CLAMP came

from the extreme flexibility that HotCRP gives to the

PC Chair. For example, the PC chair can decide that

submissions are anonymous, not anonymous, or optionally

anonymous. Similar options are available for reviews. Thus,

the definition of the sensitive data CLAMP should protect

can change radically based on the PC Chair’s choices. As

developers unfamiliar with HotCRP, we found it challeng-

ing to extract all of this logic from the code and encode it in

SQL view restrictions for CLAMP’s data access policies.

Nonetheless, with only a few days of effort, we created

a full set of reasonable policies for HotCRP. Figure 8

illustrates one of the policy statements we developed.

To validate our policies, we asked HotCRP’s creator,

Eddie Kohler, to review their accuracy. He agreed that the

policies seemed reasonable and noted a few mistakes in our

initial version. This review highlights several key points.

First, it is quite possible to develop reasonable data

access policies even for complex applications with dynamic

data access controls. Indeed, in many ways, HotCRP repre-

sents an extreme in this regard. Many other applications that

handle sensitive data require far less flexibility. For exam-

ple, a bank will always want users’ financial data protected,

and is unlikely to purposefully include application options

that allow customers to see each other’s data.

Second, the errors we did make in our initial policies

illustrate that CLAMP can provide significant benefits even

if its policies are not completely accurate. A policy may

incorrectly limit access to data, in which case security is

not harmed, and the missing data will likely be easy to

notice and debug. Even when a policy permits access to



select

Paper.paperId, title, ...,

/* Blank out the outcome field, if authors aren’t allowed to see it */

(if( (select count(*) from Settings where name =’au_seedec’) > 0, outcome, 0)) as outcome,

null as leadContactId, ... /* Authors can never see the lead PC contact ID */

from Paper

join PaperConflict as Conf on

(Conf.paperId=Paper.paperId and Conf.conflictType>=@author and Conf.contactId=UID);

Figure 8. Example HotCRP Access Control. This abbreviated statement restricts an author’s view of the Paper table.
Individual fields are hidden based on the conference’s settings. The rows returned are restricted to papers that were authored
(Conf.conflictType>=@author indicates an author) by the authenticated author (Conf.contactId=UID).

data that should be kept private, the policy still protects

other data. For example, when writing the author policy,

we incorrectly believed that the field leadContactId

in the Paper table referred to the lead author, rather than

the lead PC member. While our policy would not have

protected the user ID of this PC member from a determined

attacker, the policy still prevents authors from seeing each

other’s papers, hides reviews appropriately, etc.

Finally, CLAMP’s design consolidates all access control

decisions in one place (the QR) in the form of policy files.

These files can be independently reviewed for accuracy.

This is much simpler than asking someone to learn an entire

code base and decide whether the access control decisions

sprinkled throughout the code will effectively preserve the

secrecy of user data. As a result, independent auditing of

a site’s security policy becomes more feasible.


