Energy-aware adaptation for mobile applications

Jason Flinn and M. Satyanarayanan
School of Computer Science
Carnegie Mellon University

Abstract

In this paper, we demonstrate that a collaborative relation-
ship between the operating system and applications can be
used to meet user-specified goals for battery duration. We
first show how applications can dynamically modify their be-
havior to conserve energy. We then show how the Linux op-
erating system can guide such adaptation to yield a battery-
life of desired duration. By monitoring energy supply and
demand, it is able to select the correct tradeoff between en-
ergy conservation and application quality. Our evaluation
shows that this approach can meet goals that extend battery
life by as much as 30%.

1 Introduction

Energy is a vital resource for mobile computing. There is
growing consensus that advances in battery technology and
low-power circuit design cannot, by themselves, meet the
energy needs of future mobile computers — the higher levels
of the system must also be involved [1, 7].

In this paper, we explore how applications can dynam-
ically modify their behavior to conserve energy. To guide
such adaptation, the operating system monitors energy sup-
ply and demand. When energy is plentiful, application be-
havior is biased toward a good user experience; when it is
scarce, the behavior is biased toward energy conservation.

To validate the energy benefits of adaptation, we present
results from a detailed study of applications running on the
Odyssey platform for mobile computing. Our results show
energy reductions in the range of 7% to 72%, with a mean
of 36%. Combined with hardware power management, we
achieve overall reductions between 31% and 76%, with a
mean of 50% — in effect, doubling battery life.

This research was supported by the National Science Foundation (NSF) under grant
number CCR-9901696, and the Air Force Materiel Command (AFMC) under DARPA
contract number F19628-96-C-0061. Addition support was provided by IBM. The
views and conclusions contained here are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either express
or implied, of NSF, AFMC, DARPA, IBM, CMU, or the U.S. Government.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SOSP-17 12/1999 Kiawah Island, SC

©1999 ACM 1-58113-140-2/99/0012. .. $5.00

48

Our measurements also suggest a novel approach to re-
ducing the energy drain of the display, an important but dif-
ficult challenge. Using this approach, we project a further
energy reduction ranging from 7% to 29%.

Finally, we show how the operating system can con-
trol adaptation by concurrent applications to give a battery
life of user-specified duration. To perform this control, we
have extended Odyssey to predict future energy demand
from measurements of past usage. When there is substantial
mismatch between predicted demand and available energy,
Odyssey notifies applications to adapt. Using this approach,
we demonstrate that Odyssey can extend battery-life to meet
user-specified goals that vary by as much as 30%.

‘We begin with brief overviews of PowerScope, a tool we
built to profile energy usage, and Odyssey. Three major sec-
tions follow: Section 3, on energy savings through adapta-
tion; Section 4, on reducing display energy usage; and Sec-
tion 5, on achieving a desired battery life. We close with a
summary of related work and future plans.

2 Background
2.1 The PowerScope energy profiler

PowerScope is a tool for mapping energy consumption to
specific software components. Its functionality and design
are inspired by CPU profilers such as prof and gprof that
help expose code components wasteful of processor cycles.
Using PowerScope, one can determine what fraction of the
total energy consumed during a certain time period is due
to specific processes. Further, one can determine the energy

Digital
Mulfimeter A STE e
== HB

This hardware setup is used during PowerScope data col-
lection. A data collection computer distinct from the profiling
computer controls the multimeter and stores samples from it.
Later, program counter and process id samples are correlated
offline with current levels to yield energy profiles.

Figure 1. Data collection in PowerScope

CPU Total Average
Process Time(s) Energy(J) Power(W)
/usr/odyssey/bin/xanim 66.57 643.17 9.66
/usr/X11R6/bin/X 35.72 331.58 9.28
Kernel 50.89 328.71 6.46
Interrupts-WaveLAN 18.62 165.88 8.91
/usr/odyssey/bin/odyssey 12.19 123.40 10.12
Total 183.99 1592.75 8.66

Energy Usage Detail for process /usr/odyssey/bin/odyssey

CPU Total Average
Procedure Time(s) Energy(J) Power(W)
_Dispatcher 0.25 2.53 10.11
_IOMGR_CheckDescriptors 0.17 1.74 10.23
_sftp_DataArrived 0.16 1.68 10.48
_rpc2_RecvPacket 0.16 1.67 10.41
_ExaminePacket 0.16 1.66 10.356

This figure shows a sample energy profile. The first table sum-
marizes the energy usage by process, while the table below
shows a portion of the detailed profile for a single process.
Only part of the full profile is shown.

Figure 2. Example of an energy profile

consumption of individual procedures within a process. By
providing fine-grained feedback, PowerScope helps expose
system components most responsible for energy consump-
tion. Since PowerScope was recently described in detail 8],
we only provide a brief overview here.

PowerScope uses statistical sampling to profile the en-
ergy usage of a computer system. To reduce overhead, pro-
files are generated in two stages. During the data collection
stage, shown in Figure 1, the tool samples power consump-
tion as well as the program counter (PC) and process identi-
fier (PID) of the code executing on the profiling computer. A
digital multimeter, currently a Hewlett Packard 3458a, sam-
ples the current drawn by the profiling computer through its
external power input. Since the input voltage on computers
is well-controlled (to within 0.25% in our measurements),
current samples alone are adequate to infer energy consump-
tion. The output of this stage consists of a sequence of cur-
rent level samples and a correlated sequence of PC/PID sam-
ples. In a later off-line stage, PowerScope combines these
sequences with symbol table information from binaries and
shared libraries on the profiling computer. The result is an
energy profile such as that shown in Figure 2.

2.2 The Odyssey platform for adaptation

The design rationale and architecture of Odyssey were pre-
sented in an earlier paper [17]. Adaptation in Odyssey in-
volves the trading of data quality for resource consumption.
For example, a client playing full-color video data from a
server could switch to black and white video when band-
width drops, rather than suffering lost frames. Similarly, a
map application might fetch maps with less detail rather than
suffering long transfer delays for full-quality maps.

Odyssey captures this notion of data degradation through
an attribute called fidelity, that defines the degree to which
data presented at a client matches the reference copy at a

49

Odyssey

Warden3.

Application|

Kernel

Figure 3. Odyssey architecture

server. Fidelity is a type-specific notion since different kinds
of data can be degraded differently. Since the minimal level
of fidelity acceptable to the user can be both time and appli-
cation dependent, Odyssey allows each application to spec-
ify the fidelity levels it currently supports.

Odyssey supports concurrent adaptation by diverse ap-
plications. The client architecture providing this support is
shown in Figure 3. Odyssey is conceptually part of the op-
erating system, even though it is implemented in user space
for simplicity. The viceroy is the Odyssey component re-
sponsible for monitoring the availability of resources and
managing their use. Code components called wardens en-
capsulate type-specific functionality. There is one warden
for each data type in the system. We have built four adap-
tive applications on top of Odyssey: a video player, a speech
recognizer, a map viewer, and a Web browser. Such multi-
media and speech-enabled applications are of growing im-
portance in mobile computing, although they are not yet as
common as spreadsheets and word processors. Relevant de-
tails of these applications are presented later.

Odyssey is integrated into Linux as a new VES file sys-
tem, along with a set of API extensions for expressing re-
source expections. If resource levels stray beyond an appli-
cation’s expectation, Odyssey notifies it through an upcall.
The application then adjusts its fidelity to match the new re-
source level, and communicates a new set of expectations
to Odyssey. Some applications, such as our Web browser
and map viewer, use a proxy to avoid modifications to appli-
cation source code. Other applications, such as our video
player and speech recognizer, are modified to interact di-
rectly with Odyssey.

The initial Odyssey prototype only supported network
bandwidth adaptation. The work reported here extends
Odyssey to support energy adaptation.

3 Energy impact of fidelity

Does lowering data fidelity yield significant energy savings?
This was the crucial question facing us when we began this
work. Incorporating support for energy-aware adaptation
into Odyssey is futile if the potential savings are meager.

