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ABSTRACT tion, less noise, and faster read performance than disk drives [3,

Recent advances in flash media have made it an attractive alter-6’ 15]. While flash has been the primary storage media for em-

native for data storage in a wide spectrum of computing devices, Pedded devices from the very beginning, many market experts ex-

such as embedded sensors, mobile phones, PDAS, laptops andPect that it will soon dominate the market of personal computers
even servers. However, flash media has many unique character°°- Indeed, several companies including Samsung and Dell have

istics that make existing data management/analytics algorithms de-2/réady Iauncheld new lines of Iiapt_ops c_ontlaininghonly flash shtor-
signed for magnetic disks perform poorly with flash storage. For 29¢€ [8]. Several companies including SimpleTech and STec have

example, while random (page) reads are as fast as sequential readéa”nChed 512GB flash-based 3.5 inch solid state disk (SSD) drives

random (page) writes and in-place data updates are orders of magyvith claims of200x performance over 15K RPM enterprise hard

nitude slower than sequential writes. In this paper, we consider drives and better reliability [27, 16]. Several Internet service com-

an important fundamental problem that would seem to be partic- E?ﬂes ﬁre plsnninﬁ_ tﬁ use SSDsﬁi_n_high-end Iservers, fI(_)r SSD’s
ularly challenging for flash storage: efficiently maintaining a very igher throughput, higher energy efficiency, and lower cooling cost

large (100 MBs or more) random sample of a data stream (e.g., in data centers hosting the servers [.21]' . .
of sensor readings). First, we show that previous algorithms such Flash media has fundamentally different read/write characteris-

as reservoir sampling and geometric file are not readily adapted tolics than magnf_etic disks. For exaf.“p'e' regading pages at_random is
flash. Second, we propose BLE, an energy-efficient abstraction as fast as reading pages sequentially, unlike magnetic disks where
for flash media to store self-expiring items, and show how a B- seek times and rotational latencies make random disk reads many
FILE can be used to efficiently maintain a large sample in flash. IMes slower than sequential disk reads (which are in turn many
Our solution is simple, has a small (RAM) memory footprint, and tlme_s slower than any fla§h read). On t_he other hand, flash writes
is designed to cope with flash constraints in order to reduce latency &'¢ |mmutable.and one-time—once written, a data page must be
and energy consumption. Third, we provide techniques to main- erased before it can be written again. Moreover, the unit of erase
tain biased samples with a BHFE and to query the large sample often spans dnlo'ck of 32-64 pages—if any of the other_pages n
stored in a B-FLE for a subsample of an arbitrary size. Finally, we "€ blockfcontzm ulse{(ul_ data, that data r_r|1|us_t be coﬂpleg t(;] hew
present an evaluation with flash media that shows our techniquespage_s be ore the b ock IS era_sed. (We wi (_jlscuss ash charac-
are several orders of magnitude faster and more energy-efficient teristics in more detail in Septmn 2.1.) .I.:or this reason, it is well-
than (flash-friendly versions of) reservoir sampling and geometric known thatln-place ppdatel.e., overwrlt_lng a page that has al- .
file. A key finding of our study, of potential use to many flash algo- ready been written since the last erase, is very slow on flash media.
rithms beyond sampling, is that “semi-random” writes (as defined Efforts to overcome this limitation (such as via a Flash Translation
in the paper) on flash cards are over two orders of magnitude fasterl‘a_yer (FTL) [9)) suffer from another well-known pmb'e”.‘: random
and more energy-efficient than random writes. writes are very slow [3]. Indeedhe latency and bandwidth (and
energy-efficiency) of both random page writes and in-place page
updates are over two orders of magnitude worse than sequential

1. INTRODUCTION page writes.

Recent technological trends in flash media have made it an at- Inthis paper, we consider an important fundamental problem that
tractive choice for non-volatile data storage in a wide spectrum of would seem to be particularly challenging for flash storage: effi-
computing devices such as PDA's, mobile phones, MP3 players, ciently maintaining a very large (e.g., 100 MBs or more) random
embedded sensors, etc. The success of flash media for these degsample of a stream of data items. Such very large random sam-
vices is due mainly to its superior characteristics such as smaller ples are useful in a variety of applications. For example, consider a

size, lighter weight, better shock resistance, lower power consump- S€nsor network where each sensor node collects too many readings
to store them all locally (because its on-board and attached flash

storage is limited) or to transmit them all to a base station (because
Permission to copy without fee all or part of this material mrged provided doing so would rapidly deplete its limited battery). Having each

that the copies are not made or distributed for direct commieadismntage, sensor node maintain a random sample of its readings, perhaps bi-
the VLDB copyright notice and the title of the publicatiortkits date appear, ased towards more recent readings, is an attractive approach for
and notice is given that copying is by permission of the VerygeaData addressing the limits of both storage and battery life. Queries can

Base Endowment. To copy otherwise, or to republish, to posteovers be pushed out to the sensor nodes, and answered (approximately)
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proximate query answering, statistical analysis, machine learning,
and various other streaming applications, which may run in SSD
equipped servers. Note that, in all these applications, a very large
sample is often required in order to have highly-accurate answers
with high-confidence. Specifically, whenever the underlying data
has high variance, the query predicate is highly selective, and/or
the query contains joins (which can amplify variance), the sample
size needs to be in the GBs [11].

* Applications

* Flash Translation Layer

A (FTL)

‘ Flash Chip v ‘

Figure 1: A flash-based storage system

We also provide efficient techniques to maintain biased samples

There are many existing algorithms for maintaining a bounded- With a B-FLE, and to query the large sample stored in a B&F
size random sample of a stream of data items. Unfortunately, thesefor the sample points within an arbitrary time window.

algorithms were not designed for the unique characteristics of flash
media and hence, not surprisingly, they are ill-suited for flash. For
examplereservoir sampling23] andgeometric fild11] are state-

Our evaluation with flash media from several vendors shows that
our sampling techniques are three orders of magnitude faster and
more energy-efficient than previous techniques, including our flash-

of-the-art algorithms for maintaining a large fixed-size sample in friendly variants of reservoir sampling and geometric file.

memory and on magnetic disk, respectively. However, both rely
heavily on in-place updates and/or random writes (details in Sec-
tions 2.2 and 7.1). Moreover, simple optimizations of these algo-
rithms in order to make them more flash-friendly are unable to over-
come their basic flash-unfriendly structure (details in Section 2.3).
Indeed, intuitively, maintaining a bounded-size sample seems chal-

lenging for flash because new items that are selected for the sample

must replaceandomitems currently in the sample—which can en-
tail both in-place updates and random writes.

In this paper, we present the first flash-friendly algorithm for
maintaining a large bounded-size random sample of a stream of
data items. Our algorithm is based on an efficient abstraction,
called B-HLE (Bucket File), for flash media to store self-expiring
items. A B-HLE consists of multiple buckets, and each item in-
cluded in the sample is stored in a random bucket according to a
distribution dependent (in a non-trivial way) on both the desired
sample properties (uniform, biased, etc.) and various overhead
trade-offs. When the size of the B4E grows to reach the max-
imum available flash storage, the BEE automatically shrinks
by discarding the largest bucket. The main efficiency of IBEF
comes from three properties. First, it always appends data to ex-
isting buckets, instead of overwriting any existing data on flash—
appending data is far more efficient than updating in place. Second,
although these writes are not sequential (because they jump from
bucket to bucket), the buckets are structured so that the writes con-
form to a “semi-random” pattern (where blocks can be selected in
any order, but individual pages within blocks are written sequen-
tially from the start of the block; more details in Section 3). A
key finding of our study, of potential use to many flash algorithms
beyond sampling, is that “semi-random” writes on flash cards are
over two orders of magnitude faster and more energy-efficient than
random writes. Third, it solves the above “random replace” prob-
lem by storing sampled items in buckets according to a preselected
random replacement order, so that later all the items in a bucket
can be deleted at the same time (i.e., the itemssalfeexpiring.
While geometric file also uses a preselection of the replacement or-
der, B-FLE is much more efficient because, unlike geometric file,

In summary, this paper makes the following contributions.

1. We propose B-kE, an energy-efficient abstraction for flash
media to store self-expiring items, and show how B&can
be used to efficiently maintain a large (guaranteed uniform)
random sample in flash. Our solution is simple, has a small
(RAM) memory footprint, and is designed to cope with flash
constraints in order to reduce latency and energy consump-
tion. We determine several important parameters ofIBEF
that optimize the performance of our algorithm.

2. We define the notion of semi-random writeand show that

such writes are over two orders of magnitude more efficient
on flash cards than completely random writes. This is an im-
portant refinement to the conventional wisdom that random

writes are slow on flash, and is a key enabler for Be-

. We show how our techniques can be extended to (weighted
and age-decaying) biased samples. We also present (flash-
friendly, skip-list-based) subsampling techniques for answer-
ing ad hoc time-range queries.

. Using a variety of flash media, we evaluate our B&Fal-
gorithm versus existing state-of-the-art algorithms. Our re-
sults show that B-EE is three orders of magnitudtaster
and more energy-efficient than existing techniques. More-
over, the number of 1/Os and block erases are close to the
idealized optimal.

