
Transient Customization of Mobile Computing Infrastructure

Adam Wolbach, Jan Harkes, Srinivas Chellappa, M. Satyanarayanan

Carnegie Mellon University

ABSTRACT
Kimberley is a system that simplifies transient use of fixed hard-
ware infrastructure by a mobile device. It uses virtual machine
(VM) technology to resolve the tension between standardizing in-
frastructure for ease of deployment and maintenance, and customiz-
ing that infrastructure to meet the specific needs of a user. Kim-
berley decomposes the state of a customized VM into a widely-
available base VM and a much smaller private VM overlay. The
base is downloaded by the infrastructure in advance. Only the
small overlay needs to be delivered from the mobile device, or un-
der its control from a public web site. This strategy keeps startup
delay low. It may also conserve energy on the mobile device by
reducing the volume of wireless transmission. We have built a pro-
totype of Kimberley, and our experiments confirm the feasibility of
this approach.

1. INTRODUCTION
Usability often suffers when a mobile device is optimized for size,
weight and energy efficiency. On a hand-held device with a small
screen, tiny keyboard and limited compute power, it is a challenge
to go beyond a limited repertoire of applications. A possible solu-
tion to this problem is to leverage fixed infrastructure to augment
the capabilities of a mobile device, using techniques such as dy-
namically composable computing [11] or cyber foraging [1, 4, 2].
For this approach to work, the infrastructure must be provisioned
with exactly the right software needed by the user. This is unlikely
to be the case everywhere, especially at global scale. There is an
inherent tension between standardizing infrastructure for ease of
deployment and maintenance, and customizing that infrastructure
to meet specific user needs.

This paper describes Kimberley, a system for rapid software pro-
visioning of fixed infrastructure for transient use by a mobile de-
vice. Kimberley decomposes customized virtual machine (VM)
state into a widely-available base VM and a much smaller, possi-
bly proprietary, private VM overlay. These two components are
delivered to the site being provisioned in very different ways. The
base VM is downloaded by the infrastructure in advance from a
publicly accessible web site. The private VM overlay is delivered

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiVirt’08: The First Workshop on Virtualization in Mobile Com-
puting, June 17, 2008, Breckenridge, CO
c©2008 ACM 978-1-60558-328-0/08/0006...$5.00

Mobile Device Infrastructure
Preload base VM

Discover & negotiate
use of infrastructure

private VM overlay (base + overlay) → launch VM

Execute launch VM

Create VM residue

VM residue

Use
infrastructure

Finish use
done

Depart Discard VM

user-driven
device-VM
interactions

Figure 1: Kimberley Timeline

to a server in the infrastructure just before use, either directly from
the mobile device or under its control from a public web site. In
the latter case, encryption-based mechanisms can be used to ensure
the integrity and privacy of the private VM overlay. Once obtained,
the overlay may be optionally cached for future reuse. The server
applies the overlay to the base to create and execute a launch VM.
When the user departs, this VM is terminated and its state is dis-
carded. In some cases, a small part of the VM state may be returned
to the mobile device; this is referred to as the VM residue. Figure 1
shows a typical Kimberley timeline.

We anticipate that a relatively small number of base VMs (perhaps
a dozen or so releases of Linux and Windows configurations) will
be popular worldwide in mobile computing infrastructure at any
given time. Hence, the chances will be high that a mobile device
will find a compatible base for its overlays even far from home.
The chances of success can be increased by generating multiple
overlays, one for each of a number of base VMs. The collection of
popular base VMs can be mirrored worldwide, and a subset can be
proactively downloaded by each infrastructure site.

2. USAGE EXAMPLES
The two hypothetical examples below illustrate the kinds of usage
scenarios we envision for Kimberley.

Scenario 1: Dr. Jones is at a restaurant with his family. He is
contacted during dinner by his senior resident, who is having dif-

1

ficulty interpreting a pathology slide. Although Dr. Jones could
download and view a low-resolution version of the pathology slide
on his smart phone, it would be a fruitless exercise because of the
tiny screen. Fortunately, the restaurant has a large display with
an Internet-connected computer near the entrance. It is sometimes
used by customers who are waiting for tables; at other times it
displays advertising. Using Kimberley, Dr. Jones is able to tem-
porarily install a whole-slide image viewer, download the 100MB
pathology slide from a secure web site, and view the slide at full res-
olution on the large display. He chooses to view privacy-sensitive
information about the patient on his smart phone rather than the
large display. He quickly sees the source of the resident’s difficulty,
helps him resolve the issue over the phone, and then returns to din-
ner with his family.