We were also keen to confirm that the energy sav-
ings from lowering fidelity could enhance those achiev-
able through well-known hardware power management tech-
niques such as turning off the disk or stowing the CPU [6, 13,
16]. Although these distinct approaches to energy savings
seem composable, we wanted to verify this experimentally.

3.1 Methodology

To answer these questions, we measured the energy used by
the Odyssey video player, speech recognizer, map viewer,
and Web browser. We first observed the applications as they
operated in isolation, and then as they operated concurrently.
To maintain fidelity constant throughout an experiment, we
disabled Odyssey’s dynamic adaptation capability.

We explored sensitivity of energy consumption to data
content by using four data objects for each application: that
is, four video clips, four speech utterances, four maps, and
four Web images. We first measured the baseline energy us-
age for each object at highest fidelity with hardware power
management disabled. Next, we measured energy usage
with hardware-only power management. Then, for each
lower fidelity level we measured energy usage with hard-
ware power management enabled.

This sequence of measurements is directly reflected in
the format of the graphs presenting our results: Figures 6,
8, 10 and 13. Since a considerable amount of data is con-
densed into these graphs, we explain their format here even
though their individual contents will not be meaningful until
the detailed discussions in Sections 3.3 through 3.6.

For example, consider Figure 6. There are six bars in
each of the four data sets on the X axis; each data set cor-
responds to a different video clip. The height of each bar
shows total energy usage, and the shadings within each bar
show energy usage by software component. The component
labelled “Idle” aggregates samples that occurred while ex-
ecuting the kernel idle procedure — effectively a Pentium
hlt instruction. The component labelled “WaveLAN" ag-
gregates samples that occurred during network interrupts.

For each data set, the first and second bars, labelled
“Baseline” and “Hardware-Only Power Mgmt.”, show en-
ergy usage at full fidelity with and without hardware power
management. Each of the remaining bars show the energy
usage at a different fidelity level with hardware power man-
agement enabled. The difference between one of these bars
and the first bar (“Baseline™) gives the combined benefit of
hardware power management and fidelity reduction. The
difference between one of these bars and the second one
(“Hardware-Only Power Mgmt.”) gives the savings directly
attributable to reduction in fidelity.

The measurements for the bars labelled “Hardware-Only
Power Mgmt.” were obtained by powering down as many
hardware components as possible for each application. For
example, we placed the disk in standby mode after 10 sec-
onds of inactivity. Further, we modified the network commu-

50

Component | State Power (W)
Display Bright 4.54
Dim 1.95
WaveLAN | Idle 1.46
Standby 0.18
Disk Idle 0.88
Standby 024
Other Idle 3.20

Background (display dim, WavelLAN & disk standby) = 5.6 W.

This figure shows the measured power consumption of com-
ponents of the IBM 560X laptop. Power usage is slightly but
consistently superlinear; for example, the laptop uses 10.28 W
when the screen is brightest and the disk and network are idle
— 0.21 W more than the sum of the individual power usage of
each component. The last row shows the power used when
the disk, screen, and network are all powered off. Each value
is the mean of five trials — in all cases, the sample standard
deviation is less than 0.01W.

Figure 4. Power consumption of IBM ThinkPad 560X

nication package used by Odyssey to place the wireless net-
work interface in standby mode except during remote proce-
dure calls or bulk transfers. Finally, we turned off the display
during the speech application. To ensure good experimental
control, we disabled BIOS-level hardware power manage-
ment. While these hardware power management techniques
are simple, they combine to yeild up to a 34% reduction in
energy usage.

3.2 Experimental setup

All measurements reported in this paper were obtained on a
233 MHz Pentium: IBM ThinkPad 560X laptop with 64 MB
of memory, running the Linux 2.2 operating system. This
machine was configured as an Odyssey client and communi-
cated with servers over a 2 Mb/s wireless Wavel_LAN network
operating at 900 MHz. The servers were 200 MHz Pentium
Pro desktop computers with 64 MB of memory.

We profiled energy usage on the client with PowerScope,
sampling approximately 600 times per second. To avoid
confounding effects due to non-ideal battery behavior, the
client used an external power supply. Further, to eliminate
the effects of charging, the client’s battery was removed.

Figure 4 shows the power usage of several hardware
components of this laptop. To obtain these measurements,
we used PowerScope to measure the change in power us-
age as we ran benchmarks which varied the power states of
individual hardware components.

3.3 Video player
3.3.1 Description
We first measured the impact of fidelity on the video ap-
plication shown in Figure 5. Xanim fetches videos from a

server through Odyssey and displays them on the client. It
supports two dimensions of fidelity: varying the amount of

2500

2000

Energy (Joules)

500

0]

Video 1

Video 2

[1ldle
Xanim

X Server
B Odyssey
WavelLAN
Il Kernel

This figure shows the energy used to display four QuickTime/Cinepak videos from 127 to 226 seconds in length, ordered from right
to left above. For each video, the first bar shows energy usage without hardware power management or fidelity reduction. The
second bar shows the impact of hardware power management alone. The next two show the impact of lossy compression. The
fifth shows the impact of reducing the size of the display window. The final bar shows the combined effect of lossy compression
and window size reduction. The shadings within each bar detail energy usage by software component. Each value is the mean

of five trials — the error bars show 90% confidence intervais.

Figure 6. Energy impact of fidelity for video playing

Client
I Viceroy | (N
! Xanim Video
: VAR |
: % Video Server |
N Warden . J

Figure 5. Odyssey video player

lossy compression used to encode a video clip, and varying
the size of the window in which it is displayed. There are
multiple tracks of each video clip on the server, each gen-
erated off-line from the full-fidelity video clip using Adobe
Premiere. They are identical to the original except for size
and the level of lossy compression used in frame encoding.

3.3.2 Results

Figure 6 shows the energy used to display four videos at dif-
ferent fidelities. At baseline fidelity, much energy is con-
sumed while the processor is idle because of the limited
bandwidth of the wireless network — not enough video data
is transmitted to saturate the processor. Most of the remain-
ing energy is consumed by asynchronous network interrupts,
the Xanim video player, and the X server.

For the four video clips, hardware-only power manage-
ment reduces energy consumption by a mere 9-10%. There
is little opportunity to place the network in standby mode
since it is nearly saturated. Most of the reduction is due
to disk power management — the disk remains in standby
mode for the entire duration of an experiment.

51

The bars labelled Premiere-B and Premiere-C in Figure 6
show the impact of lossy compression. Premiere-C, at the
highest compression, consumes 16-17% less energy than
hardware-only power management. Note that these gains
are understated due to the bandwidth limitation imposed by
our wireless network. With a higher-bandwidth network, we
could raise baseline fidelity and thus transmit better video
quality when energy is plentiful. The relative energy savings
of Premiere-C would then be higher.

By examining the shadings of each bar in Figure 6, we
see that compression significantly reduces the energy used
by Xanim, Odyssey and the WaveL AN device driver. How-
ever, the energy used by the X server is almost completely
unaffected by compression. We conjecture that this is be-
cause video frames are decoded before they are given to the
X server, and the size of this decoded data is independent of
the level of lossy compression.

To validate this conjecture, we measured the effect of
halving both the height and width of the display window,
effectively introducing a new dimension of fidelity. As Fig-
ure 6 shows, shrinking the window size reduces energy con-
sumption 19-20% beyond hardware-only power manage-
ment. The shadings on the bars confirm that reducing win-
dow size significantly decreases X server energy usage. In
fact, within the bounds of experimental error, X server en-
ergy consumption is proportional to window area.

Finally, we examined the effect of combining Premiere-
C encoding with a display window of half the baseline height
and width. This results in a 28-30% reduction in energy us-
age relative to hardware-only power management. Relative
to baseline, using all the techniques (hardware, Premiere-C,
and reduced window) together yields about a 35% reduction.