The rest of the paper is organized as follows. Section 2 presents

background and related work. Section 3 discusses semi-random
w
querying algorithm, and several extensions to basic algorithm, re-
spectively. We present evaluation results in Section 7 and conclude
in Section 8.

rites. Section 4, 5, and 6 present our basic sampling algorithm,

2. PRELIMINARIES

In this section, we discuss flash media characteristics, present

related work, and show how the most relevant previous work can

B-FILE's bucketing strategy ensures there are no sub-block dele- be made somewhat more flash-friendly.

tions.
Another key feature of B-ItE is that, like reservoir sampling,
B-FILE is effective even when the amount of standard (RAM) mem-

2.1 Flash Characteristics
Figure 1 shows the architecture of a flash-based system. The

ory available to the algorithm is very small (e.g., tens of KBs for a system consists of flash chips, an optional Flash Translation Layer
1 GB sample). This contrasts with geometric file, which performs (FTL), and applications.

poorly for a 1 GB sample on flash even with 1-10 MBs of RAM.
Because embedded devices typically have very limited RAM (e.g.
the Imote and SunSpot sensor nodes have 32 KBs and 512 KBs
RAM, respectively), and this RAM must be shared across all sen-
sor node functionality, B-fEE’s small memory footprint is critical

to its suitability for a range of embedded devices.

Flash Chips. The key properties of NAND flash that directly in-

c’)fﬂuence storage design are related to the method in which the media
can be read or written, and are discussed in [17]. In summary, all
read and write operations happen at page granularity (or for some
chips down toéth of a page granularity), where a page is typically
512-2048 bytes. Pages are organized into blocks, typically of 32 or



64 pages. A page can be written only after erasing the entire block opers do not have access to the FTL (it is either within the micro-
to which the page belongs. However, once a block is erased, all thecontroller, or in a proprietary software module), and therefore, the
pages in the block can be written once with no further erasing. Pageonly feasible approach is to optimize the application to use algo-
write cost (ignoring block erase) is typically higher than read, and rithms that perform well on flash. We take this latter approach in
the block erase requirement makes some writes even more expenthis paper. Although, in general, the effort to optimize must be ap-
sive. In particular, for an in-place update, before the erase and write plied to each application, the performance benefits from restructur-
can proceed, any useful data residing in other pages in the samedng an application’s algorithm are often orders of magnitude larger
block must be copied to a new block; tliigernal copyingncurs a than the benefits of application-independent optimizations.
considerable overhead. Our experiments show that an in-place up- Recent work has shown the feasibility of running a full database
date is over two orders of magnitude more expensive than a write to system on flash-only computing platforms [14] and running a light-
an erased page (see Appendix B for measurement results.) A blockweight database system on flash-based embedded computing de-
wears out after 10,000-100,000 repeated writes, and so the writevices [5, 17]. Several other studies have proposed efficient data
load should be spread out evenly across the chip. Because there istructures and algorithms for flash storage, including flash-optimized
no mechanical latency involved, random read/write is almost as fast B trees [17], R trees [26], stacks [15], queues [15], and hash ta-
(and consumes as much energy) as sequential read/write (assumingles [28]. These algorithms seek to avoid in-place updates and
the writes are for erased pages). random writes, but they neither study our sampling problem nor

FTL. Portable flash packages such as solid state disks (SSDs),Propose anything analogous to the key ideas in this papent.B; F
compact flash (CF) cards, secure digital (SD) cards, mini SD gards semi-random writes, and a skip-list-based search structure. More-
micro SD cards and USB sticks provide a disk-like ATA bus in- over, most of these works are designed solely for memory-conettain
terface on top of flash chips. The interface is provided through a émbedded systems with raw flash chips, whereas our algorithm
Flash Translation Layer (FTL) [9], which is implemented within IS also optimized for higher-end flash devices (e.g., SD cards or
the micro-controller of the device. FTL emulates disk-like in-place SSDs), where applications must access the flash through an FTL.

update for a (logical) addredsby writing the new data to a differ-  gampling Algorithms. Because no prior work addressed the prob-
ent physical locatiorP, maintaining a mapping between each log-  |em of maintaining a (bounded-size) random sample on flash, we
ical address4) and its current physical addres8)( and marking giscuss work related to maintaining bounded-size samples on disk.
the old data as invalid for later garbage collection. Thus, although \we omit previous work that deals witlsinga sample (e.g., [2,
FTL enables disk-based applications to use flash without any mod-4]) instead ofmaintainingone, as well as existing streaming algo-
ification, it needs to internally deal with flash characteristics (e.9., rithms that maintain small random samples in main memory (e.g., [7]).
erasing an entire block before writing to a page). Many recent  Tne fastest streaming algorithm for maintaining a Idiged-size
studies have shown that FTL-equipped flash devices, although a;3ndom sample on a magnetic disk is due to Jermaine et al. [11].
great convenience, suffer many performance problems. In partic The algorithm uses an abstraction called eometric File The
ular, both random writes and in-place updates are very slow, typi- gigorithm collects sample items in an in-memory buffer, randomly
cally two orders of magnitude slower than seq_uenﬂal WIItes 0 an permutes the items in the buffer, and then divides them setp
erased page [3] (see also Table 1 and Appendix B). Similar to pre- mentsof geometrically decreasing size. The larger segments are
vious work [12, 17], our algorithms address performance problems fi,shed to disk such that each flushed segment overwrites an on-
in today's FTL-equipped flash devices. If future FTL technology sk segment of the same size. Smaller segments are maintained
eliminates such problems, the algorithms may need to_be revisited.jp memory to avoid small writes. The efficiency of geometric file
Many embedded devices such as cell phones use internal flashcomes from reducing the number of expensive random writes on
chips instead of FTL equipped packages. In such cases, the operalgisk: only one random access is required per segment and all items
ing system, e.g. Windows Mobile, implements the FTL in software. \yithin a segment are written sequentially. However, because each
Design principles for flash algorithms. Because of these charac- new segment overwrites an existing segment, these in-place up-
teristics of flash media, algorithms designed for flash should follow dates are expensive on flash (see Section 7). Moreover, in addi-

a few key well-known design principles, includifg1) avoid in- tion to the algorithm being more complex than our proposed algo-
place updatesand (P2) avoid random writes. Another natural  rithm, it has a higher in-memory footprint because (i) small seg-
design principle igP3) avoid sub-block deletiongdeleting only ments are maintained in memory, and more importantly, (ii) a large

a portion of a block). Such deletions are over two orders of magni- in-memory buffer is required for the algorithm to be effective (a
tude slower than block deletions (with or without an FTL), because smaller buffer implies smaller segments, which increases the num-
they require internal copying: any undeleted data in the same block ber of random writes).

must first be copied to a new block (see Appendix B). Thus, each In [11], the authors also propose using multiple geometric files
of these principles can effect both latency and energy consumptionin parallel for reducing the number of disk head movements. How-
by two orders of magnitude or more. In Section 3, we will show ever, on flash, this scheme may not add a significant benefit since it

that design principle 2 should be modified as folloR2') avoid does not reduce the amount of data overwrite and flash devices do
random writes unless they are semi-random not have any mechanical head movements. Moreover, the scheme
22  Related Work has a higher space overhead due to higher internal fragmentation

and speciadummy segmentsTherefore, we do not consider this
Algorithms for Flash. Recent studies [1, 3, 12] have proposed scheme in this paper.
application-independent techniques to improve application perfor-  Reservoir sampling [23] is a popular algorithm for maintaining a
mance, by optimizing the FTL itself, e.g., to improve the perfor- fixed-size sample of a stream of unknown size. In the basic version
mance of random writes. However, this is quite challenging given of the algorithm, a reservoR is filled with the firstn items (where
that the FTL typically needs to run in a memory-constrained en- n is the target size), and after that, tkith item is selected for
vironment (e.g., within a micro-controller), to be general enough R with probability n/i. The selected item overwrites a random
to support multiple applications, and to recover efficiently after a item in R. Many optimizations have been proposed to improve the
crash [1]. Moreover, in most practical scenarios, application devel- performance of the basic algorithm [11, 24]. Although the original



Table 1: Costs of different types of I/Os in a Lexar CF card

Access Pattern Latency/pagers) | Energy/pagei./)
Read Write Read| Write
Sequential 0.408 0.425 12.7 13.7
Random 0.594 127.1 26.4 7854
Semi-Random| 0.463 0.468 135 14.9

algorithm is implicitly designed to maintain a sample in memory,

it can be implemented on secondary storage. However, all variants

of reservoir sampling require overwriting random sample items in
R, and such overwrites are expensive in flash (see Section 7).
Olken and Rotem [18] present techniques for constructing sam-
ples in a database environment. However, in addition to not being
designed for flash media, the techniques assume we are samplin

from disk-resident, indexed data. Single pass streaming is gener-

ally not the goal. When it is, the sample itself is assumed to be
stored in main memory during the single pass—avoiding issues of
efficiently maintaining the sample on disk. Several I/O efficient
index structures such as LSM Trees [19] and Y-Trees [10] can be
used to maintain a large random sample on disk. However, like
geometric file, they also require frequent in-place updates, making
them unsuitable for flash. Moreover, as shown in [11], they require
more random writes and hence perform worse than geometric file.
Therefore, we do not consider them in the rest of the paper.

