
On Application-level Approaches to Avoiding TCP
Throughput Collapse in Cluster-based Storage Systems

Elie Krevat, Vijay Vasudevan, Amar Phanishayee,
David G. Andersen, Gregory R. Ganger, Garth A. Gibson, Srinivasan Seshan

Carnegie Mellon University

ABSTRACT
TCP Incast plagues scalable cluster-based storage built atop
standard TCP/IP-over-Ethernet, often resulting in much
lower client read bandwidth than can be provided by the
available network links. This paper reviews the Incast prob-
lem and discusses potential application-level approaches to
avoiding it.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.2.5 [Computer-Communication Networks]:
Local and Wide-Area Networks; C.4 [Computer Systems
Organization]: Performance of Systems

General Terms
Design, Performance

Keywords
Cluster-based Storage, TCP, Incast

1. INTRODUCTION
Cluster-based storage systems are becoming an increas-

ingly important target for both research and industry [1,
15, 10, 13, 9, 6]. These storage systems consist of a net-
worked set of smaller storage servers, with data spread across
these servers to increase performance and reliability. Build-
ing these systems using commodity TCP/IP and Ethernet
networks is attractive because of their low cost and ease-
of-use and because of the desire to share the bandwidth of
a storage cluster over multiple compute clusters, visualiza-
tion systems, and personal machines. In addition, non-IP
storage networking lacks some of the mature capabilities
and breadth of services available in IP networks. However,
building storage systems on TCP/IP and Ethernet poses
several challenges. This paper discusses approaches to ad-
dressing an important barrier to high-performance storage
over TCP/IP: the Incast problem [14, 13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Supercomputing’07 Nov. 10-16, 2007, Reno, NV
Copyright 2007 ACM 978-1-59593-899-2/07/11 ...$5.00.

TCP Incast is a catastrophic throughput collapse that
occurs as the number of storage servers sending data to a
client increases past the ability of an Ethernet switch to
buffer packets. The problem arises from a subtle interac-
tion between relatively small Ethernet switch buffer sizes,
the communication patterns common in cluster-based stor-
age systems, and TCP’s loss recovery mechanisms. Briefly
put, data striping couples the behavior of multiple storage
servers, so the system is limited by the request completion
time of the slowest storage node [5]. Small Ethernet buffers
get exhausted by a concurrent flood of traffic from many
servers, which results in packet loss and one or more TCP
timeouts. These timeouts impose a delay of hundreds of
milliseconds—orders of magnitude greater than typical data
fetch times—significantly degrading overall throughput.

Our recent study of the root network-level causes of In-
cast determined that some solutions exist to delay its catas-
trophic effects, such as increasing the amount of buffer space
in network switches [14]. However, as the number of source
nodes involved in a parallel data transfer are increased, at
some point any particular switch configuration will expe-
rience throughput collapse. Our previous analysis of TCP-
level solutions showed some improvement when moving from
Reno to NewReno TCP variants, but none of the addi-
tional improvements helped significantly. Other techniques
to mask the Incast problem, such as drastically reducing
TCP’s retransmission timeout timer, can further improve
performance but not without additional drawbacks.

Without a clear network or transport-level solution to pre-
vent Incast with an arbitrarily large number of participating
storage servers, the remaining option is to avoid Incast by
architecting the system to perform well under a limited scale.
Example avoidance techniques involve limiting the number
of servers responsible for a block request and throttling the
send rate of servers. However, as we move to larger and
more highly parallelized petascale environments, restrictions
of scale become much more constraining.

This paper summarizes existing approaches for reducing
the effects of TCP Incast and discusses potential application-
level solutions. The “application” in this case is the dis-
tributed storage system software. It has context about the
parallel transfer, such as the number of servers over which
the required data is striped, that is not available at the net-
work layer and below. It also has control over when data
transfers are initiated. Such knowledge and control could
be used to avoid Incast by limiting the number of servers
accessed at a time, staggering data transfers from those
servers, and/or explicitly scheduling data transfers. These

Data Block

Server Request
Unit (SRU)

Servers
1

1

4

2
2

3

4

3

Client

Switch

Figure 1: Terminology for a synchronized reads en-
vironment, where a client requests data from multi-
ple servers.

application-level approaches may avoid Incast altogether, al-
lowing the scaling of cluster-based storage toward petascale
levels atop commodity TCP/IP and Ethernet networks.

2. THE INCAST PROBLEM
This section describes the Incast problem and discusses

TCP and Ethernet-level approaches to reducing its impact.

2.1 Throughput Collapse of Synchronized Reads
In cluster-based storage systems, data is stored across

many storage servers to improve both reliability and perfor-
mance. Typically, their networks have high bandwidth (1-10
Gbps) and low latency (round-trip-times of 10s to 100s of
µseconds) with clients separated from storage servers by one
or more switches.