Figure 7. Odyssey speech recognizer

From the viewpoint of further energy reduction, the
rightmost bar of each data set in Figure 6 offers a pessimistic
message: there is little to be gained by further efforts to re-
duce fidelity. Virtually all the energy used at this fidelity is
in the idle state, with the display consuming a large share.
Turning off the display is, of course, not an option when
watching video. We will return to this point in Section 4.

3.4 Speech recognizer
3.4.1 Description

Our second application is an adaptive speech recognizer. As
shown in Figure 7, it consists of a front-end that generates
a speech waveform from an utterance and submits it via
Odyssey to a local or remote instance of the Janus speech
recognition system [23].

Local recognition avoids network transmission and is
unavoidable if the client is disconnected. In contrast, re-
mote recognition incurs the delay and energy cost of net-
work communication but can exploit the CPU, memory and
energy resources of a remote server that is likely to be op-
erating from a power outlet rather than a battery. The sys-
tem also supports a hybrid mode of operation in which the
first phase of recognition is performed locally, resulting in
a compact intermediate representation that is shipped to the
remote server for completion of the recognition. In effect,
the hybrid mode uses the first phase of recognition as a type-
specific compression technique that yields a factor of five
reduction in data volume with little computational overhead.

Fidelity is lowered in this application by using a reduced
vocabulary and a less complex acoustic model. This substan-
tially reduces the memory footprint and processing required
for recognition, but degrades recognition quality. The sys-
tem alerts the user of fidelity transitions using a synthesized
voice. The use of low fidelity is most compelling in the case
of local recognition on a resource-poor disconnected client,
although it can also be used in hybrid and remote cases.

Although reducing fidelity limits the number of words
available, the word-error rate may not increase. Intuitively,
this is because the recognizer makes fewer mistakes when

52

choosing from a smaller set of words in the reduced vocab-
ulary. This helps counterbalance the effects of reducing the
sophistication of the acoustic model.

3.4.2 Results

Figure 8 presents our measurements of client energy usage
when recognizing four pre-recorded utterances using local,
remote and hybrid strategies at high and low fidelity. The
baseline measurenients correspond to local recognition at
high fidelity without hardware power management. Since
speech recognition is compute-intensive, almost all the en-
ergy in this case is consumed by Janus.

Hardware-only power management reduces client en-
ergy usage by 33-34%. Such a substantial reduction is pos-
sible because the display can be turned off and both the net-
work and disk can be placed in standby mode for the en-
tire duration of an experiment. This assumes that user inter-
actions occur solely through speech, and that disk accesses
can be avoided because the vocabulary, language model and
acoustic model fit entirely in physical memory. More com-
plex recognition tasks may trigger disk activity and hence
show less benefit from hardware power management.

Lowering fidelity by using a reduced speech model re-
sults in a 25-46% reduction in energy consumption relative
to hardware-only power management. This corresponds to a
50-65% reduction relative to the baseline.

Remote recognition at full fidelity reduces energy us-
age by 33-44% below that obtained by using hardware-only
power management. If fidelity is also reduced, the corre-
sponding savings is 42-65%. These figures are comparable
to the energy savings for remote execution reported in the lit-
erature for other compute-intensive tasks {18]. As the shad-
ings in the fourth and fifth bars of each data set in Figure 8
indicate, most of the energy consumed by the client in re-
mote recognition occurs with the processor idle — much of
this is time spent waiting for a reply from the server. Lower-
ing fidelity speeds recognition at the server, thus shortening
this interval and yielding additional energy savings.

Hybrid recognition offers slightly greater energy savings
than remote recognition: 47-55% at full fidelity, and 53—
70% at low fidelity, both relative to hardware-only power
management. Hybrid recognition increases the fraction of
energy used by the local Janus code; but this is more than
offset by the reduction in energy for network transmission
and idle time.

Overall, the net effect of combining hardware power
management with hybrid, low-fidelity recognition is a 69—
80% reduction in energy usage relative to the baseline. In
practice, the optimal strategy will depend on resource avail-
ability and the user’s tolerance for low-fidelity recognition.

150 —

[Jldle
Janus
— Il Odyssey
8B 100 WavelAN
3 I Kernel
9
S o~
> g @2
S 7 F §
2 s % oe\"\ e & &
Ll &S },7 S
/ o g &F S
7 FOSS T &f
s FOSEF Lo
7 ZESTE LSS
4 LIS
0- 4
Utterance 1 Utterance 2 Utterance 3 Utterance 4

This figure shows the energy used to recognize four spoken utterances from one to seven seconds in length, ordered from right to
left above. For each utterance, the first bar shows energy consumption without hardware power management or fidelity reduction.
The second bar shows the impact of hardware power management alone. The remaining bars show the additional savings
realized by adaptive strategies. The shadings within each bar detail energy usage by activity. Each measurement is the mean of
five trials — the error bars show 90% confidence intervals.

Figure 8. Energy impact of fidelity for speech recognition

3.5 Map viewer
3.5.1 Description

The third application that we measured was an adaptive map
viewer named Anvil. As shown in Figure 9, Anvil fetches
maps from a remote server via Odyssey and displays them on
the client. Fidelity can be lowered in two ways: filtering and
cropping. Filtering eliminates fine detail and less important
features (such as secondary roads) from a map. Cropping
preserves detail, but restricts data to a geographic subset of
the original map. The client annotates the map request with
the desired amount of filtering and cropping. The server per-
forms any requested operations before transmitting the map
data to the client.

application’s execution since energy is consumed in keeping
the map visible. In contrast, the user needs negligible time
after the display of the last frame or the recognition of an
utterance to complete use of the video or speech application.

Think time is likely to depend on both the user and the
map being displayed. Our approach to handling this vari-
ability was to use an initial value of 5 seconds and then per-
forming sensitivity analysis for think times of 0, 10 and 20
seconds. For brevity, Figure 10 only presents detailed results
for the 5 second case; for other think times, we present only
the summary information in Figure 11.

The baseline bars in Figure 10 show that most of the en-
ergy is consumed while the CPU is idle; a significant portion
of this goes to keeping the display backlit during the five
second think time. The shadings on the bars indicate that
network communication is a second significant drain on en-

ergy. The comparatively larger confidence intervals for this
Anvit 1€ Map application result from variation in the time required to fetch
Server a map over the wireless network.

Figure 9. Odyssey map viewer

3.5.2 Results

We measured the energy used by the client to fetch and dis-
play maps of four different cities. Viewing a map differs
from the two previous applications in that a user typically
needs a non-trivial amount of time to absorb the contents of
a map after it has been displayed. This period, which we re-
fer to as think time, should logically be viewed as part of the

53

Hardware-only power management reduces energy con-
sumption by about 9-19% relative to the baseline. Although
there is little opportunity for network power management
while the map is being fetched, the network can remain in
standby mode during think time. Since the disk is never
used, it can always remain in standby mode.

The third and fourth bars of each data set show the effect
of fidelity reduction through two levels of filtering. One fil-
ter omits minor roads, while the more aggressive filter omits
both minor and secondary roads. The savings from the mi-
nor road filter range from 6-51% relative to hardware-only
power management. The corresponding figure for the sec-
ondary road filter is 23-55%.

150 —

50

Energy (Joules)

[{

San Jose Allentown

Jidle

Anvil

X Server
Bl Odyssey
WaveLAN
MR Kemnel

Boston Pittsburgh

This figure shows the energy used to view four U.S.G.S. maps. For each map, the first bar shows energy usage without hardware
power management or fidelity reduction, with a 5 second think time. The second bar shows the impact of hardware power
management alone. The remaining bars show the additional savings realized by degrading map fidelity. The shadings within each
bar detail energy usage by activity. Each measurement is the mean of ten trials—the error bars are 90% confidence intervals.

Figure 10. Energy impact of fidelity for map viewing

e Baseline
a Hardware-Only Power Mgmt.
= L owest Fidelity

2504

— 2004

150

100 -

Energy (Joules

50+

T T T
10 15 20

Think Time (seconds)

P=ys
W<
5

This figure shows how the energy used to view the San Jose
map from Figure 10 varies with think time. The data points
show measured energy usage. The solid, dashed and dotted
lines represent linear models for energy usage for the base-
line, hardware-only power management and lowest fidelity
cases. The latter combines filtering and cropping, as in the
rightmost bars of Figure 10. Each measurement is the mean
of ten trials — the error bars are 90% confidence intervals.