2.3 Adaptingthe Previous Algorithmsto Flash

As neither geometric file nor reservoir sampling were designed
for flash, it is natural to consider whether they can be readily mod-
ified to be more flash-friendly. We consider each in turn, and show
how to improve their flash performance, at the cost of some extra
space on the flash.

Geometric file. The original geometric file algorithm (described
in Section 2.2) can be adapted as follows for more efficient imple-
mentation in flash. First, to avoid copying valid data from a block

before each erase, a flash block should store data for only a sin-
gle segment. In this way, an on-flash segment can be overwritten

(by erasing entire blocks and writing data to them), without mov-
ing data of other segments to other locations. This will introduce

internal fragmentation in some blocks, because the last block of a

segment can be partially full. However, we can trade additional

space for performance in many situations. Second, to reduce frag-

mentation, very small segments should not be stored in individual

Block 1 Block 2 Block 3 Block 10

Ny~ i b g =

\ \A f f Page writes
- Time

Figure 2: Semi-random writes

More precisely, for eachE| items, we incur an expected cost of
|E|/1x (e +ew)+ U720 x (c,+ cu) instead O B| x (¢, +cu).
Here,l is the number of log entries in a flash page, andc.,) is

the cost of reading (writing) a page. Given a sufficiently lafge

the savings can be significant.

T he bottom line. The above two algorithms and their adapted ver-
sions still require frequent in-place updates. In Section 7, we will
show that the adapted algorithms perform better than the original
algorithms; however, our algorithm based on B can be three
orders of magnitude more efficient than the adapted algorithms.

3. SEMI-RANDOM WRITES

In addition to sequential and random writes, we have also inves-
tigated asemi-randonwrite pattern where blocks can be selected
in any order, but individual pages within blocks are written sequen-
tially from the start of the block. In other words, multiple sequential
writes to blocks are interleaved with one another. Figure 2 shows
an example, indicated by a sequence of (block id, page id) pairs:
(1,1), (1,2), (10,1), (3,2), (1,3), (3,2), (10,2), etc.

Interestingly, our experiments show that while random writes
perform very poorly in existing FTL-equipped devices, semi-random
writes perform very close to sequential writes. As shown in Table 1,
random writes on a Lexar 2GB CF card are well over two orders
of magnitude more expensive than sequential writes, while semi-
random writes are very efficient. Similar results hold for several
other flash cards and SSDs we tried. The result can be explained
by the algorithms used in existing FTLs. The FTL maintains a
mapping table between logical addresses and physical addresses.
If this table were to map logical pages to physical pages, the map-
ping table for a 2GB flash with a 2KB page size and 64 pages/block
would be 64MB! Instead, existing flash packages maintain a map-
ping from logical blocks to physical blocks; for a 2GB flash, this
reduces the mapping table to 1MB [3]. For all but the low-end
platforms, this enables the mapping table to be stored in memory,

blocks. In platfct))rms V\_/her_e rr(nje_mory is I|m|te_|qhall tfhese Shma” Seg'llwhich is crucial because its typical access pattern (frequent, ran-
ments cannot be maintained in memory. Therefore, these small ., reads and in-place updates, at a word granularity) is very ill-

segments can be stored as append-only log entries in flash. Whe'%uited for flash. Unfortunately,

the log becomes too big, they can be compacted by discarding seg
ments which are supposed to be overwritten by newer segments.

Reservoir sampling. The basic reservoir algorithm can be made
more efficient by using some extra spdcén addition to the reser-
voir R. Suppose the reservaRk contains a random sample of all
the data items seen so far, and a newly-arriving itegets selected
to be added t@, replacing a random itemw in R. Instead of over-
writing w with v, which would be expensive, we cheaply append
as a log entry in&, deferring the selection of a randoam When
the spacer becomes full, we need to apply the log entries accu-
mulated inE to R. Note that while the last entry iR’ must be in

R, the second-to-last entry ili must be inR only if the last entry

in E is not selected to overwrite it, and so on. In general iitie
entry in E can be discarded without inserting it Bif anyof the
(|E| — i) subsequent items if is selected to overwrite it, which
has a probability1 — p'®!=%),p = (|R| — 1)/|R|. By avoid-

with a block-level mapping, even

‘when a single page is modified, the entire logical block needs to
be written to a new physical block, resulting in poor random write

performance.

The performance benefit of semi-random writes come from sev-
eral optimizations within existing FTLs. Many existing FTLs op-
timize write costs by being lazy; when thih logical page of a
block is written, the FTL copies and writes the firgtages (instead
of all the pages in the block) to a newly allocated block, leaving
subsequent (unmodified) pages in the old block; later, when page
j > i is modified, page$: + 1) to j are moved and written to the
new block, and so on [3]. Semi-random writes do not require mov-
ing any unmodified page to the newly allocated block, resulting
in a performance comparable to sequential writes. In many other
existing FTLs, modified pages are temporarily maintained in logs;
logged pages, along with unmodified pages in the same block, are
later copied to newly allocated blocks [13]. With this strategy as

ing the insertion of items that get selected by subsequent itemswell, semi-random writes do not require copying any unmodified

in the log, we save expensive replacement operations for them.

pages across blocks, resulting in superior performance.



Table 2: Notation used in this paper

Algorithm 1 Sample(Smin, Smaz, V) N Number of individual B-FLE buckets
Require: Minimum and maximum sample size§,,, andsq., number Br The tail B-ALE bucket (a log)
of B-FILE bucketsN (not counting the tail bucket) B;,i=1---N | Thed'th individual B-FILEI bu(iket
. ; o . L Current minimum active leve
%Z ff;e(i r%V\I/SBt-hlg LC: {]r\?;] t minimum active level S’ Data stream seen so far
: ieUN B
3: for each stream item do S Sample, "e'Léile.l VU Br lesi
4 ly < LevelQ, smin, Smax) {Compute the |eV§| Smin; Smaz Mm.lmum and maximum sample sizé
5. ifl, > L {if v selected for the samplehen a ; Zmlt”/‘qm‘.lt‘”” d its level
6: bfile.AddItem(v,l,—I+1) {append to bucketB;, 11} Uy b b Sge";q?t' erfnhan dl S leve h coin tos
7. if [bfile] = smaz {if sample size at its mgxthen % W Aro a ”&'0 eda} S.ln eac_t coin f(ljs“r
8: bfile.DiscardBucket(1) {discard the items i3 } J Vg. COSLIo read/write an Item In 11as
9: bfile.LeftShift rename each bucké,; 1 to be B; . . . -
10: Lﬂ: Lefl %C(gem{em the minimum aCti\j;lle\ael i random overwrite) of data, and is the key behind the efficiency of

our algorithm. We use our new BHFE data structure (described in
Section 4.2) to store the buckets.

Third, we use the same Level function and a rising thresliold
to determine whether an item is selected for the sample. Consider
the main loop of Algorithm 1. An itemv is selected if its level,
(computed in line 4) is at least the current threshbl@line 5). A
selected item is added to the bucket for its level (line 6). Whenever
the sample size reaches.. (line 7), we make room by discarding
all the sample points in the first buckBf (line 8), i.e., discarding
pll items with levelL but retaining all items with leveL + 1 or
above. Conceptually, we then shift all the buckets to the left, so that
the buckets containing sample points are always numbered starting
at 1 (line 9). As we are no longer including in our sample any

The good performance of semi-random writes is likely to hold
for applications directly accessing flash chips as well. Most such
applications will maintain a block-level mapping between logical
and physical addresses, resulting in performances similar to exist-
ing FTLs. Some applications may decide to maintain a page-level
mapping, at the cost of a very large memory footprint and crash-
recovery overheads [1]; however, this extreme case will make semi-
random (and random) writes perform almost the same as sequential
writes, as modified pages will be written sequentially irrespective
of the write pattern.

In summary, the orders of magnitude performance benefits of items with levelL, but require at least levdl + 1, we increment
semi-random writes hold across a broad range of flash com‘igu-the threshold (Iiné 10) q ’
rations, including commercial offerings and research prototypes. '

However, in order to use semi-random writes, algorithms need to Assigning levels to items to obtain overall guaranteesThe fact

know the block boundaries, and hence the block size—the block that all items in unexpired buckets constitute a random sample holds

size can be readily obtained by querying the flash driver or the FTL. as long as the random variable that determines an item’s level is in-
dependent of its arrival order. As a specific implementation, and in

4 MAINTAINING SAMPLES ON FLASH order to have only a logarithmic number of levels, we assign items
) to levels such that the expected number of items having adeles|
4.1 The Basic Algorithm creases exponentially with Such a random level can be obtained

by tossing a biased coin—the level is determined by the number
of tosses required to get the first head. pdte the probability of
heads on any given coin toss.

