
Exploiting Time-Memory Tradeoffs in Cuckoo Cycle

David G. Andersen
Carnegie Mellon University

Preliminary working draft of 1 August 2014. This paper
is a work-in-progress and is being released to stimulate dis-
cussion. It hasn’t even been spellchecked, so proceed with
caution!

Abstract
Cuckoo Cycle is a recently proposed “memory-hard” com-
putational Proof-of-Work (PoW) function designed to re-
quire a minimum amount of memory to compute efficiently.
This paper describes two algorithms that use the sparsity
of the Cuckoo Cycle graph to use less memory than both
the initially hypothesized and updated proposed bounds for
this proof-of-work function. The second algorithm presents
a near-linear time/memory tradeoff for the most computa-
tionally intensive part of solving the Cuckoo Cycle proof-
of-work function.

1 Introduction
Proof-of-Work functions have been proposed for (and are
used in) applications from cryptocurrencies, spam and Sybil
attack prevention, and other scenarios where it is beneficial
to combine anonymity with some form of rate-limiting [3, 2].

The core idea behind a Proof-of-Work (PoW) is that a
sender (S) can prove to a recipient (R) that S has, in expec-
tation, expended a certain amount of computational effort,
and that R can verify this in fast, constant time. Using the
example of spam prevention, the recipient of an email might
ask the sender to prove that it spent 1 second of CPU time,
ensuring that a normal human sender would be unaffected,
but a spam sender could send no more than 60 messages per
minute.

In several areas, “memory-hard” PoW functions are
deemed particularly attractive, for reasons including: (1) A
smaller performance gap between fast computers and slower
mobile devices; (2) A smaller performance gap between a
software implementation running on CPUs and specialized
optimizations using graphics processors (GPUs) or custom
silicon ASICs. This concern has become particularly ger-
mane for cryptocurrencies with the arrival of custom ASIC-
based “miners” for two of the most popular proof-of-work
functions.

The recently proposed Cuckoo Cycle [?] is designed
to be a “memory-hard” PoW function. In this paper,

we demonstrate both a high-performance, memory-efficient
implementation of the baseline version of Cuckoo Cycle
that uses an order of magnitude less memory than it was
initially claimed to require, and demonstrate an effective
time/memory tradeoff that could potentially lead to ASIC
implementations.

2 Cuckoo Cycle Basics

The “proof” in the Cuckoo Cycle PoW is to find a cycle
of length Lin a random sparse bipartite graph. At a glance,
such a formulation has several attractive properties: It intu-
itively requires at least O(N) steps to evaluate, and the ran-
dom connections between vertices would seem to induce a
requirement for either random accesses or sorting-based al-
gorithms. In turn, verification can still be fast, as verifying
that a cycle exists is O(L).

The concrete formulation of the Cuckoo Cycle problem:
Given an input value X , create a hash H =

Hash(X ,nonce). H will serve as the generator for a
bipartite graph G in which to find a cycle. A success-
ful output from the Cuckoo Cycle problem is a pair
〈nonce,edgelist〉 such that the edges in edgelist form a cycle
of length L in the graph G defined by H. To be able to tune
the difficulty of finding a solution, a further requirement
is imposed: SHA256(sorted edgelist) < T , where T is a
target difficulty. A smaller target difficulty will reject more
otherwise-successful solutions, requiring more executions
of the Cuckoo Cycle finder.

G is a bipartite graph with N nodes on each side and N
edges between them (as suggested by the author). The edges
are accessed by an oracle that, given an input index 1 <=
i <= N, outputs the numerical index of the left-hand and
right-hand nodes in the graph. This oracle is Hash(H,2∗ i+
0/1)%N, where the suggested hash function is SIPhash [1], a
fast but reasonably-secure short hash function. The left hand
node is found by hashing 2 ∗ i+ 0 and the right by hashing
2∗ i+1.

Notably, the graph G can therefore be represented com-
pactly using only N and H, but identifying all edges incident
upon a particular vertex requires iterating through the entire
edge set at least once.

The initial proposal for Cuckoo Cycle provided a union-
find-based algorithm for efficiently finding a cycle of length
L in such a graph. It ran in roughly O(N) time using N ∗

1

64 bits of memory to represent the graph. In the remainder
of this paper, we assume the existence of such a solver, but
perform extensive pre-processing, called “edge trimming”,
before invoking it, to achieve substantially faster runtime and
reduced memory requirements.