Figure 11. Effect of user think time for map viewing

The fifth bar of each data set shows the effect of lower-
ing fidelity by cropping a map to half its original height and
width. Energy usage at this fidelity is 14-49% less than with
hardware-only power management. In other words, crop-
ping is less effective than filtering for these samples. Com-
bining cropping with filtering results in an energy savings
of 36-66% relative to hardware-only power management, as
shown by the rightmost bars of each data set. Relative to the
baseline, this is a reduction of 46-70%. There is little sav-
ings left to be extracted through software optimization —
almost all the energy is consumed in the idle state.

After examining energy usage at 5 seconds of think time,

54

we repeated the above experiments at think times of 0, 10
and 20 seconds. At any given fidelity, energy usage, E; in-
creases with think time, r. We expected a linear relationship:
E, = Eg+t - Pg, where Ey is the energy usage for this fidelity
at zero think time and Pp is the background power consump-
tion on the client (5.6 W from Figure 4).

Figure 11 confirms that a linear model is indeed a good
fit. This figure plots the energy usage for four different val-
ues of think time for three cases: baseline, hardware-only
power management, and lowest fidelity. The divergent lines
for the first two cases show that the energy reduction from
hardware-only power management scales linearly with think
time. The parallel lines for the second and third cases show
that fidelity reduction achieves a constant benefit, indepen-
dent of think time. The complementary nature of these two
approaches is thus well illustrated by these measurements.

3.6 Web browser
3.6.1 Description

Our fourth application is an adaptive Web browser based on
Netscape Navigator, as shown in Figure 12. In this applica-

; to
Distillatlonm "oy

Server " severs

Figure 12. Odyssey Web browser

T idle
Netscape
21 Proxy
B8 X Server
Il Odyssey
Wavel AN
Hl Kernel

)
% IS
60 & QQ\-
== @6‘?
§5 2 8
g NG o
RN -
Ll L O ¢
$§Eg
— S g
B 40 E3
'5 —-—_E
8 --!'-1._.
>
2
[}
c 20
i
0_
Image 1 Image 2

image 3 Image 4

This figure shows the energy used to display four GIF images from 110 B to 175 KB in size, ordered from right to left above. For
each image, the first data bar shows energy consumption at highest fidelity without hardware power management, assuming a
think time of five seconds. The second bar shows the impact of hardware power management aione. The remaining bars show
energy usage as fidelity is lowered through increasingly aggressive lossy JPEG compression. The shadings within each bar detail
energy usage by activity. Each measurement is the mean of ten trials — the error bars show 90% confidence intervals.

Figure 13. Energy impact of fidelity for Web browsing

tion, Odyssey and a distillation server located on either side
of a variable-quality network mediate access to Web servers.
Requests from an unmodified Netscape browser are routed to
a proxy on the client that interacts with Odyssey. After anno-
tating the request with the desired level of fidelity, Odyssey
forwards it to the distillation server which transcodes images
to lower fidelity using lossy JPEG compression. This is sim-
ilar to the strategy described by Fox et al [9], except that
control of fidelity is at the client.

3.6.2 Results

As with the map application, a user needs some time after
an image is displayed to absorb its contents. We therefore
include energy consumed during user think time as part of
the application. We use a baseline value of five seconds and
perform sensitivity analysis for 0, 10 and 20 seconds.

Figure 13 presents our measurements of the energy used
to fetch and display four GIF images of varying sizes.
Hardware-only power management achieves reductions of
22-26%. The shadings on the first and second bars of each
data set indicate that most of this savings occurs in the idle
state, probably during think time.

The energy benefits of fidelity reduction are disappoint-
ing. As Figure 13 shows, the energy used at the lowest
fidelity is merely 4-14% lower than with hardware-only
power management; relative to baseline, this is a reduc-
tion of 29-34%. Of course, these results apply only to the
specific form of fidelity reduction used in our experiments,
namely transcoding using lossy JPEG compression.

The effect of varying think time is shown in Figure 14.
The linear model introduced in Section 3.5.2 fits observa-
tions well for all three cases: baseline, hardware-only power

55

j e Baseline
a Hardware-Only Power Mgmt.
m | owest Fidelity

Energy (Joules)

1'0 ’ ’ 1'5 20 ' 25
Think Time (seconds)

This figure shows how the energy used to display image 1
from Figure 13 varies with user think time. The data points
on the graph show measured energy usage for user think
times of 0, 5, 10, and 20 seconds. The solid, dashed and
dotted lines represent linear models for energy consumption
for the baseline, hardware-only power management and low-
est fidelity cases. Each measurement represents the mean of
ten trials — the error bars are 90% confidence intervals.

Figure 14. Effect of user think time for Web browsing

management and lowest fidelity. The close spacing of the
lines for the two latter cases reflects the small energy sav-
ings available through fidelity reduction. The divergence of
the lines for the first two cases shows the importance of hard-
ware power management during think time.

3.7 Effect of concurrency

How does concurrent execution affect energy usage? One
can imagine situations in which total energy usage goes

2000 T ide

Video

} Speech
Map
I Web

X Server
==} Odyssey
Wavel AN
N Other

1500

Energy (Joules)
g

500 —

Lowest
Fidelity

Baseline

Hardware-Only
Power Mgmt.

Each data set in this figure compares energy usage for the
composite application described in Section 3.7 in isolation (left
bar), with total energy usage when a video application runs
concurrently (right bar). Each measurement is the mean of
five trials — the error bars are 90% confidence intervals.

Figure 15. Effect of concurrent applications

down when two applications execute concurrently rather
than sequentially. For example, once the screen has to be
turned on for one application, no additional energy is re-
quired to keep it on for the second. One can also envision
situations in which concurrent applications interfere with
each other in ways that increase energy usage. For exam-
ple, if physical memory size is inadequate to accommodate
the working sets of two applications, their concurrent execu-
tion will trigger higher paging activity, possibly leading to
increased energy usage. Clearly, the impact of concurrency
can vary depending on the applications, their interleaving,
and the machine on which they run.

What is the effect of lowering fidelity? The measure-
ments reported in Sections 3.3 to 3.6 indicate that lowering
fidelity tends to increase the fraction of energy consump-
tion attributable to the idle state. Concurrency allows back-
ground energy consumption to be amortized across applica-
tions. It is therefore possible in some cases for concurrency
to enhance the benefit of lowering fidelity.

To confirm our intuition, we compared the energy usage
of a composite application when executing in isolation and
when executing concurrently with the video application de-
scribed in Section 3.3. The composite application consists
of six iterations of a loop that involves the speech, Web and
map applications described in Sections 3.4 to 3.6. The loop
consists of local recognition of two speech utterances, ac-
cess of a Web page, access of a map, and five seconds of
think time. The composite application models a user search-
ing for Web and map information using speech commands,
while the video application models a background newsfeed.
This experiment takes between 80 and 160 seconds.

56

Figure 15 presents the results of our experiments for
three cases: baseline, hardware-only power management,
and minimal fidelity. In the first two cases, all applications
ran at full fidelity; in the third case, all ran at lowest fidelity.
For each data set, the left bar shows energy usage for the
composite application in isolation, while the right bar shows
energy usage during concurrent execution.

For the baseline case, the addition of the video appli-
cation consumes 53% more energy. But for hardware-only
power management case, it consumes 64% more energy.
This difference is due to the fact that concurrency reduces
opportunities for powering down the network and disk. For
the minimum fidelity case, the second application only adds
18% more energy. This is because the significant back-
ground power usage of the client, which limits the effective-
ness of lowering fidelity, is amortized by the second appli-
cation. In other words, for this workload, concurrency does
indeed enhance the energy impact of lowering fidelity.