Our basic algorithm (see Algorithm 1) combines ideas from sev-
eral sampling algorithms (e.g., [7, 11]), in a novel way that is tai-
lored to flash. When describing the algorithm, we will often high-

lightits adherence to the design principles (P1-P3) from Section2.1. | cyva 4.1, At any point of time, the items with level L (i.e.,

We will use the notation summarized in Table 2. _ the items in the buckets), represent a uniform sample of all the items
At a high level, there are three salient aspects of our basic al- ggen 50 far.

gorithm. First, as in the adapted algorithms in Section 2.3, Al-

gorithm 1 will incur some additional storage overhead beyond the ~ PROOF Consider an itemy and denote the level assigned to it

sample itself, in order to improve performance. In our case, we asl,. Then Pr{l, =i} = (1—p)"~'p. Suppose the current value

allow the sample size to range between a specified lower boundof L is k. The item will be part of the sampleiif > k. Thus Pr{v

(smin) and a specified upper boune,(,-). This flexibility is use- is in sample{Z = k} =322, (1 —p)’~'p = (1 —p)*~', which

ful because it enables us to decouple the addition of a new item to iS constant for given values pfandk. O

the sample from the deletion of an existing item (to make room). Lemma 4.1 implies that we can maintain a uniform sample us-

The difference betwees.., ands..., represents the additional  ing any value ofp € (0,1). However, the value of determines

flash storage overhead incurred by our algorithm, in order to en- how the sample size fluctuates, because it determines the expected

sure (on expectation) a sample of size at least,. On the other number of items that are assigned to the current |évgle., it de-

hand, because the maintained sample is always uniformly random,termines| 31 ) at the point that the total sample size hits the upper

any extra sample points beyosg,, are not really wasted, asthey  bounds..... BecauseB is discarded at this point, we have that the

can be put to good use by applications. expected value of,,.in IS smaz MiNUs the expected value (B |.
Second, when an item is selected for the sample, we immediately The following lemma (proof in Appendix A) provides a means to

determine its relative priority for deletion compared to other sample Selectp in order to keep the sample size within a target range.

points (i.e.,we preselect its random relative replacement ojder

and then store the item with sample points of the same priority. ~LEMMA 4.2. Settingp = 1 — o, wherea = Smin/Smaz, €N-

Specifically, each item selected for the sample is randomly assignedsures that the sample size is at least;» on expectation and al-

to one of a logarithmic number of “levels” (by the “Level” function =~ Ways at moskaz.

in line 4 of Algorithm 1, details below). This partitions the sampled

items into equivalence classes; all items in the same equivalenceDiscussion. At this high level, the algorithm is reminiscent of the

class are stored in the same “bucket” and will later get discarded sampling component of our previous algorithm [7] for counting the

at the same time. This allows block-wise erasure (as opposed tonumber of 1's in the union of distributed data streams, with mod-
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Figure 3: A snapshot of B-FILE. Solid bars represent applica-
tion buckets, text above a bar represents the level of the items
in the bucket, and text below a bucket represents theB-FILE
bucket number. The tail B-FILE bucket By contains items with
level at leastL + N.

est changes. However, at the next level of detail, the previous al-

gorithm (which is designed for main memory and not flash) suf-
fers from excessive in-place updates, random writes and sub-bloc
deletions, violating flash design principles P1-P3. Our main inno-
vations are (i) in recognizing that the previous algorithm provides
a basis for a flash-friendly algorithm, (ii) in designing novel flash-

friendly techniques in support of each step of the algorithm (finding
the right data organization, etc.), and (iii) in exploring how various

parameter choices optimize performance.

4.2 B-File Design

In this section, we present our main new data structure: the B-
FILE. Logically, a B-HLE consists of a potentially large set of
application buckets); B; stored on a flash media. Physically, how-
ever, a B-FLE stores these buckets in a collection/éf“individ-
ual” buckets holding the firs\V application buckets and one “tail”
bucket holding all the remaining (typically very small) buckets. To
distinguish these two notions, we will call the forregoplication
bucketsand the latter B-R.E buckets The use of a tail B-FE
bucket is a key optimization for flash, as discussed below.

At a high level, the B-F_E supports the following operators:

e newB-FILE(NV): Create a new B-fEE with NV individual
B-FILE buckets plus one tail B4EE bucket.

e Addlitem¢,i): Add itemv to application buckeB;. Appli-
cation buckets can be of arbitrary size.

e sizeandsizef): Return the number of items in the entire B-
FILE or in application buckeB;. (In Algorithm 1, we use
“|bfile|” as a shorthand for theizeoperator.)

e DiscardBucket{): Discard the items in application bucket
B, and reclaim the space.

(Algorithm 1 also depicts &eftShiftoperator, which is used only
to simplify the notations and explanations in this paper.)

When used for our sampling algorithm, the sizes of individual
application buckets exponentially decrease, with the first bugket
being the largest. At any point of time, the contents of all the buck-
ets represent the random samplever the entire data streaff
seen so far (Lemma 4.1). Figure 3 depicts a snapshot of & B-F
as used by Algorithm 1.

Before explaining the B-EEE in further detail, it is useful to mo-
tivate its design by considering its use in our sampling algorithm.
Using the B-FLE enables the steps of the algorithm to be supported
in a flash-friendly way, for the following reasons. First, new items

Page Buffer

Bget 1 B

Free Lists

=
<
o
=)

}ock Pointer

cket 2 ket T|

Flash

Figure 4: Physical layout of the buckets

block are written sequentially. Thus, according to Design Princi-

Kples P1 and P2the write operations are highly-efficient. Second,

the algorithm clusters items with the same level together into ap-
plication buckets. The first such bucket is mapped to the first indi-
vidual B-HLE bucket. As we shall see, individual BHE buckets

are stored using as few blocks as possible. According to the Design
Principle P3, this enables highly-efficient deletion®f. Third,

the B-HALE maintains only a few{) large application buckets as
individual B-FLE buckets. Note that the size of the application
buckets exponentially decreases with level number, and therefore,
application buckets with higher levels contain very few items. Be-
cause storage on flash is best allocated in granularity of a block,
allocating a whole block for those small application buckets would
be wasteful. Instead, they are rolled into the tail B bucket.
Finally, the parameteN provides a tunable control over the B-
FILE's (RAM) memory footprint. The number of memory words
used by the B-R.E (and hence by the sampling algorithm) is linear
in N, and otherwise constant. Thus, RAM-constrained embedded
devices can use the algorithm with smaller values\of On the
other hand, as we show in Section 4.2.2, the 1/O cost of maintain-
ing buckets decreases with increasiNg hence, less constrained
devices can take advantage of the larger available RAM by using
larger values ofV.

4.2.1 Bucket Layout and Maintenance

Figure 4 depicts the physical layout of BtE buckets. The top
half shows the in-memory portion. For each B-E bucketB; (in-
cluding the tail bucket), we maintain an in-memory data structure
called B;.header. The header containspmge buffethat can tem-
porarily hold one flash page worth of data, arlsl@éck pointerthat
points to the first flash block and page containing the items in that
bucket. When an item is added to a bucket, it is temporarily put in
its page buffer. When the page buffer holds one page worth of data,
the buffer is flushed to the next available page, which is next to the
page and within the block pointed to by the block pointer. Search
or retrieval of items in a bucket starts with the block pointer.

To cope with the unique properties of flash, the physical lay-
out of the buckets on the flash must be carefully designed in order
to obtain high efficiency. Consider the following alternatives. If
pages of a single block were used by different buckets, discarding
a bucket would violate Design Principle P3, and hence be expensive
in terms of energy and latency. Thus, instead, all pages of a block
are dedicated to a single BHFE bucket, as shown in the bottom

are always appended into the appropriate buckets (either the tailhalf of Figure 4, where each shaded (pink) rectangle in the bottom
bucket or the corresponding individual bucket)—we avoid in-place half depicts a block and is labeled with its associated bucket name.
updates. Moreover, the BHFEE maintains an in-memory page of Unshaded rectangles in the bottom half depict free blocks.

the most recently inserted items for each B bucket, which, There is also a crucial choice as to how all the blocks for a bucket

when full, gets appended to a block associated with the bucket (asare organized. In RAM or magnetic disk, there are a variety of pos-

discussed in Section 4.2.1). These page flushes fit a semi-randonsible organizations (array, stack, queue, singly- or doubly-linked

access pattern, as defined in Section 3. Namely, while the nextlist, etc.) that may be desirable depending on the context. How-

flushed page can be for any bucket, the pages within a bucket'sever, on flash, certain organizations can be extremely expensive to



maintain. For example, suppose a bucket were organized as a dataantly affect the performance of the sampling algorithm. After each
structure with forward pointers (i.e., pointers from older elements unrolling, all N + 1 buckets contain items. Now, on the one hand,
to newer elements), such as a queue or a doubly-linked list. Older By can be unrolled every tim&, is discarded. This is feasible
elements on the flash cannot be modified to point to newer elementsbecause discarding; gives free space that can be used to unroll
without incurring high costs (Design Principle P1). An array, al- Br. This has the advantage tht cannot grow very long before
though efficient, is not a suitable choice because the precise size ofunrolling, keeping the cost of scanning it small. On the other hand,
a bucket cannot be determined a priori (see [11] for a discussion on By can be unrolled lazily. In the extreme, it can be unrolled only

the complexities of handling sampling variance in geometric file).
A flat in-memory table that maps blocks to buckets is not attrac-
tive either, for its large memory footprint and inefficient bucket to
block mapping. Thus, instead, we will chain the blocks of a bucket
together with backward pointers (i.e., newer blocks point to older
blocks), as depicted in the figure.