3 A Compact Edge Trimming Algo-
rithm

The first optimization for Cuckoo Cycle arises from the ob-
servation that the graph is very sparse: With N vertices on
each side and only N edges in total, roughly 1/e (36.7%)
of the bins on each side are empty. A vertex can only par-
ticipate in cycle if it has at least two incident edges, and,
thus, nearly 2/e of the bins cannot be in a cycle based only
upon an immediate count of incident edges, by the Poisson
approximation to the Binomial. As a consequence, a single
iteration through the edges in 2N steps can reduce the num-
ber of active vertices on each side by nearly 73%.

From there, it is a simple recursive formulation to derive a
fast and compact edge trimming algorithm: Begin by defin-
ing all nodes as live. Count all incident edges from live
nodes. Mark as dead any node that does not have 2 or more
such incident edges. Repeat until the desired degree of trim-
ming has been achieved.

This can be implemented compactly and fast by using a
bitvector to represent the liveness of the nodes (optionally
one more to track edge liveness to allow rapidly skipping
unnecessary edges), and a saturating two-bit counter bitvec-
tor for counting edges incident upon each vertex. The latter
is helpful because a node remains live whether it has 2 or
200 edges incident upon it, so it is only necessary to count
to two, and thus, only two bits are required.1

Pseudocode for this algorithm is shown in Algorithm 1.

4 A Time-Memory Tradeoff

In prior memory-hard functions such as scrypt [?],
time/memory tradeoffs have been used to enable efficient
ASIC-based implementations, using fast custom circuitry to
eliminate expensive storage and memory bandwidth require-
ments. A specific goal of Cuckoo Cycle was to prevent
such tradeoffs by having superlinear scaling: If reducing the
memory us from N to N

k should increase the amount of com-
putation by, e.g., k2 or some other superlinear factor.

This section presents an algorithm for achieving a near-
linear time/memory tradeoff for edge pruning in Cuckoo Cy-
cle. Note that this speedup applies only to the edge-pruning
step, and that the pruned graph must still be processed sepa-
rately, with about 1-3% of the remaining live nodes that the

1A “trit”-style succinct representation is likely to be unappealingly slow
in practice, despite the waste of 0.5 bits per entry in this simple representa-
tion.

Algorithm 1 Edge Trimming

1: procedure EDGETRIM(keys)
2: liveLeft← BitVector(true, N)
3: liveRight← BitVector(true, N)
4: for iter = 1 to MaxIters do
5: count← IntVector(0, N)
6: for edge = 1 to N do
7: if liveRight[edge.Right] then
8: count[edge.Left]++
9: end if

10: end for
11: for node = 1 to N do
12: if count[i] < 2 then
13: liveLeft[i] = False
14: end if
15: end for
16: end for

(Repeat equivalently for the right side)
17: end procedure

original graph had. This result graph can be streamed as a se-
quential memory write, which makes it reasonably efficient
for use on GPUs and ASICs that have an attached memory
controller, but it is an important current limitation.

To begin, define a “node partition” P as a subset of the
nodes on one side of the bipartite graph. The node partition
is the unit of the TMTO: Picking |P| =

√
N, for example,

will thus require c∗ N√
N

log(N) bits of memory for edge par-
titioning, where c is a small constant.

The approach is straightforward.

1. Establish liveness for each node in P as in Algorithm 1:
Iterate through the edge set, count edges incident to
each node in P, and mark as “dead” those with fewer
than 2 incident edges. This step operates in O(N) time
and requires 3|P| bits of memory for the counter and
live bitvectors. At the end of this step, there are roughly
|P|
e live nodes remaining.

2. For every edge in G, if it is connected to a live node in
P, add its other endpoint to a dictionary D. D tracks the
identities of those nodes responsible for “keeping alive”
nodes in P. This step requires O(N) time and roughly
|P| logN bits of memory. The logarithmic factor arises
because the dictionary must store the full node ID of
the nodes it tracks.

3. Perform liveness tracking for every node in D, as above.
Remove from D any node with less than 2 incident
edges. This eliminates roughly half of the nodes in D
(each already had one incident edge from P, so this re-
duction is smaller than the initial pruning).

4. Re-calculate liveness for the nodes in P, only incre-
menting the count of incident edges if the other end-
point of the edge in D is still live.