Scenario 2: While Professor Smith is waiting to board her flight,
she receives email asking her to review some budget changes for
her proposal. The attached spreadsheet shows a bottom line that is
too high. After a few frustrating minutes of trying to manipulate the
complex spreadsheet on her small mobile device, Professor Smith
looks around the gate area and finds an unused computer with a
large display. She rapidly customizes this machine using Kimber-
ley, and then works on the spreadsheet. She finishes just before
the final boarding call, and retrieves the modified spreadsheet on
to her mobile device. On board, Professor Smith barely has time
to compose a reply, attach the modified spreadsheet, and send the
message before the aircraft door is closed.

Other possible mobile computing scenarios in which Kimberley
may prove useful include:

• viewing a map, possibly with personal annotations.
• impromptu presentations and demonstrations.
• spontaneous collaboration, as in choosing a restaurant.

The need for crisp user interaction in these scenarios deprecates
the use of a thin client strategy. Network latency is of particular
concern when the interactive application runs on a server that has
to be reached across a WAN. Kimberley enables VM-based execu-
tion of an application on hardware close to the user, hence reduc-
ing network latency and improving the quality of user interaction.
Although WAN bandwidth is relevant in determining VM overlay
transmission time (and hence startup delay) in Kimberley, it is typ-
ically much easier to control and improve than WAN latency. To
completely avoid WAN issues, the VM overlay can be delivered
directly from the mobile device over a LAN.

3. PROTOTYPE IMPLEMENTATION
The Kimberley prototype uses a Nokia N810 Internet tablet with a
400MHz TI OMAP processor, 128 MB of DDR RAM and 256 MB
flash memory, 2 GB flash internal storage, an attached 8 GB mi-
croSD card, and a 4-inch touch-sensitive color display. It supports
802.11b/g and Bluetooth networking, and is equipped with GPS
and ambient light sensors. Its software is based on the Maemo 4.0
Linux distribution. The infrastructure machine in our prototype is
a Dell Precision 380 desktop with a 3.6 GHz Pentium 4 proces-
sor, 4 GB RAM, an 80 GB disk, and a 20-inch 1600x1200 LCD
monitor. It runs Ubuntu 7.10, which is based on the Linux 2.6.22-
14 kernel. This machine has a 100 Mb/s Ethernet connection to
the Internet; it also has 802.11b/g wireless network access via a
USB-connected network interface. We describe three aspects of
our implementation below.

Infrastructure Server Mobile Device
Avahi

Launcher

Launch
VM

Avahi
wireless

link

user
interaction

KCM KCM

Launcher
VNC
Server VNC

Client

Figure 2: Runtime Binding in Kimberley

3.1 Creating VM overlays
The VMs used in Kimberley are configured using VirtualBox [15]
on a Linux host. VirtualBox is an open source virtual machine mon-
itor that can be hosted on a variety of operating systems, including
Linux. We provide an overlay creation tool called kimberlize

that is invoked as follows:
kimberlize <baseVM> <install-script> <resume-script>

baseVM is a VM in which a minimally-configured guest OS has
been installed. There are no constraints on the choice of guest
OS, except that it must be compatible with install-script and
resume-script. The tool first launches baseVM, and then ex-
ecutes install-script in the guest OS. The result is a VM that
has been configured for use by the mobile device. Next, the tool ex-
ecutes resume-script in the guest OS. This launches the desired
application, and brings it to a state that is ready for user interaction.
The VM is now suspended. It can be resumed rapidly at runtime
without the delays of guest reboot or application launch. There are
no constraints on install-script and resume-script except
for the obvious caveat that they should not halt or crash the guest.

Once the launch VM has been created, kimberlize uses the xdelta
binary differencing tool to obtain the difference between the launch
and post-install memory images. In principle, xdelta could also
be used to obtain the difference in disk images. However, this is
not necessary since VirtualBox already maintains a compact differ-
encing disk. The VM overlay consists of this differencing disk plus
the xdelta-generated memory difference.

The VM overlay is then compressed using the Lempel-Ziv-Markov
algorithm [14], which is optimized for fast decompression at the
price of relatively slow compression. This is the appropriate trade-
off for Kimberley because decompression takes place in the critical
path of execution at runtime and contributes to user-perceived de-
lay. Further, compression is only done once but decompression
occurs each time a mobile device uses infrastructure.