B-FILE uses two modules to maintain this layout, described next.

when necessary, e.g., when discarding items of the lowest level in
Br, or when processing queries involving itemsBa. This has
the advantage thaBr can be unrolled very infrequently, which
may save the unrolling cost.

In general, suppose the algorithm maintains at mMost 1 buck-
ets andBr is unrolled after every. times B is discarded; i.e., just
before unrollingBr, there arg N — v) individual B-RLE buck-

Bucket manager. The Bucket Manager (BM) writes in-memory ~ ©tS. (The two extreme scenarios above correspond 40 1 and
buffers to flash pages. When the buffer holds one page worth of & = V). We now study the following optimization questioihat

data, the buffer is flushed to the next available page within the Values ofV andu optimize the cost of maintaining the sample?
block h, as indicated by the block pointer. When no empty page Cost analysis. Suppose the costs of reading and writing a data
is available in that block, a new blockh’ is allocated by the Stor- item to flash areR and W, respectively. For example, if items

age Manager (described below). A pointer to the blhdg& stored can be stored in a flash page, the cost of writing a flash pagg is
with the last page of block’ and the block pointer is updated to  a block containg pages, and the cost of erasing a block.isthen

h'. Thus the blocks in a bucket are chained together with backward W = (c,, + ¢./z)/y. Suppose, the expected size of the largest
pointers and the address of the last block is maintained in the block bucketB; before it is discarded is;, and hence on expectation,
pointer. items are inserted into the sample between two successive bucket

Storage manager_The Storage Manager (SM) keeps track of avail- discards. ThU3¢81 items are inserted into the Sample between two
able blocks and allocates them to the Bucket Manager (BM) on de- log unrolls. For theses; items, we incur the following 1/O cosfs.
mand. When BM discards a bucket, the block pointer of the bucket
is returned to SM. Moreover, when the tail bucket is unrolled
(described in Section 4.2.2), the blocks usedRy are also re-
claimed by SM. When BM requests a hew block, SM pops a block
from a discarded bucket, erases it, and returns it to BM.

Note that because blocks are allocated dynamically to individual
buckets, B-H_E can accommodate large and variable-size records.
However, for simplicity of cost analyses and parameter optimiza-
tions, we consider fixed-size records in the rest of this paper.

4.2.2 Maintaining the Tail Bucket

Note that the tail B-H.E bucketBr is essentially a log of items ! <
with different levels, all of which are larger than the item levels in in Br can be discarded, and hence the cost would'be=
individual B-HLE buckets. Because items are discarded one level (s7—s1) - W
atatime, at some point the log must be scanned in order to separate Thus the total cogper item included in the sampie
out items with certain levels. We call this proceswolling Br.

For example, suppos® = 10 andL = 3. Then, all the items
with level > 13 are kept inBr. The reason we decide to maintain
these levels in one bucket is that very few items so far have these
levels (the numbers decrease exponentially with the level), and soOptimal values of N and u. The above equation shows that the
maintaining a separate bucket (which must be at least one blockcost of maintaining the buckets decreases with increasingn-

in the flash) for each such level is wasteful. However, as more tuitively, having a largeV implies smallerBr and small log un-
items arrive, level 13 becomes more frequent within and at rolling cost. Therefore, it is preferable to hadé be as large as
some point it may make sense to maintain a separate bucket forpossible. However, the size of the data structures in memory in-
level 13. Separating level 13 items froBy: would make it easier ~ creases linearly with\. Hence, in practice, the desirable memory
to discard the level 13 items wheh = 13 and|bfile| = smax. footprint places an upper bound on

Note that after unrolling, separated buckets can be accommodated The cost equation also shows that, for a givénthe above cost
within the individual buckets, because at least one individual bucket function is convex in terms of.. Hence, the cost is minimized

is discarded between any two unro”ingsl when the derivatinC/d’LL =0. This yleldS the fO”OWing lemma.

Unrolling Br requires reading all its items, writing items to be o o
separated out into their appropriate buckets, writing the remaining ~LEMMA 4.3. Suppose ®-FILE maintains at mosfV individ-
items into a newBr, and then freeing the olr. (We cannot  Ual buckets and3r is unrolled after every. times thatB, is dis-
updateBr in place since flash does not allow it.) This is the only carded. Then the cost of maintaining the buckets is minimized when
occasion where we write the same item more than once to flash— = —1/In(a), wherea = smin/smaa-
there is no other such copying overheads in Algorithm 1. We here ignore the CPU cost of our algorithm because first, it is

One important design decision is when to unil in order to negligible compared to the flash 1/0 cost, and second, it does not
separate out one or more buckets from it. This decision can signifi- affect the key parameters we seek to optimize.

1. All us; items are written (to individual buckets or #r),
incurring a cost of’ = us; - W.

2. The wholeBr needs to be read during unroll. Note that,
just before unroll, there will beV — u active buckets, and
the expected size aBr will be sz = > ;2 sia’
510V 7% /(1— ), wherea = smin/smaz as before. Hence,
readingBr will incur a cost ofc” = st - R

. The items inBr need to be written back, either to individual
buckets or to a newr, incurring a cost o’ = s - W.
In the special case = N, the items with the smallest level

i
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There also exists a non-trivial interaction between the total 1/0
cost of a B-KFLE and the differencé = smaz — Smin. IN Ap-
pendix A, we show how the optimal value &f,:,, Or s;mq. can be
determined if the size of the stream can be estimated a priori.

5. QUERYING SAMPLES

In this section, we describe efficient techniques for extracting a
subsample) from the sample5 generated by Algorithm 1, under

greedy heuristic for selecting these buckets is to consider all
B-FILE buckets in increasing order of their size and to des-
ignate the smallest selected bucket tafhe.

. Sampley’, arandom set off Q| — > _%_ | By, |) items, from
B;,,, using reservoir sampling. Retuéh = u.’;;}Bij U Q'
as the target subsample.

It is easy to show that the above algorithm returns a random
sample over the stream. All items have the same probability of

two important scenarios. First, in Section 5.1, we seek a smaller peing selected for a given bucket; let be the probability that
random sample of the data stream than the one generated by Al-an item is selected for a buck&; .. Now consider an item: in
J

gorithm 1. When they suffice for the estimation problem at hand

(e.g., the variance is low), smaller random samples are preferred
because they cost less time and energy to transmit and process,
Second, in Section 5.2, we seek a random sample of the portion of / ~

the data stream that arrived during an arbitrary time window. Such

the entire streans’. Pr{z € Q} = Y'_| Pr{z € B;;} +
Pr{z € B, } - Pr{z selected by reservoir sampling algorithm
le;f pj +pr-|Q'|/|Bi, |- As this expression is independent
of z, every item in the stream has an equal probability of being

queries are common when remotely querying energy-constrainedincluded in@.

sensor nodes. In both scenarios, the key parameter—the sample

size or the time window—is specified only at query time.

5.1 Random Subsampling

We first present techniques for choosing a random sarfple
from the on-flash samplé& such that@| < |S|. The most obvious
way to implement such a sampling is to use a reservoir sampling
algorithm to draw a sample of siz€| from S. However, although
simple, this naive algorithm has two major drawbacks. First, it
requires scanning the entire samg@ewhich can be as large as
several gigabytes. Second, it would requi?€|Q|) space in the
memory, which may not be feasible in many memory-constrained

devices. We therefore develop techniques that exploit the random-

ized bucket structure of the BHEE generated by Algorithm 1.
We will focus onbatch samplingwhere the desired sample points

are extracted as a batch. In Appendix A, we present an alternative

algorithm foriterative samplingwhere a single sample point is ex-
tracted at a time, with replacement.

Batch sampling. One possible approach would be to adapt Olken
and Rotem’s procedure of batch sampling from a hashed file [18].

The cost of the above algorithm depends on the size of the small-
est bucket selected in step 1. Selecting an optimal bucket set (that
will minimize the size of the smallest selected bucket) is part of our
future work. Note that a lower bound on the cost for any algorithm
is the size of the smallest BHEE bucket. Under the experimental
setup described in Section 7, the size of the smallest bucket se-
lected by our greedy approach is, on average, witl% of this
lower bound.

One caveat is that because buckets are selectégldeterminis-
tically, the same subsample (up to the random choice of items from
B;, ) is selected each time the procedure is called for a gigen

5.2 Samples Within a Time Window

Given arbitraryt; andt, at query time,t; < t2, our goal is
to return a random sample of the items in the part of the original
stream that arrived within the time windol# , t2]. For the pur-
poses of this section, we assume that each itefiglabeled with
its timestamp. It is easy to show that all the items'iwhose arrival
timestamps are ift1, ¢2] satisfy our goal.