3.8 Summary

We began Section 3 by asking whether lowering data fidelity
yields significant energy savings. The results of Sections 3.3
to 3.6 confirm that such savings are indeed available over a
broad range of applications relevant to mobile computing.
Further, those results show that lowering fidelity can be ef-
fectively combined with hardware power management. Sec-
tion 3.7 extends these results by showing that concurrency
can magnify the benefits of lowering fidelity.

At the next level of detail, Figure 16 summarizes the re-
sults of Sections 3.3 to 3.6. For clarity, the data in each row
is normalized to the baseline values.

The key messages of Figure 16 are:

o There is significant variation in the effectiveness of fi-
delity reduction across data objects.

The reduction can span a range as broad as 29% (0.38—
0.67 for Map, at think time 5). Video is the only appli-
cation that shows little variation across data objects.

® There is considerable variation in the effectiveness of
Jfudelity reduction across applications.

Holding think time constant at 5 seconds and averag-
ing across data objects, the energy usage for the four
applications at lowest fidelity is 0.84, 0.28, 0.51 and
0.93 relative to their baseline values. The mean is 0.64,
corresponding to an average savings of 36%.

e Combining hardware power management with lowered
fidelity can sometimes reduce energy usage below the
product of their individual reductions.

This is seen most easily in the case of the video appli-
cation, where the last column is 0.65 rather than the
expected value of 0.76, obtained by multiplying 0.9
and 0.84. Intuitively, this is because reducing fidelity
decreases hatdware utilization, thereby increasing the
opportunity for hardware power management.

Application | Think | Baseline | Hardware Fidelity | Combined
Time (s.) Power Mgmt. | Reduction

Video N/A 1.00 0.90-0.91 0.84-0.84 | 0.65-0.65

Speech N/A 1.00 0.66-0.67 | 0.22-0.36 | 0.20-0.31

Map 0 1.00 0.80-1.01 0.06-0.13 | 0.07-0.18

5 1.00 0.81-091 0.38-0.67 | 0.31-0.54

10 1.00 0.74-0.84 | 0.53-0.77 | 0.42-0.58

20 1.00 0.76-0.78 | 0.69-0.89 | 0.51-0.67

Web 0 1.00 0.85-1.06 | 0.40-0.75 | 0.32-0.54

5 1.00 0.74-0.78 | 0.88-0.97 | 0.66-0.71

10 1.00 0.75-0.78 | 0.93-0.98 | 0.70-0.74

20 1.00 0.74-0.77 | 0.96-0.99 | 0.72-0.73

This table summarizes the impact of data fidelity on application energy consumption. Each entry shows the minimum and max-
imum measured energy consumption for four data objects. The entries are normalized to baseline measurements of full fidelity
objects with no power management. This data was extracted from Figures 6, 8, 10 and 13.

Figure 16. Summary of energy impact of fidelity

4 Zoned backlighting

The display is the Achilles heel of power management. As
shown in Figure 4, it is responsible for nearly 35% of the
background energy usage of the IBM 560X laptop used in
our experiments. This is consistent with similar studies of
other mobile computers {13]. As shown by Figures 6, 8, 10
and 13, the idle state dominates energy usage after all our
improvements have been applied. Reducing display energy
drain is thus crucial to further progress.

4.1 Description

An intriguing solution is suggested by the results of Sec-
tions 3.3 and 3.5. In those cases, energy usage was reduced
by shrinking the physical size of video and map images. Yet,
the entire display had to remain backlit. Suppose it were
possible for the X server to selectively control illumination
in different parts of the screen. Then, lowering fidelity by
image size reduction could yield even greater energy sav-
ings since the background power usage of the laptop would
also be decreased.

We define zoned backlighting as a display feature that
allows independent control of illumination level for different
regions of the screen under software control. If we view such
a screen as a grid, the energy usage of each grid element can
be independently controlled. We refer to each grid element
as a zone. Typically, zone control would be exercised by the
X server in Unix systems, and by the window management
subsystem in Windows operating systems. This is analogous
to device drivers for the disk and network controlling the
energy states of those devices.

When energy is plentiful, the large high-fidelity image
generated by an application would span many zones. As
the battery drains, applications would generate smaller low-
fidelity images that span fewer zones. One can envision a
“snap-to” feature provided by window managers that would

57

move windows slightly so as to straddle the fewest possi-
ble zones. Further, window managers could support user
control over illumination of peripheral zones — in a typical
configuration, only the window in focus might be brightly
illuminated, while the rest of the screen is dim or dark. In
effect, zoned backlighting introduces a new degree of free-
dom into the energy budgets of laptops. It allows the use of
large screens for improved usability, without compromising
the ability to minimize energy usage at low battery levels.

4.2 Results

To the best of our knowledge, no existing display supports
zoned backlighting. Indeed, it is possible that design or
manufacturing limitations may preclude mass-production of
such displays. However, we were curious to see what the
energy performance of such a display would be for the ap-
plications in Section 3.

For this estimate, we extrapolated from the design char-
acteristics of the IBM ThinkPad 560X used in our experi-
ments. We considered 4-zone and 8-zone versions of this
display, as shown in Figures 17(a) and 17(b). We assumed
that each zone was illuminated by one lamp, and that the
power used by each zone was proportional to its area — 0.25
and 0.125 of the value from Figure 4 for the 4-zone and 8-
Zone cases.

(a) 4-Zone Display (b) 8-Zone Display

Figure 17. Zoned backlighting

Hardware-Only Power Management Combined
App. | Think Time (s.) | Baseline || No Zones | 4 Zones 8 Zones No Zones | 4 Zones 8 Zones
Video N/A 1.00 0.90-0.91 | 0.74-0.76 | 0.74-0.76 | 0.65-0.65 | 0.49-0.50 | 0.46-0.47
Map +0 1.00 0.80-1.01 | 0.80-1.01 | 0.75-095 || 0.07-0.18 | 0.07-0.16 | 0.06-0.15
5 1.00 0.81-0.91 | 0.81-091 | 0.75-0.85 || 0.31-0.54 | 0.26-0.45 | 0.24-0.43
10 1.00 0.74-0.84 | 0.74-0.84 | 0.68-0.78 || 0.42-0.58 | 0.39-0.48 | 0.33-0.46
20 1.00 0.76-0.78 | 0.76-0.78 | 0.70-0.72 [} 0.51-0.67 | 0.42-0.55 | 0.40-0.52

This table summarizes the projected impact of zoned backlighting on application energy consumption. Each entry shows the
minimum and maximum energy consumption for four data objects. The entries are normalized to baseline measurements of full
fidelity objects with no power management. The column labelled “Combined” corresponds to measurements at lowest fidelity, with

hardware power management enabled.

Figure 18. Energy impact of zoned backlighting

Figure 18 shows projected energy usage of the video and
map applications using a zoned display. These results are
derived from those presented in Sections 3.3.2 and 3.5.2 re-
spectively. As in Figure 16, all results are normalized to
baseline energy usage. We omit the other two applications
since we expect them to benefit little from zoned displays:
the entire display can be turned off for speech, and Netscape
was almost full-screen at all fidelities in our experiments.

There are two key results in Figure 18. First, zoned back-
lighting offers noticeable benefits for both the video and map
applications, even at full fidelity. Second, lowering fidelity
enhances the energy savings due to zoned backlighting.

The video at full fidelity fits within one zone for the 4-
zone case, and within two zones for the 8-zone case. In both
cases, zoned backlighting reduces energy usage by 17-18%.
At lowest fidelity, the video fits entirely within one of the
8 zones. This reduces energy consumption by 24% for the
4-zone case and by 28-29% for the 8-zone case.

The map at full fidelity occupies all zones in the 4-zone
case and hence shows no benefits with zoned backlighting.
But it occupies only six zones in the 8-zone case, and yields
an energy reduction of 7-8% at a think time of 5 seconds.
At lowest fidelity, the map output only occupies two zones
in the 4-zone case, yielding an energy reduction of 17% at a
think time of 5 seconds. In the 8-zone case, the map output
only occupies three zones and this yields an energy reduction
of 21%. The energy reduction increases with think time,
approaching 8% for the 4-zone case with hardware power
management, 17% for the 4-zone case at lowest fidelity, and
22% for the 8-zone case at lowest fidelity.