The final step of kimberlize is to encrypt the compressed VM
overlay using AES-128 private-key encryption. An optional argu-
ment to kimberlize can be used to specify the private key; other-
wise kimberlize generates a random key from /dev/urandom.

3.2 Binding to infrastructure
Figure 2 shows the key runtime components of Kimberley. The
controller of the transient binding between mobile device and in-
frastructure server is a user-level process called Kimberley Control
Manager (KCM). An instance of KCM runs on the device (“device
KCM”) and on the infrastructure server (“server KCM”). The KCM
abstracts service discovery and network management from the rest
of Kimberley. Over time, we envision Kimberley supporting many

2

different types of wireless and wired networks. While wireless con-
nections are more natural and seamless to the user, there may be
situations where the freedom from RF congestion of a dedicated
wired link may be preferable for crisp user interaction. The current
implementation supports 802.11 (wireless) and USB (wired) con-
nectivity; we expect to add Bluetooth and Ethernet in the future.
Note that the mobile device may have a direct connection to the
Internet, in addition to the server connection shown in Figure 2.

KCM supports the browsing and publishing of services over the
D-Bus interprocess communication mechanism [13]. The use of
D-Bus simplifies the implementation of extensibility in service dis-
covery by allowing KCM method calls to be defined in XML files.
We currently support the Avahi service discovery mechanism [12],
and plan to support the Bluetooth Service Discovery Protocol (SDP)
in the future. It should also be possible to extend Kimberley to use
other service discovery mechanisms.

The first step in the binding sequence is the establishment of a
secure TCP connection using SSL between a device KCM and a
server KCM. This secure tunnel is then used by the rest of the bind-
ing sequence, which typically involves user authentication and op-
tional billing interaction. Kimberley supports the Simple Authen-
tication and Security Layer (SASL) framework, which provides an
extensible interface for integrating diverse authentication mecha-
nisms. After successful authentication, a dekimberlize command
is executed on the server. This reverses the effects of the original
kimberlize command: it fetches the VM overlay from the mobile
device or a Web site, decrypts and decompresses it, and applies the
overlay to the base VM. The suspended VM is then launched.

The last step in the binding process is enabling user interaction via
VNC [6]. With this setup, all user interactions occur at the mobile
device and its screen mirrors a scaled image of the large display
on the server. This style of interaction allows the user to remain
untethered and to be at some distance from the large server display.
However, the ease of interaction is limited by the dimensions of
the mobile device. Kimberley also supports interaction through a
full-sized keyboard, mouse and other devices attached to the server,
as in Scenario 2. This approach may be preferred when the usage
context requires more extensive interaction.

3.3 Sharing user data
Some usage contexts require data to be shared between the mobile
device and infrastructure server. In Scenario 2, for example, the
mobile device could be running Windows CE while the launch VM
may run Windows XP. Although versions of the Excel spreadsheet
application run in both environments, they are not identical: the
mobile version is optimized for interaction in a small device. How-
ever, both versions share the same spreadsheet file format. Kim-
berley needs a mechanism to share such files between device and
infrastructure. A file system such as Coda [8] would be an obvious
choice. However, this adds to the list of infrastructure dependencies
for Kimberley, possibly restricting its deployment.

Our solution emulates a large FAT32 floppy disk using a part of
the device’s flash memory storage. Its default size is 20MB, but
it can be configured to any size within the storage capacity of the
mobile device. When the mobile device is being used in isolation,
this virtual floppy disk is accessible as a mounted file system. When
binding to an infrastructure server, Kimberley unmounts this virtual
floppy disk, transfers its contents to the server, and then mounts it
in the launch VM. When unbinding, Kimberley unmounts the vir-

Application Compressed Uncompressed Install
VM Overlay VM Overlay Package

Size (MB) Size (MB) Size (MB)

AbiWord 119.5 (3.8) 364.2 (19.9) 10.0
GIMP 141.0 (5.2) 404.7 (30.7) 16.0
Gnumeric 165.3 (3.6) 519.8 (24.7) 16.0
Kpresenter 149.4 (7.6) 426.8 (32.2) 9.1
PathFind 196.6 (1.0) 437.0 (2.3) 36.8
SnapFind 63.7 (0.9) 222.0 (3.6) 8.8
Null 5.9 (0.0) 24.8 (0.0) 0.0
Note: Small figures in parentheses are standard deviations.
The base VM had a virtual disk size of 8 GB.