A naive approach to find the desired subset of items is to scan
all the buckets in the B-IEE and return the items with the desired

The basic idea is first to dete.rmine how. many sa.mplles .need to betimestamps. However, we can do much better by exploiting the
drawn from each bucket (using a multinomial distribution), and ¢4t that B-LE fills page buffers and flushes them to flash in such
then to dra_w the_ target numper of samples from_each bL_lcket with 5 way that scanning through the chained set of blocks in a bucket
the acception/rejection algorithm or the reservoir sampling algo- ysits the items in descending timestamp order. Therefore, we just
rithm. However, this approach suffers from the overheads of ex- equire a suitable data structure to locate, for each bucket, its most
tracting random items from each bucket. For example, when the yocant itemr, with a timestamp< £.. We can then sequentially
expected number of sample points per page is around 1, then oftenyc5n the bucket for as long as we find items with timestapps.
entire pages are read from flash in order to extract a single sample 1 t5cilitate efficiently locatinglo, we organize blocks within a
point from the page. Instead, we can exploit our randomized bucket py ,cket as akip list[20]. A skip list is an ordered linked list with
structure to develop an approach that usléthe sample points on  4qgitional forward links, added in a randomized way with a ge-
most of the pages it reads from flash, as described next. ometric/negative binomial distribution, so that a search in the list
_Because in Algorithm 1, all items are equally likely to have a 4y quickly skip parts of the list. In terms of efficiency, it is com-
given fixed level, each B-EE bucket is a uniform random sample parable to a binary search tre® (log n) average time for most

of the data streany’. Thus, any combination of buckets is also a operations, under the standard RAM model). Figure 5 shows an
uniform random sample. If we can find a set of buckets that added gxample bucket as blocks organized as a skip list.

together have the desired sizg|, we can return the items in those Implementing a general skip list, which allows inserting items in
buckets. On the other hand, if we must take only part of one bucket ihe middie of the list, would be expensive in flash. For example,
in the setin o.rd.er to achiey€)|, then we must bg cqreful toensure  onsider inserting a node (a block) with time rarige2, 117] into

that the part is indeed random. Taking a prefix will not work, be- e skiplistin Figure 5. This would require changing forward point-
cause the |tems_ ina sm_gle bucket are in arrival time order. Instead, or5 of some of the existing skip list nodes. Because these pointers
we use reservoir sampling on that one bucket, as follows. cannot be updated in place, these nodes, with pointers to the new
node, must be written to new locations. However, this would re-
quire updating forward pointers of nodes that point to the updated
nodes, and so on. Thus, recursively, many nodes would be require
to be written to new locations due to a single insertion operation.
Similarly, a deletion operation can be very expensive.

1. Select a few bucketgB;, , Bi,, . . ., Bi, }, Where each; €
[1, N + 1] is a distinct integer, such th@f:1 [Bi;| > Q|
andzf;f |B:;| < |Q|. Thatis, only a fraction of the last
bucketB;, needs to be selected to hg¢g items in all. One
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Figure 5: Blocks of a bucket are organized as a skip list. Solid rectarigs are blocks and the text within each solid block denotes the
time window of the items stored in that block. Items are stored in desending timestamp order.
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Algorithm 2 InsertBlock(Block f_b, Bucketm_bucket) case the random sample should over-represent the more important
Require: m_bucket.header. forward][i] initialized to NULL for all records. Suchveighted samplings desirable in many sensor net-
i € [1, Max Level]; m_bucket.level initialized to O work applications where different sensed events have different im-
1: vl «— RandLevel() portance. The database literature also contains many applications
2: if lvl > m_bucket.level then of weighted sampling [2, 4].
3:  m.bucket.level — lvl We here present a weighted sampling algorithm where each item
‘51; forflbzfl tOlUldcﬁ header.header.f " i in the stream has a weight;, and at a given point in time, the
. -0.Jorwaralt] = m-heaaer.neaaer. forwara|t oA . P . . .
6. m bucket.header. forward(i] = f_b.address probability that the item is included in the sample is proportional to

w;. Interestingly, to ensure this property, the only thing we need to
change in Algorithm 1 is how the level of an item is generated—the
rest of the algorithm remains the same.

Recall that, for uniform sampling, we use a coin witti/Rtad) =
p and the level of an item is the number of coin tosses required to
get the first head. Let us denote the outcome of such a coin tossing
experiment as,. Then, if we assiglil + log(;_,,) w; as the level
of an item¢ with weightw;, then Algorithm 1 maintains a sample
with the desired weighting property:

Fortunately, blocks in a bucket of BHFE are always inserted at
the front of the bucket and inserting a new node at the front of a skip
list can be efficiently implemented in a flash. Algorithm 2 depicts
the steps to insert a new block at the front of a bucket. In memory,
each bucket maintains a header that keeps: Level number of
forward pointers. (Here, “level” refers to the skip list pointers, and
is not to be confused with the notion of level in Algorithm 1.) To
insert a block into the list, a levelyl, is generated for it such that o . . .
all blocks have level> 1, and a fractiorp (a typical value forp LEAMMAAG'l' Suppose an iterh W'th_We'ghtwi_ IS §155|gned a
is 1) of the nodes with level i have level> (i + 1). (See [20] levell,, = l. +log,_,) w;. Then Algorithm 1 maintains a sample
for more details.) For each levglthe bucket header maintains the ~SUCh that at any point in time, the probability that the itéris
most recent block with levet i. For each level up tolvl, the new included in the sampl§'is proportional tow;.

block copies the levelpointer from the bucket header into its level PROOF Suppose the current minimum active leveLis Then,
1 pointer and then writes a pointer to itself as the new lepelinter Pr{i € S} = Pr{lAw > L} = pr{fu > L+log,_,ywi} =

in the bucket header. Thus, inserting a block requires writing to just
the _bucket header_and the first page of a new block, both of which becausé1 — p)“~ is fixed independent of O
are in memory. This takes constant time. . . ~

Searching for items within a time window uses a combination The level of an |tgm m.ust be an integer. .Howe\le{,may. be
of skip search and binary search. Skip search is used to locate thdfactional. To deal with this, we generate an integer Iéyalhich
block containingl, in logarithmic time, as follows. Starting from  is either|L, | or [l.,], depending the magnitude of the fractional
the header of the bucket, we search for a block by traversing for- part ofi,,. More precisely,, = [l,,] with probability (1., — [l ]),
ward pointers that do not overshoot the block containing the item andlAiﬂ = LlAwJ otherwise.
with timestampt, (recall that items are sorted in descending order
of timestamps). When no more progress can be made at the cur6.2 Age-Decaying Sampling

rent level of forward pointers, the search moves down to the next  another important type of sampling is where the probability of
level. When we can make no more progress at level 1, we must begp, jtem to be included in the sample decays with its age; i.e., at
immediately in front of the block that contains the desired item (if any point in time, the sample includes more newer items than older
itis in the list). The gray curvy line in Figure 5 shows the search jiems. E.g., consider the problem of sensor data management—
path for locating the block containing timestamp 90. After we lo- - most queries will be over recent sensor readings. Another example
cate the block, we use binary search to locate the page that contaings sampling-based techniques for network intrusion detection where
the most recent item with timestampi¢.. After locating the page, recent events are more important than older events.

subsequent pages are read sequentiglly fr_om the same block. Ifthe \ye here present a sampling algorithm where the most recent item
last page of the block does not contain a timestamfy, the read s always in the sample and the probability that an item is included
continues from the first page of the next block of the bucket (the i, the sample decays exponentially with its age. We define age
pointer forward[1] of a block gives the next block of the bucket). age; of an itemi as the number of items if’ that arrived after

(1 — p)Etleea—pm wi=t) — 4,(1 — p)£~1. The lemma follows

The scan halts as soon as a timestamf is encountered. i.? In our algorithm, the inclusion probability of items decays in
discrete steps. More precisely, the inclusion probability of items
6. EXTENSIONS OF BASIC ALGORITHM stays the same for every item arrivals, where; is the expected
. . size of B; in B-FILE. Thus, the inclusion probability of an itetn
6.1 Weighted Sampling exponentially decreases with the number of item groups ofssize

Thus far, we have described how the B can be used to ef 2This is in contrast to the definition of age in terms of time elapsed
ficiently maintain a very large unbiased random sample. We have after the itemi has arrived. Within our sampling framework, tech-

assumed that each item produced by the stream has an equal probgyiqyes for exponentially-decayed sampling with time-based age is
bility of being sampled. In many applications, however, the relative still open. One can use weighted sampling with weight = arrival
importance of the data items to be sampled is not uniform, in which time, but as timestamps grow large, the decay becomes very slow.



