Accountable Internet Protocol

David Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen, Daekyeong Moon, Scott Shenker

http://www.aip-arch.net/

Drawbacks (a sampler)

- Complicated Mechanisms
 - Many details to circumvent IP weaknesses
- External Sources of Trust
 - Trusted certificate authorities (e.g., SBGP)
- Operator Vigilance
 - Semi-manual configuration (e.g., filters, registries)

IP Layer Names Don't Have Secure Bindings

- Three kinds of IP layer names: IP address, IP prefix, AS number
- No secure binding of host to its IP addresses
- No secure binding of AS number to its IP prefixes

Accountability

• Many problems easier to solve with *network-layer accountability*:

Ability to associate a principal with a message

There's a way to make accountability intrinsic

How?

- Key idea: New addressing scheme for networks and hosts
- Addresses are self-certifying
- Simple protocols that use properties of addressing scheme as foundation
 - Anti-spoofing, secure routing, DDoS shut-off, etc.

AIP Addressing

Autonomous domains, each with unique ID

An AD...

Would fail together Single administrative domain

Key Idea:

AD and EID are self-certifying flat names

AD = hash(public_key_of_AD)

a glo

Self-certification binds name to named entity

AD1:EID,AD2:EID,AD3:EID

AIP Forwarding and Routing

Inter-AD routing & forwarding: AD #s only.

Intra-AD routing disseminates EIDs.

Many routing protocols possible - derive security from AIP self-certification

Roadmap

- Uses
 - Secure Routing
 - Anti-Spoofing
 - Shut-Off Packets
- Concerns
 - Scalability
 - Key Management
 - Traffic Engineering

Secure Routing with AIP (for BGP)

- Origin authentication: prefix originated by AS X actually belongs to X
- Path authentication: accuracy of AS path
- S-BGP requires external infrastructures

Routing Registry		
Prefix	Pub Key	

AS PKI		
AS	Pub Key	

- In past, registries notoriously inaccurate
- ✓ With AIP: ADs exchange pub keys via BGP messages
 - ✓ Origin auth automatic: ADs are keys!
 - ✓ Path auth: Just like S-BGP, but no PKI

Detecting & Preventing Spoofing

 Self-certified entity can prove it sent message:

 Routers or hosts seeing packet can check the AD or EID using a challenge-response protocol

Spoofing vs. Minting

- AIP guarantee:
 - Nobody but X can claim to be X

- However:
 - X could invent a new identity (minting)

Mitigating Minting

- Peering ADs:
 - Today: List which ASes/Prefixes A can use (painful for clients and ISPs)
 - AIP: Configure reasonable limit on number of ADs can announce
- Edge ADs can limit EIDs similarly

AIP Enables Secure Shut-Off

- Problem: Compromised zombie sending stream of unwanted traffic to victim
- Zombie is "well-intentioned", owner benign [Shaw]

- Shut-off scheme implemented in NIC (NIC firmware update requires physical access)
- Hardware requirements practical
 - Bloom filter for replay prevention (8MB SRAM)

Can AIP Scale?

- How big will the routing tables be?
 - # of entries: Scale from IP (ASes vs. prefixes vs. ADs)
 - Diameter: Shrinking in IP
 AIP: more ADs on path
 - Size of entries: Larger AIP addresses
- How much work to process updates?
 - Crypto overhead

BGP Table Size Trends

Growth vs. Hardware

- Semiconductor industry roadmap projects doubling in ~3 years
 - 50% >> 17%. But let's look at some #s...

 In 2020, can we build a cost-effective router for AIP traffic?

RIB Memory (20 full-table peers, core)

Gigabytes (2007 Dollars)

	2007	2011	2020
IP	0.4 (\$30)	0.7 (\$14)	2.9 (\$7)
AIP	1.3 (\$103)	2.0 (\$40)	8.2 (\$21)

- By 2020...
 - FIB: Will grow 5-9x
 - DRAM, SRAM, TCAM:16x growth per \$

"I/O Data Rates on commodity DRAM devices will increase to over 8 GB/s by 2022" ITRS 2007 roadmap

But what about speed?