Table 1: VM Overlay and Install Package Sizes

tual floppy disk, computes the state change since it was mounted,
and transmits this difference to the mobile device. The state dif-
ference is effectively the “VM residue” shown in Figure 1. At the
device, Kimberley applies the difference and then mounts the vir-
tual floppy disk. Although simple, this solution works well for the
usage scenarios that we envision for Kimberley. It is idiot-resistant
since the virtual floppy disk is never accessible simultaneously on
both the mobile device and the VM.

4. PROTOTYPE PERFORMANCE
Our evaluation addresses three questions relative to the use of an
infrastructure site that has no cached overlay state:

• How big are typical VM overlays?
• What is the typical startup delay?
• How fast can a user depart?

To answer these questions, we examined six open-source Linux
applications. These are listed below, along with their better-known
Windows counterparts:

• AbiWord: a word processor (Microsoft Word)
• GIMP: an image processor (Adobe Photoshop)
• Gnumeric: a spreadsheet program (Microsoft Excel)
• Kpresenter: a slide tool (Microsoft PowerPoint)
• PathFind: a digital pathology tool for whole-slide images

based on the OpenDiamond R© platform [9] and suggestive
of Scenario 1.

• SnapFind: a tool for examining digital photographs and search-
ing for other similar photographs. It is also based on the
OpenDiamond R© platform.

As a limiting case to explore the intrinsic overhead of Kimber-
ley, we also considered a hypothetical Null application by invoking
kimberlize with empty install-script and resume-script

parameters.

4.1 Overlay Size
Table 1 presents data relevant to the first question. The table shows
that the compressed overlay size for these seven applications ranges
from 5.9 MB for the Null case to 196.6 MB for PathFind. The
uncompressed sizes indicate a typical compression factor of about
three. We initially expected overlay creation to be a completely de-
terministic process, and were therefore surprised to see small vari-
ations in overlay sizes for the same application in different exper-
imental runs. We conjecture that this is an artifact of VirtualBox’s

3

0

20

40

60

80

100

120

140

AbiWord GIMP Gnumeric Kpresenter PathFind SnapFind Null

Other
Resume VM
Apply VM overlay
Decompress VM overlay
Transfer floppy disk
Compress floppy disk
Transfer VM overlay

Largest standard deviation is 5.3% of mean

(a) 100 Mbps

0

50

100

150

200

250

300

350

AbiWord GIMP Gnumeric Kpresenter PathFind SnapFind Null

Other
Resume VM
Apply VM overlay
Decompress VM overlay
Transfer floppy disk
Compress floppy disk
Transfer VM overlay

Largest standard deviation is 3.4% of mean

(b) 10 Mbps

Figure 3: Startup Delay in Seconds

differencing disk implementation. Based on more detailed exper-
iments (not described here), we conjecture that VirtualBox asyn-
chronously preallocates real disk space for its virtual disk. The
effect is modest, amounting to just a few percent of total overlay
size. The last column gives the size of the installation package for
an application. This size is loosely correlated with the application’s
compressed and uncompressed overlay sizes.

Table 2 shows the time taken by kimberlize to create overlays.
Recall that kimberlize sacrifices compression speed for fast de-
compression at runtime. This accounts for the relatively long times
shown in Table 2, ranging from just over a minute for Null to nearly
11 minutes for Gnumeric.

4.2 Startup Delay
To answer the second question (“What is the typical startup de-
lay?”), we measured the time it takes from a user’s initial action to
use infrastructure to the point at which he starts interacting with the
application. This includes the time taken to transmit the VM over-
lay and virtual floppy disk, to apply the VM overlay, and to launch
the VM.