Table 3: Generating levels for different sampling algorithms through a CF Extend 180 Extender Card [22], to the PCMCIA slot

l Sampling scheme [ Level of a newly arrived item| of an Intel P4 1.7 GHz laptop. We then connect a low ohmage (1
Uniform sampling 1, = # tosses of a-biased Ohm) current sense resistor in series with the extender card and
coin to get the first head measure the current with an oscilloscope. For thaFHCHIP
Weighted sampling by = lu +logy_,yw experiments, we have written a “driver” that emulates a Toshiba
Exponentially decayed samplingle = I, + L TC58DVGO02A1FT00 NAND flash chip, whose performance has
Weighted + Decayed lwe = lu +log(;_pyw+ L been accurately measured and profiled in a recent work [15]. Ta-

- _ ] ] ble 1 shows the energy consumption and latency of both these flash
that arrived afte¥. Although this does not provide a smooth decay, media. We also studied a few other flash cards from Kingston and
this is acceptable in many practical scenarios. For example, it is sanDisk and SSD drives from Samsung and SanDisk, and the con-
perfectly fine for many applications to maintain a sample where c|ysions were identical; hence we omit results for those cards here.
all the |tem_s that arrived _today have the same inclusion probabl_ll_ty Workload. We use a datastream coming from a set of sensors de-
po, all the items that arrived yesterday hgve the same pr.obabllllty ployed in a large Microsoft datacenter, although the performance
p1 < po, and So on. In sucha case and with a constant d_ally arrival of a sampling algorithm does not depend on the content of the data
t Igorith b d with luepbuch th t
rate, our ahggrl m can be used with a valuspuch thak, items items. We synthetically generate the weights of data items for bi-
arrive each day. . . . . ased sampling and the subsample lengths for subsampling experi-
As before, this sampling algorithm also requires generating the ments. as we will describe in Sections 7.2 and 7.3
levels of newly arrived items in a special way, while everything else - ) Co . .
of Algorithm 1 remains the same. Now, on arrival of an iterwe Algorithms Compared. We evaluate the following five algorithms:
assianitalevel. — 7. + L. wherel. is the level aenerated by the (1) Reservoir (RES): the original reservoir sampling algorithm [23].
Sig e = but Li, v 9 edby (2) Adapted Reservoir (A-RES): the adapted reservoir algorithm
con toss experlme_nt for unlform_sampl!ng., ahdis the minimum described in Section 2.3. (&§eometric File (GEOFILE): the orig-
active level at the time of th_e arrlva_l of |tem_Thgn the following inal geometric file based sampling algorithm [11]. However, to re-
Iemma sh_ows that our basic algorithm maln_talns a sample Whereduce its memory footprint, small segments are maintained in flash
the inclusion probability decreases exponentially. as a log, instead of in memory. (Adapted Geometric File (A-
LEMMA 6.2. Suppose an iteris assigned alevél =1, +L;, GEOFILE): the adapted geometric file based algorithm described
whereL; is the minimum active level at the time of the arrival of N Section 2.3. Lastly, (5B-File (B-FILE): the main algorithm
itemi. Then Algorithm 1 maintains a sampfesuch that at any described in this paper. Based on our analysis in Section 4.2.2, we
point in time, the probability that itena is included in the sam-  Seélectu = 5. Note that, s does not use any extra flash storage;

ple exponentially decreases with — L;), whereL is the current i.e., 1GB space is used to maintain a 1GB sample. All other algo-

minimum active level. rithms use the extra space.(oc — smin) t0 Maintain logs and/or
PROOF Suppose the current minimum active leveLisThen, to accommodate internal fragmentation.

Pr{i € S} = Pr{Te > L} = pr{fu >L—-L}=(1- Memory footprint. We configure the B-FEE to use 15 buckets,

p) =L~ as requiredD and it incurs a memory footprint of 31KB. ForeR and A-RES,

Note that the above two sampling techniques can be combined toWe Use a 2KB (= size of a flash page) buffer to temporarily hold
maintain a sample where, at any point in time, the inclusion prob- samples before writing them to the flash_. (Increasing the f_ootprlnt
ability of an item is proportional to its weight and the probability 100-fold has only a few percentage points performance impact.)
decreases exponentially based on its age. Table 3 summarizes thEOFILE and A-GEOFILE require a large in-memory buffer; we
level generation algorithms for different sampling schemes. use 1MB and later discuss the impact of using even a larger buffer.

6.3 Optimizations with More Memory 7.1 Cost of Maintaining Samples

We briefly outline two optimizations that can be used when more ~ Figure 6 shows the energy consumed by different algorithms to
memory is available. The first optimization uses more buckets to Maintain a random sample from a data stream of varying length
reduce the cost of maintaining the sample. As mentioned in Sec-With FLASHCHIP and FASHCARD and the time elapsed for the
tion 4.2.2, more buckets reduce sampling overheads at the cost off@Me With EASHCARD. Note that the relative performance of dif-
a bigger memory footprint. The second optimization maintains the fer€nt algorithms with EASHCHIP and R ASHCARD is the same;
skip pointers (of the skip list described in Section 5.2) and time- Moreover, the time consumed by different algorithms with $+-
stamp ranges of blocks in separate flash pages, instead of storind>ARD iS proportional to the energy consumed. Therefore, in the
them at the end of each block. This reduces subsampling cost by€St Of the section, we restrict our discussion to energy consump-
retrieving multiple successive skip pointers with a single page read. tion for FLASHCARD; our conclusions naturally hold for energy for
This requires an additional in-memory page buffer to temporarily FLASHCHIP and for time for both EASHCHIP and FLASHCARD.

hold skip pointers before they are written to flash. Figure 6(b) makes_several important points._ First,_ the energy
consumed by all algorithms decreases exponentially with the stream
7 EVALUATION size. This is due to the fact that we are maintaining an unbiased

sample and fewer new records are included into the existing sam-

In this section we experimentally evaluate our B-File-based sam- ple as the stream size increases. Second, compareBs{cARRES
pling algorithm and a few existing algorithms. reduces energy consumption4syl 0%, which comes from the fact
Flash Devices.Unless otherwise stated, we us8e,g.. = 1.2GB that some of the samples that need to overwrite random records in
flash device to maintain &,,:», = 1GB sample from a data stream RES are discarded directly from the log in AER, avoiding ex-
consisting of 1.5 billion 32-byte records. We use two flash devices pensive overwrite operations. Third, compared tedBILE, A-
for our experiments: (1) FASHCHIP: a Toshiba flash chip, and (2)  GEOFILE reduces energy consumption by 13%, highlighting
FLASHCARD: a Lexar 2GB CF card. Each flash page is 2KB and the benefit of allocating entire blocks for individual segments. The
each block contains 64 pages. To measure the performance numiast two points demonstrate the benefit of our adapted algorithms.
bers for the EASHCARD experiments, we connect the flash card, However, their performance improvements look insignificant com-
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Figure 6: Energy and time consumed by a flash chip and a flash card wter varying stream sizes

pared to the performance improvement of B4E For a stream of
size 1.5 billion records, B-IEE is 3 orders of magnitude more effi-
cient than the best of all the other algorithms considered. Benefits

Table 4: Number, in millions, of basic operations for mainte-
nance (Seq: sequential, Rnd: random, S-Rnd: semi-random)

of similar magnitude are observed for the time elapsed to maintain

. ) Read Write Erase
the sample, and withiIARSHCHIP instead of EASHCARD. Seq | Rnd || Seq | Rnd | S-Rnd
To better understand the relative performance of different algo- RES 0 | 8160 0.52 | 8160 0 128
rithms, we show in Table 4 the total count of various primitive 1/0 A-RES 1.89 | 7120 25 | 7121 0 111
operations incurred by different algorithms after sampling from 1.5 GEOFILE 2880 O 799 | 47 0 10.2
billion data items. A hypothetical optimal algorith@PT would A-GEOFILE || 2747 | O 511 ] © 0 12.6
incur at least the cost of sequentially writing the minimum number B-FILE 04 | © 0 0 | 3418 || 0.048
of pages required to hold all the data items ever added to the sample orT 0 0 2.7 0 0 0.032

and erasing the minimum number of blocks required to hold all the ) o )

items ever deleted (to make space for new items) from the sample. Figure 7 shows the cost of maintaining different types of random
OPT’s cost is shown in the last row of the table: this cost is a lower Piased samples on a Bufe. For the weighted samples, the weights
bound for any algorithm. In practice, the lower bound may not be of individual records have a Gaussian distribution with mean 3 and
achieved due to the following overheadl) random writesC2) variance 1. As shown, the cost of maintaining a weighted sample
sub-block granularity deletion or in-place update, which require IS Slightly higher than maintaining an unbiased sample; moreover,
backing up valid data before and copying it back after the required the cost exponentially decreases with stream size because fewer
block erase operation; ar@3) multiple writes of a data item, be- items are included into the sample as the stream size grows. How-

cause of log compaction. Bo2 andC3 result in increasing the ~ €Ver, maintaining an age-decaying sample is expensive, because
number of sequential reads and writes. every new record needs to be added to the sample (and possibly

A-RES improves upon Rs by reducingC1 and C2, at a cost discarded later as the record grows older). The effect is that the

of a smallC3 overhead, as shown in Table 4 by AERs fewer cost increases linearly with stream size, as shown by the Decaying
random and slightly higher sequential 1/0s thaBsR GEOFILE and the Wejghted+Decaying curves in Figurg 7. Note that the per-
improves upon Rs or A-REs by nearly eliminatingCl. How- formance dlfferencg for B-EEE and other algorithms ((_e.g., AHS _
ever, it still incurs a highC2 overhead, because segments are not and A-GEOFILE) will be even greater for age-decaying sampling
aligned to block boundaries. We found that90% of the reads  than for unbiased sampling; all algorithms will add roughly the
and writes of GOFILE are due taC2. A-GEOFILE improves G- same number of records into the sample, but adding a new record
OFILE by reducingC2. However, because allocating space at a IS much cheaper in B4EE than in the other algorithms.