- Scariest challenge: Update processing
 - Load ~20 full tables on boot, fast.
 - ... And do S-BGP style crypto verification
- Limitations: Memory bandwidth, crypto CPU
 - Memory bandwidth: 8.2GB of memory; today's memory can handle 1.7GB/sec.
 - Without AIP/S-BGP future router could load in ~30 seconds.
 - With crypto, however...

Crypto overhead still hurts

- Process update: Validate RSA signature
- Trivially parallelized

	2008 (2.8Ghz quad-core)	2020
RSA Validate	35k/sec	480k/sec
AIP/S-BGP Table Load	~141 seconds	~66 seconds

 Worst-case result - crypto acceleration or clever BGP tricks reduce time

Scaling summary

- Assuming continued network growth and semiconductor trends...
- ✓ An AIP router in 2020 will be cheaper than an IP router in 2007

(From RIB/FIB perspective)

Things I haven't talked about

- AIP still requires DNS to go from name->AIP
- Traffic engineering
- Detecting key compromise
- Key management (2 level hierarchy)
- Hierarchical AIP addresses
 - beyond the 2-level flat hierarchy presented here
- AIP's benefits to mobility (HIP/TCP Migrate)

Conclusion

- Q: How to achieve network-layer accountability in an internetwork?
- A: Self-certifying internetwork addresses
 - AD:EID (AIP)
 - Each field derived from public keys
- Accountability intrinsic has many uses
- We believe AIP will scale
 AIP composes well with mechanisms for mobility, DoS mitigation, availability, etc.

Cryptographic Evolution

Crypto	Public Key Hash	Interface
Version	(144 bits)	(8 bits)

- Each crypto version: 1 combination of algorithm and parameters
- To move to new one:
 - Add support in all routers
 - Once reasonably global, start using
 - Begin phase-out of old version
- We anticipate ~5+ year cycle for this
- (Must pre-deploy one alternate version)

What is an AD?

- Group of addresses that
 - Are administered together
 - Would fail together under common failures
- Examples:
 - A campus, a local organization
- Non-examples:
 - CMU Pittsburgh / CMU Qatar
 - (Each would be different AD)

Traffic Engineering

- ADs are good match for inbound TE techniques - granularity of campus/ customer/reachable subnet
- If need finer-grained:
 - Note ECMP unchanged;
 - Note DNS load-balancing unchanged;
 - AIP address interface bits to sub-divide AD
 - 8 bits of interface space
 - partition to up to 255 "paths" to a domain

Handling Key Compromise

Preventing:

 Two-level key hierarchy (master signs offline; routers have temporary key)

Detecting:

- Registry of addresses used
 - e.g., AD registers "EID X is connecting through me"
 - Registries simple: entirely self-certifying

Recovering:

Renumber + (self-certifying) revocation registry

Shut-Off Replay Prevention

Mutual Shut-Off

- Attack:
 - Zombie Z wants to flood victim V
 - First, Z pings V. Gets response back.
 - Z sends Shut-Off packet to V.
 - Z floods V.
- Resolution:
 - Smart-NIC allows V to send SOPs at very low rate (1 per 30 seconds) even though filtered
 - →Hosts can mutually shut-off...

AIP Address

Crypto	Public Key Hash	Interface
Version	(144 bits)	(8 bits)

AIP Header

Vers	Normal IP headers				
•••		Random ID	# dests next-dest		# srcs
Source EID					
Source AD					
Dest EID					
Dest AD (next hop)					
Dest AD Stack					
Source AD Stack					

AIP Verification Protocol

Protecting Those who Protect Themselves

- To bound size of accept cache,
 - if too many entries of AD:x, AD:x2, ...
 - Upgrade to "wildcard": AD:*
- If many compromised hots in AD, they can allow others to spoof AD
- If AD secure, nobody can spoof it

Table Size Projections

Year	17% Growth	Fuller/Huston	
2008	Observed: 247K		
2011	396K	600K-1M	
2020	1.6M	1.3-2.3M	

• 17% growth and predictions from Fuller & Huston; rough agreement for 2020