Based on these results, we plan to explore collaborations
with display manufacturers to provide support for zoned
backlighting. While savings in the range of 7-29% may not
seem dramatic, it does represent an amount large enough to
be worth expending effort to realize. It is important to re-
member that these savings are available after applying all
the other energy-savings techniques described in this paper.
We therefore anticipate an important future role for zoned
backlighting in mobile computing.

58

5 Goal-directed energy adaptation

A mobile user often has a reasonable estimate of how long a
battery needs to last — for example, the expected duration of
a flight, commute, or meeting. Given such an estimate, one
can ask whether energy-aware adaptation can be exploited
to yield the desired battery life. To explore this question, we
have extended Odyssey to monitor energy supply and de-
mand, and to use this information to direct application adap-
tation to meet a user-specified time duration.

5.1 Prototype design and implementation

Our primary design goal was to ensure that Odyssey meets
the specified time duration whenever feasible. An infeasible
duration is one so large that the available energy is inade-
quate even if all applications run at lowest fidelity; the user
should be alerted to this as early as possible. If the initial
estimate is incorrect, the user can respecify the time goal.
When this happens, the system should either adapt to meet
the new goal or notify the user that it is infeasible.

An important secondary goal is to provide the best user
experience possible. This translates into two requirements:
first, applications should offer as high a fidelity as possible at
all times; second, the user should not be jarred by frequent
adaptations. In our prototype, we balance these opposing
concerns by striving to provide high average fidelity while
using hysteresis to reduce the frequency of fidelity changes.

Odyssey must perform three tasks periodically. First,
it must determine the residual energy available. Second, it
must predict future energy demand. Third, based on these
two pieces of information, it must decide if applications
should change fidelity, and notify them accordingly. Cur-
rently, Odyssey performs these actions twice a second, using
samples collected every 100 milliseconds.

5.1.1 Determining residual energy

In our current implementation, Odyssey measures power
with a on-line version of PowerScope. The data collection
computer transmits current samples to Odyssey on the mo-
bile computer. At each sample, Odyssey calculates residual

energy, assuming a known initial value and constant power
consumption between samples.

Although adequate for prototype validation, this solu-
tion is not portable, since PowerScope currently uses ex-
ternal hardware. We see three possible alternatives for the
future. First, the BIOS on a mobile computer could provide
power usage and residual battery level information — the
SmartBattery API [19] that is currently being standardized
as part of the Advanced Configuration and Power Interface
Specification [10] is a promising candidate for this purpose.
Second, if a compact digital multimeter in PCMCIA form
factor were available, PowerScope could be modified to use
it. Third, laptops such as the Apple Macintosh Duo already
incorporate support for monitoring energy usage [15], and
Odyssey could use this built-in functionality.

5.1.2 Predicting future energy demand

To predict future energy demand, Odyssey relies on
smoothed observations of present and past power usage.
This is in contrast to requiring applications to explicitly de-
clare their future energy usage — an approach that we felt
placed unnecessary burden on applications and was unlikely
to be accurate. We use an exponential smoothing function
of the form new = (1 — a)(this sample) + (o) (old), where o
is a parameter that determines the relative weights of current
and past power usage. Once future power usage has been es-
timated, it is multiplied by the time remaining until the goal
to obtain future energy demand.

Odyssey varies ¢ as energy drains, thus changing the
tradeoff between agility and stability. When the goal is dis-
tant, Odyssey uses a large o.. This biases adaptation toward
stability by reducing the number of fidelity changes — there
is ample time to make adjustments later, if necessary. As
the goal nears, Odyssey decreases o so that adaptation is bi-
ased toward agility. Applications now respond more rapidly,
since the margin for error is small.

Currently, we set a so that the half-life of the decay func-
tion is 10% of the time remaining until the goal. For ex-
ample, if 30 minutes remain, the present estimate will be
weighted equally with more recent samples after 3 minutes
have passed. The choice of 10% is based on a sensitivity
analysis, discussed in Section 5.3.

5.1.3 Triggering adaptation

When predicted demand exceeds residual energy, Odyssey
issues upcalls so that applications can adapt to reduce en-
ergy usage. Conversely, when residual energy significantly
exceeds predicted demand, applications are notified to in-
crease data fidelity.

The amount by which supply must exceed demand to
trigger fidelity improvement is indicative of the level of hys-
teresis in Odyssey’s adaptation strategy. This value is the
sum of two components: a variable component, currently
5% of residual energy, and a constant component, currently

59

1% of the initial energy available. The variable component
reflects our bias toward stability when energy is plentiful and
toward agility when it is scarce; the constant component bi-
ases against fidelity improvements when residual energy is
low. As a guard against excessive adaptation due to energy
transients, Odyssey caps fidelity improvements at a maxi-
mum rate of once every 15 seconds.

When multiple applications are executing concurrently,
Odyssey must decide which to notify. A simple scheme
based on user-specified priorities is used for this. Odyssey
always tries to degrade a lower-priority application before
degrading a higher-priority one — upgrades occur in the re-
verse order. Priorities are currently static, but we are imple-
menting an interface to allow users to change priority dy-
namically, thus offering better control over adaptation.

5.1.4 Overhead

The power overhead imposed by Odyssey is the sum of the
overhead of measuring power usage and the overhead of us-
ing these measurements to predict energy demand. Since
we presently use external hardware to measure power usage,
it is difficult to precisely quantify the measurement over-
head. However, we believe the measurement overhead in
a deployed version of our system will be quite low. Several
SmartBattery solutions can provide power measurements at
the frequency we require using less than 10mW [3, 22].
The measured prediction overhead of our prototype is only
4 mW. Therefore, we expect that the total power overhead
imposed by our solution will be less than 14 mW — only
0.25% of the background power consumption of our laptop.

5.2 Validation
5.2.1 Experiment design

To validate our prototype, we used the two applications de-
scribed in Section 3.7: a composite application involving
speech recognition, map viewing and Web access, run con-
currently with a background video application. To obtain a
continuous workload, we ran the composite application ev-
ery 25 seconds rather than for six iterations. To avoid con-
founding effects due to non-ideal battery behavior, we used
an external power supply and removed the battery.

At the beginning of each experiment we provided
Odyssey with an initial energy value and a time goal. We
then ran the applications, allowing them to adapt under
Odyssey’s direction until the time goal was reached or the
residual energy dropped to zero. The former outcome repre-
sents a successful completion of the experiment, while the
latter represents a failure. We noted the total number of
adaptations of each application during the experiment. We
also noted the residual energy at the end of the experiment
— a large value suggests that Odyssey may have been too
conservative in its adaptation decisions, and that average fi-
delity could have been higher.

All our experiments used an initial energy value of
12,00017. This lasts 19:27 minutes when applications operate
at highest fidelity, and 27:06 minutes at lowest fidelity. This
represents a 39.3% extension in battery life. Our choice of
initial energy value was deliberately small, so that experi-
ments could be conducted in a reasonable amount of time.
The value of 12,0001J is only about 14% of the nominal en-
ergy in the IBM 560X battery. Extrapolating to full nominal
energy, our workload would have run for 2:18 hours at high-
est fidelity, anc 3:13 hours at lowest fidelity.

5.2.2 Results

Figure 19 shows detailed results from two typical experi-
ments: one with a 20 minute goal, and the other with a 26
minute goal. 'The top graph shows how the supply of en-
ergy and Odyssey’s estimate of future demand change over
time. The graph confirms that estimated demand tracks sup-
ply closely for both experiments.