5. Apply this idea recursively to P-D1-D2, P-D1-D2-D3,

2

etc.
6. Once sufficient iterations have been performed on P,

move on to the next subset, discarding the data struc-
tures associated with P and writing the few remaining
live elements from P to a list.

At the end of this step, about l = 1− 3% of the items in
P are still live. They can be represented using l log(|P|) bits,
because it is only necessary to represent their offset within
the partition. The requirement to represent these remain-
ing live nodes thus provides the remaining lower bound on
the memory required to solve the cuckoo cycle problem, of
roughly 0.02N log(|P|) bits.

The memory requirements for the recursive dictionary are
approximately constant (for a given |P|) because (1) at each
successive iteration, the initial number of nodes is smaller
than in the previous, thus requiring less per-hop dictionary
space; and (2) the sparsity of the graph ensures that the ex-
pected number of nodes at further-out hops does not grow as
the graph extends.2

Several optimizations remain possible after this initial op-
timization:

• Use the liveness established on prior partitions when
computing the liveness of later partitions.
• Hierarchically combine partitions for further pruning in

an efficient manner once their size is sufficiently small.

The former would likely require writing the remaining
nodes using an efficient encoding such as an Elias-Fano se-
quence. The latter’s effectiveness is an open question to ex-
plore.

A proof-of-concept implementation of this for a single
partition can be found at http://www.cs.cmu.edu/
˜dga/crypto/cuckoo/partitioned.jl . While
not performance-optimized (and written in Julia), it covers
the basics of the algorithm.

5 Discussion
The algorithms shown thus far are preliminary and the anal-
ysis somewhat uncareful, but I believe they serve as a good
starting point for understanding future TMTO attacks against
sparse graph proof-of-work functions such as Cuckoo Cycle.

In a very preliminary sense, there should be few barri-
ers to implementing the described algorithm in hardware: It
requires only bitvectors and dictionaries mapping integers
to small counts, the latter of which can be handled effi-
ciently using content-addressable memories (CAMs), con-
ventional data structures, or slightly overprovisioned asso-
ciative caches.

2This analysis is too glib and stops being true as the graph is pruned
asymptotically towards containing cycles and very-long paths. But it works
well for the first few iterations. n.b. - a very careful version would bound
the maximum size instead of dealing only with the expected, or show that
the probability of needing to skip and move on to the next graph instance is
low.

The largest barrier to overcome yet is the need to pass the
pruned graph to a more complex solver. This is an inter-
esting question for further exploration: it is very likely that
the sparsity of the graph will save the day again here, be-
cause many of the small cycles that might keep nodes alive
after edge pruning are unlikely to be involved in a success-
ful 42-cycle and could possibly be detected and pruned with
the addition of a small amount of extra bookkeeping. As an
alternative, of course, an ASIC-based implementation might
provide a small embedded general purpose ARM-style core
to handle this final solution-finding without the need to go
off-chip.

Based upon these results, I continue to believe that much
more attention needs to be paid to this function before it
is adopted as a proof-of-work based upon its time/memory
tradeoff resistance claims. It remains an intriguing idea, but
the very algorithmic issues that make it interesting also mean
that without a more solid proof of its difficulty, it may still
yield to further algorithmic improvements.

6 Conclusion
This paper demonstrates an efficient implementation strat-
egy for Cuckoo Cycle that reduces the memory requirements
by over an order of magnitude compared to the initially hy-
pothesized bounds. It further presents a partial nearly-linear
time/memory tradeoff attack that is effective against the edge
trimming phase that constitutes the great majority of time
spent solving a cuckoo cycle problem instance.

References
[1] J.-P. Aumasson and D. J. Bernstein. SipHash: a fast short-input

PRF. In Progress in Cryptology-INDOCRYPT, pages 489–508,
2012.

[2] A. Back. Hashcash. http://www.cypherspace.org/
hashcash/, 1997.

[3] C. Dwork and M. Naor. Pricing via processing or combatting
junk mail. In Advances in CryptologyCRYPTO92, pages 139–
147. Springer, 1993.

3

http://www.cs.cmu.edu/~dga/crypto/cuckoo/partitioned.jl
http://www.cs.cmu.edu/~dga/crypto/cuckoo/partitioned.jl
http://www.cypherspace.org/hashcash/
http://www.cypherspace.org/hashcash/

	Introduction
	Cuckoo Cycle Basics
	A Compact Edge Trimming Algorithm
	A Time-Memory Tradeoff
	Discussion
	Conclusion