Our experiments used the same set of seven applications and the
VM configuration discussed in Section 4.1. The hardware used in
these experiments is the same as that described at the beginning
of Section 3. Since network bandwidth is a critical factor that af-

Application Elapsed time for
Kimberlize

(seconds)

AbiWord 513 (32.4)
GIMP 527 (39.3)
Gnumeric 652 (36.3)
Kpresenter 548 (45.1)
PathFind 518 (4.3)
SnapFind 277 (3.9)
Null 81 (0.7)

Note: Small figures in parentheses are
standard deviations

Table 2: Creation Time for VM Overlays

fects overlay transmission time, we explored performance at two
different bandwidths. The first bandwidth of 100 Mbps is typical
of what one might expect within an enterprise. The second band-
width of 10 Mbps is suggestive of well-connected public infrastruc-
ture. For example, in Scenarios 1 and 2, this might be the band-
width available from the restaurant or airport gate to the overlay
server. Note that bandwidth to the overlay server is independent of
the wireless connnection between mobile device and infrastructure
over which control interactions and transfer of the virtual floppy
disk take place.

Figure 3 presents our results for two bandwidths: 100 Mbps and 10
Mbps. Five runs of each experiment were performed. At 100 Mbps,
the transfer time for VM overlays only accounts for one-fifth or less
of the total startup delay for most applications. Decompressing and
applying the VM overlay are the dominant contributors to delay,
accounting for roughly half of the total startup delay in most cases.
The time to compress the virtual floppy disk is also significant. Im-
proving this quantity is complicated by energy considerations for
mobile devices. The total startup delay at 100 Mbps is quite ac-
ceptable, ranging from under a minute for SnapFind to just over a
minute and a half for GIMP.

At 10 Mbps, VM overlay transfer time dominates. It accounts for
roughly three-fourths of the total startup delay for most applica-
tions in Figure 3(b). Decompressing the VM overlay and applying
it account for roughly one-fourth of the total time in those cases.
The total startup delay ranges from roughly 3 to 5 minutes in most
cases, which is at the outer limit of acceptability for transient use of
infrastructure. This can be improved by using techniques such as
data staging [3] to proactively transfer an overlay close to an antic-
ipated usage site. In that case, the startup delay experienced would
be closer to the 100 Mbps case. A cached overlay would, of course,
also greatly improve startup delay.

4.3 Teardown Delay
Before a user can depart from a site, three steps must occur: the VM
must be powered down; the server must generate the VM residue;
and the residue must be transferred to the mobile device. Our mea-
surements (not shown here, to save space) indicate that all of these
steps combined require less than one second for all the applications
studied. Post-departure cleanup of state at the server and on the
mobile device take a few additional seconds.

5. RELATED WORK
There has been much recent work on building mobile computing
systems that take advantage of infrastructure. Closest in spirit to
Kimberley is the Internet Suspend/Resume R© system (ISR) [5, 7],

4

that also uses VM technology. Kimberley differs from ISR in three
important ways. First, it decomposes VM state into a base and an
overlay. Even on infrastructure with a cold cache, only the rela-
tively small overlay has to be delivered at runtime. This represents
a different approach from ISR to solving the problem of migrat-
ing VM state that can be large. Second, VM state in Kimberley
is discarded after execution, with only a very small VM residue
being saved. Third, by delivering the VM overlay directly from
the mobile device rather than a server, Kimberley can be used in
situations where Internet connectivity is poor or non-existent. In
that case, the base VM would have to be acquired by infrastructure
through means such as manual dissemination on CD-ROM.

Further afield, Want et al [11] focus on the problem of dynamically
composing hardware components to yield a computing device with
desired capabilities. Balan et al [2] focus on the problem of cre-
ating mobile computing applications that can use cyber foraging.
Goyal and Carter [4] discuss secure cyber foraging using services
provided by VMs in the infrastructure; their work assumes that the
VMs have been pre-configured for the desired services. Outside
mobile computing, a recent commercial product vizioncore vPack-
ager uses VM differencing to support a community of collaborative
software developers [10].

6. CONCLUSION
Kimberley applies VM technology to the problem of provisioning
infrastructure for use by mobile computing devices. A good so-
lution to this problem needs to respect the resource limitations of
mobile devices while also keeping the configuration complexity of
infrastructure low. Kimberley accomplishes the first goal by avoid-
ing VM execution on the mobile device (hence reducing CPU and
memory demand) and by using indirection to deliver VM overlays
to the infrastructure from third-party sites (hence reducing wire-
less bandwidth demand and energy use on the mobile device). The
second goal is accomplished through the use of VM technology.
Rather than infrastructure having to be configured for many differ-
ent applications, it only has to be configured to support Kimberley.
The rest of the configuration happens dynamically, through VM
overlays. This simplification lowers a key barrier to the widespread
deployment of mobile computing infrastructure.