The four bttom graphs of Figure 19 show how the fi-
delity of each application varies during the two experiments.
For the 20 mirute goal, the high priority Web and map ap-
plications remein at full fidelity throughout the experiment;
the video degri:des slightly; and speech runs mostly at low
fidelity. For the: 26 minute goal, the highest priority Web ap-
plication runs mostly at the highest fidelity, while the other
three applicaticns run mostly at their lowest fidelities. For
both goals, applications are more stable at the beginning of
the experiment. and exhibit greater agility as energy drains.

Figure 20 summarizes the results of our experiments for
goals of 20, 22, 24, and 26 minutes. These results confirm
that Odyssey it doing a good job of energy adaptation. The
desired goal was met in every trial of each experiment. In all
cases, residual energy was very low, with the largest residue
being only 1.2% of the initial energy value. The average
number of adaptations by applications is generally low, but
there are some cases where it is high. This is an artifact of
the small initial energy value, since the system is designed
to exhibit greater agility when energy is scarce.

5.3 Sensitivity to half-life

Since the choice of a smoothing function was an important
factor in the prctotype design, we examined the performance
of our prototyre using several different values for the half-
life used in calculating o. In each experiment, we displayed
a half-hour video clip, and specified that the energy supply
should last for ‘he entire video.

15000

—— Supply - 26 Minute Goal
~—— Demand - 26 Minute Goal
- ™ e Supply - 20 Minute Goal
2 10000 N Demand - 20 Minute Goal
3 :
(o}
2
>
2
[
C 5000
UJ o
0 T T a T
0 500 1000 1500
Elapsed Time (s)
—— 26 Minute Goal
2 e 20 Minute Goal
[}
O Max~he==s p e ey aees
o
ey
8 Min
o)
o T e
w 0 500 1000 1500
Elapsed Time (s)
2
= Max o] peesmemesgaseseseciemimcetmeieiinons
[}
I s
i IL‘
o
D
B Min H
> - > 1 T I I
0 500 1000 1500
Elapsed Time (s)
2
®
kel
i
Q
©
0 500 1000 1500
Elapsed Time (s)
._*EMax -
[. Ll l._] I.l
© [”J I—
T
o
2 Min
= . — — -
0 500 1000 1500
Elapsed Time (s)

This figure shows how Odyssey meets user-specified goais
for battery durations of 20 and 26 minutes when running the
composite and video applications described in Section 3.7.
The top graph shows how the supply of energy and the esti-
mated demand change over time, while the other graphs show
the corresponding changes in application fidelity. The appli-
cations are prioritized with Speech having the lowest priority,
and Video, Map, and Web having successively higher priority.

Figure 19. Example of goal-directed adaptation

Goal

Specified Residue Number of Adaptations
Duration (s) | Met Energy (J) Time (s) Speech Video Map Web
1200 100% | 1452 (253)| 153 19| 108 @6 | 11.0 @o | 04 @09 |00 ©0O
1320 100% | 1075 15 [129 (72| 28 ©4) (282 32| 1.6 26|00 ©0
1440 100% | 1012 (223) | 13.0 @5 50 (79 (226 (8| 96 @8 |12 18
1560 100% | 602 @87 | 87 (9| 10 00| 60 28 |154 @6 |76 9

This figure shows system behavior when the composite application executes concurrently with the video player. In each experi-
ment, we assume a 12,000 J energy supply. Each row shows the result of specifying a different battery-duration goal. The second
column shows the percentage of trials in which the energy supply lasted for at least the specified duration. The next two columns
show the residual energy at the end of the experiment. The remaining columns show the number of adaptations performed by
each application. Each entry represents the mean of five trials with standard deviations given in parentheses.

Figure 20. Summary of goal-directed adaptation

Figure 21 summarizes the results of these experiments.
A half-life of 1% is clearly too unstable — the system pro-
duces the largest residue with this value, and the video player
adapts excessively. As the half-life increases, the system be-
comes more stable. However, with a 15% half-life, the sys-
tem was insufficiently agile, failing to meet the goal in one
trial. We have seen similar results in less detailed analysis of
other adaptive applications. This led to our current decision
to use a 10% half-life to calculate the value of .

Half-Life | Goal Met | Residue (J) | Adaptations
0.01 100% 2046 71H 1936 37
0.05 100% 124.1 (38.0) | 332 @0
0.10 100% 1292 (216) | 14.6 (5.9
0.15 80% 97.6 (22| 6.8 (9

This figure shows sensitivity to the half-life value used for
smoothing. In each experiment, we assume a 13,000J en-
ergy supply. The second column shows the percentage of
trials in which the energy supply lasted for at least the speci-
fied duration. The next column shows the residual energy at
the end of the experiment. The final column shows the num-
ber of adaptations performed. Each entry is the mean of five
trials with standard deviation in parentheses.

Figure 21. Sensitivity to half-life

5.4 Longer-duration experiments

The short duration (20-30 minutes) of the experiments in
Sections 5.2 and 5.3 allowed us to explore the behavior of
Odyssey for many parameter combinations. Having estab-
lished the feasibility of goal-directed adaptation, we ran a
small number of longer-duration experiments to confirm its
benefits in more realistic scenarios.

We began each experiment with an energy supply of
90,0007, roughly matching a fully-charged ThinkPad 560X
battery. We specified an initial time duration of 2 hours and
45 minutes, but extended this goal by 30 minutes at the end
of the first hour. This change reflects the possibility of a user
modifying the estimate of how long the battery needs to last.
Finally, we used a simple stochastic model to construct an ir-
regular workload. During any given minute, each of the four

61

applications may independently be active or idle. An active
application executes a fixed workload for one minute; for
example, the video application shows a one minute video,
and the map application fetches five maps, with five seconds
of think time after each. After each minute, there is a 10%
chance of switching states; that is, an active application stays
active, and an idle one stays idle, with probability 0.9.

Figure 22 presents the results of five trials of this exper-
iment, each generated with a different random number seed.
In every case, Odyssey succeeded in meeting its time goal.
Four of the five trials ended with a residual energy that was
less than 1% of the initial supply. Only in one trial (Trial
3) was the residue noticeably higher (2.8%), implying that
Odyssey was too conservative in its adaptation.

In spite of the bursty workload, Figure 22 shows fewer
adaptations than Figure 20, which had a steady workload.
This is a consequence of two interactions between our hys-
teresis strategy and the longer-duration goal of Figure 22.
First, the zone of hysteresis is much larger, since it is pro-
portional to total energy supply. Second, smoothing is more
aggressive when the goal is distant. Combined, these two
factors cause Odyssey to ignore minor fluctuations in power
usage except toward the end of each trial.

Trial | Goal | Residual Number of Adaptations
Met | Energy (J) | Speech | Video | Map | Web
1 Yes 345 1 5 5 1
2 Yes 381 1 10 7 11
3 Yes 2486 8 13 5 0
4 Yes 554 2 10 6 8
5 Yes 464 5 6 14 0

This figure shows system behavior for bursty workloads. In
each trial, we assume a 90,000J energy supply. After one
hour, the initial goal of 2:45 hours is extended by a half hour.
Each row shows the result of a tria} using a different randomly-
generated workload. The second column shows whether the
energy supply lasted for at least the specified duration. The
next column shows the residual energy at the end of the ex-
periment. The remaining columns show the number of adap-
tations performed by each application.

Figure 22. Longer duration goal-directed adaptation

6 Related work

We believe this is the first study to demonstrate the energy
benefits of application adaptation. Further, it is also the first
to demonstrate how a collaborative relationship between the
operating system and applications can be used to meet user-
specified goals for battery duration.

The most closely related work is Ellis’ Milly Watt
project [7], which is exploring the development of a power-
based API that allows a partnership between applications
and the system in setting energy use policy. The need for
such an API is motivated with an adaptive map application
that runs on a Palm Pilot. While this work shares many of
our goals, it is at an earlier stage of maturity.

Less closely related are two pieces of work that bear
some similarity to ideas proposed here. First, the use of re-
mote compute services for speech recognition by Odyssey
is reminiscent of the work on remote process execution for
energy savings reported by Rudenko et al [18]. Second, the
use of variable bit-width representation of data by Tong et
al. [21] is an example of lowering fidelity for reduced power
consumption in speech recognition.