In this environment, data blocks are striped over a number
of servers, such that each server stores a fragment of a data
block, denoted as a Server Request Unit (SRU) (Figure 1).
A client requesting a data block sends request packets to
all of the storage servers containing data for that particular
block; the client requests the next block only after it has
received all the data for the current block. We refer to such
reads as synchronized reads.

Most networks are provisioned such that the client’s band-
width to the switch should be the throughput bottleneck of
any parallel data transfer [11, 12]. Unfortunately, when per-
forming synchronized reads for data blocks across an increas-
ing number of servers, a client may observe a TCP through-
put drop of one or two orders of magnitude below its link
capacity. Figure 2 illustrates a catastrophic performance
drop in a cluster-based storage network environment when
a client requests data from four or more servers.

TCP timeouts are the primary cause of this goodput col-
lapse [14], where we define goodput as the data throughput
observed by the application as contrasted with the amount
of data passed over the network (which includes retrans-
missions). When goodput degrades, many servers still send
their SRU quickly, but one or more other servers experience

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35

G
oo

dp
ut

 (
M

bp
s)

Number of Servers

Average Goodput VS # Servers
(SRU = 256KB)

HP Procurve 2848

Figure 2: TCP throughput collapse for synchronized
reads performed on a storage cluster.

a timeout due to packet losses. During this timeout period,
servers that have completed their data transfers must wait
for the client to receive the complete data block before the
next block is requested, resulting in an underutilized link.

2.2 TCP- and Ethernet-level Improvements
Incast poses a significant barrier to improving TCP through-

put in petascale environments, where the number of servers
communicating simultaneously with a client will need to be
increased to effectively use free network bandwidth. In this
section, we summarize the results of a recent study show-
ing the effectiveness of several TCP and Ethernet level ap-
proaches to mitigating Incast [14]. None of these existing
solutions are sufficient to prevent Incast.

Switches with larger output buffer sizes can miti-
gate Incast . With larger buffers, fewer packets are dropped,
resulting in fewer timeouts and higher TCP throughput.
Measurements indicate that a two-fold increase in buffer
space can support data striping over twice as many servers.
Unfortunately, switches with larger buffers tend to cost more,
forcing system designers to maintain a difficult balance be-
tween over-provisioning, future scalability, and hardware bud-
get constraints.

Recent TCP implementations show improvements
by more effectively avoiding timeout situations, but
they do not prevent Incast . Choosing TCP NewReno [4]
or TCP SACK [8] over TCP Reno shows a modest improve-
ment but still suffers from throughput collapse given enough
servers. Further improvements to TCP loss recovery, such as
Limited Transmit [2], show little to no improvement beyond
TCP NewReno.

Reducing the penalty of timeouts by lowering TCP’s
minimum retransmission timeout value can help significantly,
but cannot avoid Incast at a larger scale of servers. Further-
more, reducing the timeout value to sufficiently low levels is
difficult, requiring a TCP timer granularity in microseconds,
and is questionable in terms of safety and generality [3].

Ethernet flow control can be effective when all com-
municating machines are on one switch, but when scaled
in more common multi-switched systems (as is expected
for petascale environments), it has adverse effects on other
flows in all configurations and is inconsistently implemented

across different switches.
There are a number of current Ethernet initiatives to add

congestion management with rate-limiting behavior and a
granular per-channel link level flow control [16]. These ini-
tiatives aim to achieve “no-drop” Ethernet responses to con-
gestion. However, it will take a number of years before these
new standards are added to switches.

These TCP- and Ethernet-level solutions represent a num-
ber of ways to reduce the negative effects of Incast for a fixed
number of servers engaging in a synchronized data trans-
fer. But, at some number of servers, any particular switch
configuration will experience throughput collapse. Since
TCP timeouts are nearly unavoidable when TCP loses ei-
ther packet retransmissions or all the packets in its window,
and the length of each timeout cannot be further reduced
due to implementation problems and spurious retransmis-
sions, we believe that improved TCP implementations have
little hope in preventing Incast.

3. APPLICATION-LEVEL SOLUTIONS
Since a solution to Incast does not appear to exist in the

TCP or Ethernet layer, we focus here on potential application-
level solutions that might more effectively manage the avail-
able bandwidth in a storage system.

3.1 Increasing Request Sizes
A common approach in storage systems is to amortize the

cost of disk seek time by requesting more data from each
disk. In a synchronized reads scenario, larger request sizes
provide an additional benefit at the network layer. Increas-
ing the SRU size at each server reduces the amount of idle
link time, and when some flows have stalled other flows con-
tinue to send more useful data [14]. Whenever possible, to
avoid Incast clients should request more data from a smaller
number of servers. Even when striping across fewer servers
is not appropriate, a client can reduce the impact of Incast
by condensing many small requests for data into larger re-
quests. However, larger SRU sizes also require the storage
system to allocate pinned space in the client kernel memory,
thus increasing memory pressure, which is a prime source of
client kernel failures in a fast file system implementation [7].