Acknowledgements
We thank Dave Andersen and the anonymous reviewers for their
many excellent suggestions. This research was supported by the
National Science Foundation (NSF) under grant numbers CNS-
0614679 and CNS-0509004. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF or
Carnegie Mellon University. Internet Suspend/Resume and Open-
Diamond are registered trademarks of Carnegie Mellon University.

7. REFERENCES
[1] BALAN, R., FLINN, J., SATYANARAYANAN, M.,

SINNAMOHIDEEN, S., AND YANG, H. The Case For Cyber
Foraging. In Proceedings of the 10th ACM SIGOPS European
Workshop (Saint-Emilion, France, September 2002).

[2] BALAN, R., GERGLE, D., SATYANARAYANAN, M., AND
HERBSLEB, J. Simplifying Cyber Foraging for Mobile Devices. In
Proceedings of the 5th International Conference on Mobile
Computing Systems, Applications and Services (MobiSys 2007) (San
Juan, Puerto Rico, June 2007).

[3] FLINN, J., SINNAMOHIDEEN, S., TOLIA, N., AND
SATYANARYANAN, M. Data Staging on Untrusted Surrogates. In

Proceedings of the FAST ’03 Conference on File and Storage
Technologies (San Francisco, CA, March 2003).

[4] GOYAL, S., AND CARTER, J. A Lightweight Secure Cyber Foraging
Infrastructure for Resource-Constrained Devices. In Proceedings of
the Sixth Workshop on Mobile Computing Systems and Applications
(English Lake District, UK, December 2004).

[5] KOZUCH, M., SATYANARAYANAN, M. Internet Suspend/Resume.
In Proceedings of the Fourth IEEE Workshop on Mobile Computing
Systems and Applications (Callicoon, NY, June 2002).

[6] RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K. R., AND
HOPPER, A. Virtual Network Computing. IEEE Internet Computing
2, 1 (Jan/Feb 1998).

[7] SATYANARAYANAN, M., GILBERT, B., TOUPS, M., TOLIA, N.,
SURIE, A., O’HALLARON, D., WOLBACH, A., HARKES, J.,
PERRIG, A., FARBER, D. J., KOZUCH, M., HELFRICH, C., NATH,
P., AND LAGAR-CAVILLA, A. Pervasive Personal Computing in an
Internet Suspend/Resume System. IEEE Internet Computing 11, 2
(March/April 2007).

[8] SATYANARAYANAN, M. The Evolution of Coda. ACM Transactions
on Computer Systems 20, 2 (May 2002).

[9] SATYANARAYANAN, M., SUKTHANKAR, R., GOODE, A.,
HUSTON, L., MUMMERT, L., WOLBACH, A., HARKES, J., GASS,
R., SCHLOSSER, S. The OpenDiamond Platform for Discard-based
Search. Tech. Rep. CMU-CS-08-132, Computer Science
Department, Carnegie Mellon University, May 2008.

[10] VIZIONCORE. vpackager version 1.0 user manual, 2007. [Online;
accessed on 13-April-2008 at
http://www.vizioncore.com/vPackager.html].

[11] WANT, R., PERING, T., SUD, S., AND ROSARIO, B. Dynamic
Composable Computing. In Proceedings of the Ninth Workshop on
Mobile Computing Systems and Principles (HotMobile 2008) (Napa,
CA, February 2008).

[12] WIKIPEDIA. Avahi (software) — Wikipedia, The Free Encyclopedia,
2008. [Online; accessed 9-June-2008 at
"http://en.wikipedia.org/w/index.php?title=Avahi_
%28software%29&oldid=189746162"].

[13] WIKIPEDIA. D-Bus — Wikipedia, The Free Encyclopedia, 2008.
[Online; accessed 9-June-2008 at http://en.wikipedia.org/w/
index.php?title=D-Bus&oldid=217062865].

[14] WIKIPEDIA. Lempel-Ziv-Markov chain algorithm — Wikipedia, The
Free Encyclopedia, 2008. [Online; accessed 22-April-2008 at
http://en.wikipedia.org/w/index.php?title=
Lempel-Ziv-Markov_chain_algorithm&oldid=206469040].

[15] WIKIPEDIA. VirtualBox — Wikipedia, The Free Encyclopedia,
2008. [Online; accessed 21-April-2008 at http://en.wikipedia.
org/w/index.php?title=VirtualBox&oldid=206252157].

5