From a broader perspective, there has been a substantial
body of work on hardware power management for mobile
computers. This includes efforts that span multiple compo-
nents [10, 16], as well as those focusing on a single compo-
nent such as the network [11, 20], disk [4, 5, 6, 12, 25], and
CPU [14, 24]. As shown in this paper, such efforts aimed
at hardware components are complementary to reducing en-
ergy usage through application-driven fidelity reduction.

7 Conclusion

Relentless pressure to make mobile computers lighter and
more compact places severe restrictions on battery capac-
ity. At the same time, mobile software continues to grow in
complexity, hence increasing energy demand. Reconciling
these opposing concerns by exploiting remote infrastructure
is possible [2], but uses energy for wireless communication.

Energy-aware adaptation introduces flexibility into this
overconstrained solution space. Rather than making static
tradeoffs in hardware and software design, we defer these
tradeoffs. At runtime, more accurate knowledge of energy
supply and demand allows better decisions to be made in re-
solving the tension between energy conservation and usabil-
ity. Our results confirm that this approach yields substan-
tial energy savings, and can be effectively combined with
hardware-centric approaches proposed by other researchers.

We see many ways in which this work can be extended.
First, our experiments were conducted on a single hardware
and operating system platform. We would like to explore the
robustness of our results across diverse platforms. Second,
we would like to broaden the range of mobile applications
studied. Third, all our results have been obtained from con-
trolled experiments. We would like to verify that these re-

62

sults apply in real life. This will involve making Odyssey
robust enough for serious use, nurturing a user community,
and studying its use of the system. Only serious use can
validate many of our design decisions.

There is no silver bullet for the energy problem in mo-
bile computing. Only through a combined effort, involving
improvements at every level of the system from the battery,
through hardware and the operating system, to applications
can the high-end mobile systems of the future hope to oper-
ate untethered for many hours, days or possibly weeks. We
are confident that energy-aware adaptation by mobile appli-
cations will be an essential part of such future systems.

Acknowledgements

This paper was made possible by the work and ideas of the
Odyssey team: Dushyanth Narayanan, Brian Noble, Eric
Tilton, and Kevin Walker. Bob Baron and Jan Harkes helped
us solve several implementation problems. We are grateful
to Matthew Reynolds for creating the Anvil software, do-
nating it to Carnegie Mellon, and assisting in its integration
into Odyssey. Jennifer Anderson, Keith Farkas, Brian No-
ble, David Petrou, and the anonymous reviewers provided
many helpful comments that improved the paper.

References

[1] Board on Army Science and Technology, National Re-
search Council, Washington, DC. Energy-Efficient
Technologies for the Dismounted Soldier, 1997.

2

et

Brodersen, R. W. InfoPad — past, present and fu-
ture. Mobile Computing and Communications Review,
3(1):1-7, January 1999.

[3] Dallas Semiconductor Corp., 4401 South Beltwood
Parkway, Dallas, TX. DS2437 Smart Battery Monitor,

1999.

Douglis, F., Caceres, R., Kaashoek, F., Li, K.,
Marsh, B., and Tauber, J. Storage alternatives for mo-
bile computers. In Proceedings of the First USENIX
Symposium on Operating System Design and Im-
plementation (OSDI), pages 25-37, Monterey, CA,
November 1994.

(4}

[5] Douglis, F., Krishnan, P., and Bershad, B. Adaptive
disk spin-down policies for mobile computers. In Pro-
ceedings of ‘the 2nd USENIX Symposium on Mobile
and Location-Independent Computing, pages 121-137,

Ann Arbor, MI, April 1995.

[6] Douglis, F., Krishnan, P., and Marsh, B. Thwarting
the power-hungry disk. In Proceedings of 1994 Winter
USENIX Conference, pages 293-307, San Francisco,

CA, January 1994.

[7] Ellis, C. S. The case for higher-level power manage-
ment. In The 7th IEEE Workshop on Hot Topics in
Operating Systems (HotOS-VII), pages 162-167, Rio
Rico, AZ, March 1999.

[8] Flinn, J. and Satyanarayanan, M. PowerScope: a tool
for profiling the energy usage of mobile applications.
In Proceedings of the Second IEEE Workshop on Mo-
bile Computing Systems and Applications, pages 2-10,
New Orleans, LA, February 1999.

[9] Fox, A., Gribble, S. D., Brewer, E. A., and Amir, E.
Adapting to network and client variability via on-
demand dynamic distillation. In Proceedings of the
Seventh International ACM Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, pages 160-170, Cambridge, MA, Octo-

ber 1996.

[10] Intel, Microsoft, and Toshiba. Advanced Configura-
tion and Power Interface Specification, February 1998.

http://www.teleport.com/acpi/ (as of 9/99).

[11] Kravets, R. and Krishnan, P. Power management tech-
niques for mobile communication. In Proceedings of
The Fourth Annual ACM/IEEE International Confer-
ence on Mobile Computing and Networking (MOBI-
COM’98), pages 157-168, Dallas, TX, October 1998.

{12] Li, K., Kumpf, R., Horton, P., and Anderson, T. A
quantitative analysis of disk drive power management
in portable computers. In Proceedings of the 1994
Winter USENIX Conference, pages 279-291, San Fran-
cisco, CA, January 1994.

[13] Lorch, J.R. A complete picture of the energy consump-
tion of a portable computer. Master’s thesis, Depart-
ment of Computer Science, University of California at
Berkeley, 1995.

[14] Lorch, J. R. and Smith, A. J. Scheduling techniques
for reducing processor energy use in MacOS. Wireless
Networks, 3(5):311-324, October 1997.

[15] Lorch, J. R. and Smith, A. J. Apple Macintosh’s en-
ergy consumption. IEEE Micro, 18(6):54-63, Novem-
ber/December 1998.

[16] Lorch, J. R. and Smith, A. J. Software strategies for
portable computer energy management. IEEE Personal

Communications, 5(3):60-73, June 1998.

[17] Noble, B. D., Satyanarayanan, M., Narayanan, D.,
Tilton, J. E., Flinn, J., and Walker, K. R. Agile
application-aware adaptation for mobility. In Proceed-
ings of the 16th ACM Symposium on Operating Systems
and Principles, pages 276-287, Saint-Malo, France,

October 1997.

63

[18] Rudenko, A., Reiher, P., Popek, G. J., and Kuen-
ning, G. H. Saving portable computer battery power
through remote process execution. Mobile Comput-
ing and Communications Review, 2(1):19-26, January
1998.

(19] SBS Implementers Forum, http://www.sbs-forum.org/
(as of 9/99). Smart Battery Data Specification, Revi-
sion 1.1, December 1998.

{2071 Stemm, M. and Katz, R. H. Measuring and reduc-
ing energy consumption of network interfaces in hand-
held devices. IEICE Transactions on Fundamentals of
Electronics, Communications, and Computer Science,
Special Issue on Mobile Computing, 80(8):1125-1131,
August 1997.

[21] Tong, Y. F, Rutenbar, R. A., and Nagle, D. £ Min-
imizing floating-point power dissipation via bit-width
reduction. In Power-Driven Microarchitecture Work-

shop, Barcelona, Spain, June 1998.

[22] USAR Systems, Inc., 568 Broadway, Suite 405, New
York, NY. USAR ACPITroller 11 - Zero-Power ACPI
KBC with Built-in Smart Battery System Manager,

1999.

Waibel, A. Interactive translation of conversational
speech. IEEE Computer, 29(7):41-48, July 1996.

(23]

[24] Weiser, M., Welch, B., Demers, A., and Shenker, S.
Scheduling for reduced CPU energy. In Proceedings of
the First USENIX Symposium on Operating System De-
sign and Implementation (OSDI), pages 13-23, Mon-
terey, CA, November 1994.

[25] Wilkes, J. Predictive power conservation. Technical
Report HPL-CSP-92-5, Hewlett-Packard Laboratories,
February 1992.