3.2 Limiting the Number of Synchronously
Communicating Servers

A common theme of application-level approaches to pre-
vent the onset of Incast is to restrict the number of partici-
pating servers in a synchronized data transfer. For example,
one might experiment with the number of servers that are
involved in a synchronized data transfer, identify at what
scale servers begin to experience degraded throughput, and
limit the parallelism of all subsequent data transfers to be
within that acceptable range.

From our discussions with industry specialists, we know
that, among other things, Panasas uses a variant of the
above idea by limiting the number of servers participating in
any one data transfer. They divide a larger pool of servers
into smaller RAID groups of a restricted range and limit any
communication to one RAID group at a time. A single block
still cannot be spread over more servers than are available in
any one RAID group, but different blocks from a file may be
distributed over different RAID groups, spreading the load
of requests over a larger number of servers.

3.3 Throttling Data Transfers
A client can throttle the servers’ send rates by advertis-

ing a smaller TCP receive buffer. This throttling technique
will artificially limit the TCP window size of any request,
improving scalability as more requests are made in parallel
and to a larger number of servers. Unfortunately, a static
throttling rate may have the adverse effect of underutilizing
the client’s link capacity if TCP windows are not allowed to
increase to the proper size. A client that discovers a well-
performing throttle rate for one request that avoids Incast
must also either avoid making multiple requests in parallel
or adjust the throttle rate when necessary. This lack of gen-
erality may make these throttling techniques less palatable.

3.4 Staggering Data Transfers
Another approach to limiting the amount of data being

transferred synchronously is to stagger the server responses
so only a subset of servers are sending data at any one time.
The control decisions required to produce this staggering
effect can either be made by the client or at the servers.

A client may stagger data transfers by requesting only a
subset of the total block fragments at a time. Alternatively,
a client may achieve similar behavior with a smaller data
block size spread across fewer servers, but this alternative
would be impractical for a system that uses a fixed data
block size or prefers a specific level of erasure coding. By
staggering requests to a limited number of servers, or even
maintaining a window of concurrent requests to servers, the
client can avoid requesting too much data at once.

Servers can collectively skew their responses by making
either random or deterministic localized decisions to delay
their response to a request. Each server responsible for
a data fragment can determine the total number of other
servers responding to a request, either communicated di-
rectly from the client or based on the level of erasure coding.
With this number, a server can wait an explicitly preassigned
time before beginning its data transfer or choose a random
period to skew its response. By choosing the right amount
of skew and delaying the server’s response, a request may
actually perform better in the long run by avoiding costly
TCP timeouts. Servers can also use the delay time to service
other requests and prefetch data into the cache.

Previous studies of Incast have assumed that data is al-
ways cached in memory to isolate Incast as a mostly net-
working problem. In real systems, however, there may be
some inherent staggering in transfer responses based on many
factors, including the network switch configuration imposing
different delays on each server and whether the requested
data is in cache or on disk. For example, one server may
have data cached in memory and be able to respond to a
request packet immediately, while another server may re-
quire a disk seek and experience some disk head positioning
delay potentially larger than an SRU transfer time. Thus,
real systems may exhibit some of the benefits of staggering,
although the existence of Incast in the real world suggests
that this natural staggering effect is not sufficient.

3.5 Global Scheduling of Data Transfers
Since a client might be running many workloads and mak-

ing multiple requests to different subsets of servers, any com-
plete solution affecting when and how a server should re-
spond cannot be made without information about all work-
loads. In these multiple workload situations, global schedul-

ing of data transfers is required. One instantiation of such
scheduling would use SRU tokens, where assuming each client
has a dedicated leaf switch port into the network, a server
cannot transfer data to a client unless it has that client’s
SRU token; after receiving a data request, a server may also
prefetch data while it waits for the appropriate SRU token.

For example, the storage system may learn that it can
only send data to a given client from k servers before ex-
periencing Incast ; the system would create k SRU tokens
for each client in a global token pool. A client can send
request packets to all servers containing data for its multi-
ple requests, but only the k servers that have been allocated
that client’s SRU tokens can actually transfer the data. This
will restrict the total number of simultaneous servers send-
ing data to any given client to the optimal value k. The
storage system might obtain the value of k either through
manual configuration or real-time system measurements.

When a server has no more use for a token, the token
should pass back into the token pool and be made available
to other servers that have data to send to the token’s associ-
ated client. There are several algorithms for deciding where
and how to pass the token. A simple round-robin token
passing approach might work for small networks but does
not scale well. Instead, either the client or a separate logical
entity might act as a token authority, issuing tokens when
requested, maintaining a queue of servers waiting for each
client’s token, and receiving tokens back when the server re-
linquishes it or the token expires. A token authority can also
help to load balance requests across the network by showing
preference to servers with higher numbers of prefetched re-
quests, to relieve those servers’ pinned memory allocations.
For petascale environments, the token authority should be
physically distributed to handle token traffic. In all cases,
the storage system will attempt to time-share the client’s
link among requests across single and multiple workloads.

4. SUMMARY
TCP Incast occurs when a client simultaneously asks for

data from enough servers to overload the switch buffers asso-
ciated with its network link. This paper discusses a number
of application-level approaches to avoiding the Incast prob-
lem, and continuing research will explore their efficacy.

5. ACKNOWLEDGMENTS
We would like to thank the members and companies of

the PDL Consortium (including APC, Cisco, EMC, Google,
Hewlett-Packard, Hitachi, IBM, Intel, LSI, Microsoft, Net-
work Appliance, Oracle, Seagate, and Symantec) for their
interest, insights, feedback, and support. This research is
sponsored in part by the National Science Foundation, via
grants #CNS-0546551, #CNS-0326453 and #CCF-0621499,
by the Army Research Office under agreement DAAD19-02-
1-0389, by the Department of Energy under Award #DE-
FC02-06ER25767, and by DARPA under grant #HR001107-
10025. Elie Krevat is supported in part by an NDSEG Fel-
lowship from the Department of Defense.

6. REFERENCES
[1] M. Abd-El-Malek, W. V. C. II, C. Cranor, G. R.

Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan,
S. Sinnamohideen, J. D. Strunk, E. Thereska,

M. Wachs, and J. J. Wylie. Ursa minor: Versatile
cluster-based storage. In Proceedings of 4th USENIX
Conference on File and Storage Technologies, 2005.

[2] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing
TCP’s Loss Recovery Using Limited Transmit. RFC
3042 (Proposed Standard), Jan. 2001.

[3] M. Allman and V. Paxson. On estimating end-to-end
network path properties. SIGCOMM Comput.
Commun. Rev., 31(2 supplement):124–151, 2001.

[4] M. Allman, V. Paxson, and W. Stevens. TCP
Congestion Control. RFC 2581 (Proposed Standard),
Apr. 1999.

[5] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau.
Fail-stutter fault tolerance. In HotOS, 2001.

[6] P. J. Braam. File systems for clusters from a protocol
perspective. In Second Extreme Linux Topics
Workshop, June 1999.

[7] J. Butler. Panasas Inc. Personal Communication,
August 2007.

[8] S. Floyd, T. Henderson, and A. Gurtov. The NewReno
Modification to TCP’s Fast Recovery Algorithm. RFC
3782, Apr. 2004.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In SOSP ’03: Proceedings of the
Nineteenth ACM Symposium on Operating Systems
Principles, 2003.

[10] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.
Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka. A cost-effective, high-bandwidth
storage architecture. In ASPLOS-VIII: Proceedings of
the eighth international conference on Architectural
support for programming languages and operating
systems, 1998.

[11] G. Grider, H. Chen, J. Junez., S. Poole, R. Wacha,
P. Fields, R. Martinez, S. Khalsa, A. Matthews, and
G. Gibson. PaScal - A New Parallel and Scalable
Server IO Networking Infrastructure for Supporting
Global Storage/File Systems in Large-size Linux
Clusters. In Proceedings of the 25th IEEE
International Performance Computing and
Communications Conference, Phoenix, AZ, Apr. 2006.

[12] C. E. Leiserson. Fat-trees: universal networks for
hardware-efficient supercomputing. IEEE Trans.
Comput., 34(10):892–901, 1985.

[13] D. Nagle, D. Serenyi, and A. Matthews. The Panasas
activescale storage cluster: Delivering scalable high
bandwidth storage. In SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing, page 53,
Washington, DC, USA, 2004. IEEE Computer Society.

[14] A. Phanishayee, E. Krevat, V. Vasudevan,
D. Andersen, G. Ganger, G. Gibson, and S. Seshan.
Measurement and Analysis of TCP Throughput
Collapse in Cluster-based Storage Systems. Technical
Report CMU-PDL-07-105, Sept 2007.

[15] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceedings
of 1st USENIX Conference on File and Storage
Technologies, 2002.

[16] M. Wadekar. Enhanced ethernet for data center:
Reliable, channelized and robust. In 15th IEEE
Workshop on Local and Metropolitan Area Networks,
June 2007.