block granularity in A-GOFILE may waste space and we use only
(Smaz — Smin) = 0.2GB of extra space, it is not possible to al-
locate entire blocks to all segments in AEGFILE. Therefore,
A-GEOFILE can not completely eliminat€2. Our experiments
show that to significantly eliminat€2 in A-GEOFILE, we need

to allocate full blocks to a large number of segments; and to af-
ford the resulting internal fragmentation, we need to &ge, =
10GB. Performance of BoFILE and A-GEOFILE can also be im-
proved by using a larger in-memory buffer; our experiments show
that by using a 10MB memory, instead of our default LMB mem-
ory, the performance can be improved by arod®ds. In other
words, significantly improving the performance of AEGFILE re-
quires using both a very large (e.g0x the sample size) flash and
and a large memory (e.g» 1% of the sample size). In contrast,
B-FILE naturally performs very close t0 PT with very little extra (which is proportional to subsample size). For smaller substreams
space and memory. As shown in Table 4, B#s I/O counts are (< 10%), using skip lists provides an order of magnitude greater
quite close to optimal (note that semi-random and sequential writes energy savings than sequential scan, and using the skip lists in
have similar costs), thanks to its following all the desirable design separate pages provides another order of magnitude greater energy
principles; the additional reads and writes are dué3mverheads savings. The benefit comes from a small number of page reads re-
incurred while maintaining the tail bucket. quired to locate the first record in the subsample. However, the ben-
efit diminishes as the subsample is taken over a longer substream,
as the cost of locating the first record becomes insignificant com-

7.3 Subsampling

To evaluate subsampling cost, we first construct a 1GB random
unbiased sample from 1.5 billion records, with exponentially dis-
tributed inter-arrival times. We then measure the energy consumed
to extract all the records in the sample that arrived within a time
window [t1,t1 + length], wheret; is uniformly randomly dis-
tributed within the windowo, 1.5 x 10° —length). Figure 8 shows
the energy consumed for different valuesefgth. We consider
three alternatives to locate the first recardd; ) in each bucket: se-
quentially scanning the bucket, using skip lists with pointers stored
at the end of data blocks, and using skip lists with pointers stored in
separate pages (recall Section 6.3). The results show that the cost
of extracting subsamples increases with the substreaniesizeh

7.2 Biased Sampling

11



700 — — . 10 —_——— 0.04
Weighted+Decaying — Sequential scan —— Without queries EXxxa
600 Decaying - 1k Skip list With queries m—
= 500 | Weighted = P E =5 Separate skip list % 003 e
= Unbiased ——=" = 01 ] £ R
> 400 | e > . :‘:’3
£ | g 5 oo R o~
2 2 0.01 E g - % 0%
| 0.001 f. 7 = o001 §§ §§
: : 0.0001 N K] s
0 300 600 900 1200 1500 10?2 10° 10* 10° 10° 107 10® 10° _ _ ol B
Size of datastream (Million) Substream size Unbiased Weighted Decaying gz'g:;%dg
Figure 7: Biased sampling Figure 8: Energy consumed to subsample Figure 9: Sampling with queries
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(1]

7.4 Concurrent sampling and querying

So far we have evaluated our sampling and subsampling algo- 2]
rithms in isolation. Now, we consider them together; i.e., we query
(subsample) the sample on a flash device at the same time the sam-
ple is being collected. Because a flash device can support a limited 4]
number of concurrent I/Os, concurrently sampling and querying the
sample may affect the performance (especially the latency) of both [5]
operations. We consider the following scenario: data items arrive at
the maximum rate our most expensive sampling scheme (Weighted
+ Decaying) can handle, and we run one sampling thread to main- [7]
tain the sample on flash and 10 query threads each of which contin-
uously asks for random subsamples of sige000 items. For the (8]
sampling thread, we report the average cost after seeing 100 mil- [o
lion(M) data items; the cost would decrease with additional items.
(Note that the flash device can hold around 40M items, so even af-[10]
ter 100M items, the sampling cost per arriving item is reasonably
high). Our results show that the impact of concurrent sampling (11]
on query latency is very smalk( 5%; details in Appendix B). [12]
In contrast, as shown in Figure 9, the impact is more significant
on sampling latency (upt85%). This is because with concurrent  [13]
reads and writes on flash, write performance suffers more than read
performance [1]. [14]

(6]

[15]
8. CONCLUSION

In this paper, we have presented the first flash-friendly algorithm [16]
for maintaining a very large (100 MBs or more) random sample of a
data stream. We proposed BLE, an energy-efficient abstraction ~ [17]
for flash media to store self-expiring items and showed how B- (18]
FILE can be used to efficiently maintain a large sample in flash. We
also provided techniques to maintain biased samples with & B-F ~ [19]
and to query the large sample stored in a B&for a subsample
of an arbitrary size. Evaluation with flash media shows that our
techniques are three orders of magnitude (or more) faster and morgpy;
energy-efficient than existing techniques.

We believe that the B-IEE is a general abstraction and can be
used for many purposes other than sampling. For example, it can??
be used to archive data and to automaticafigit, based on arrival [23]
time or priority of the data, to reclaim storage space for newly-
arriving data (e.g., on a sensor node). Moreover, our studwalege [24]
an important subclass of random writes, which we called semi-

. ; . [25]
random writes, that defy the common wisdom to avoid all random
writes. We believe that semi-random writes can also be used for [26]
many purposes, e.gd., itis the write pattern for external memory dis-
tribution sort [25]. Moreover, for some algorithms, sufficient write-
buffering and scheduling might be able to transform most of the g,
random writes to flash into semi-random writes. Exploring other
uses for B-FLE and semi-random writes is part of our future work.

[20]

[27]
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APPENDIX Table 5: Energy consumed by different types of I/Os on two
A. ADDITIONAL B-FILE ALGORITHMS flash devices

AND OPTIMIZATIONS Operation | Energy (.J)

Randomized batch sampling from a B-File.The batch sampling Device: Toshiba NAND TC58DVGO02A1FTO0O flash chip (128MB)
algorithm in Section 5.1 is not truely randomized in the sense that Basic operations

there might be a significant overlap between two subsamples (since page read [15] 57.83

if both subsamples select a bucket, all items within the bucket will "Bage write [15] 73.79

be in both subsamples). Although it might not be a problem for ["Biock erase [15] 65.54

most applications, we here outline another batch sampling algo- Append vs. update of a 32-byte record

rithm which is truely randomized, but less efficient than the algo-

ithm in Section 5.1 Append 1.17
rithm in ecFlon S , In-place update 8854.21
The algorithm is analogous to Olken and Rotem'’s procedure of -
. ) S o Batch deletion of 32-byte records
batch sampling from a hashed file [18]. The basic idea is first to de-
Delete 1 record 8357.6/record

termine how many samples need to be drawn from each bucket (us
ing a multinomial distribution), and then to draw the target number
of samples from each bucket with the acception/rejection algorithm .
or the reservoir sampling algorithm. Device: a Lexar CF card (2 GB)

We would like to mention that geometric file can support a more Append vs. update of a 32-byte record
efficient implementation of the above algorithm. Since the items | APPend 0.21
in each segment are stored in a random order, the target number o Update 7880.41
samples from each segment can be drawn efficiently by sequential
reads. In contrast, each BitE bucket keeps items stored in the
order of their arrival times. Although requiring reading more flash record within a bucket satisfying a time range query.
pages during sampling within a bucket, the B approach has  prqof of Lemma 4.2.We now present a proof of Lemma 4.2 from
twgladvantages: Q)it aymds havmg.t(.) randomize (jata items before gaction 4.1. Suppose at a given point of time, the sample has been
writing to_ﬂ_ash,_ and (_2) itenables effl_mentl_y prodgcmg a sample for computed over a total of data items. Then, on expectatidn, —
any specified time window, as described in Section 6.2. p)'~p-n of these items are assigned to lei/gnd are placed in the
(i—L+1)'th bucketB(;_111). This gives, on expectatioh3x| =
(1-p)"~"|B1| and hencemas = 321, [Bx| = |B1| SZ)_, (1-
p)*~! = |B1|/p. Plugging this into our goal that, on expectation,

Delete 16 consecutive records (1 page)| 1.96/record
Delete 4096 consecutive records (1 blogk.02/record

Algorithm 3 GetNext()

1: while true do
r = RAND(1,N +1)

2: .

3:  j=RAND(1,b*) {b*isthe size of the largest bucket |B1] = $maz = Smin, We eY(1 — p)smax = Smin, I.€.,p = 1 —a,
4: if j < |B,|then wherea = smin/smaz. O

5: Return thej'th item in B;-

Optimizing smin and smaqz Of B-File. The size of a B-R.E fluc-
tuates between two user-specified bousids, ands,,q.. Interest-
Iterative sampling from a B-File. Algorithm 3 shows an itera- ingly, there exists a non-trivial interaction between the cost of main-
tive algorithm that uses an acceptance/rejection test, like [18], to taining samples in a B4EE, and the differencé = simaz — Smin-
produce a random sample from a B:E. Although many loops Consider a fixedV. Intuitively, a large value ob is not desir-
may be required before an acceptance, accessing the flash is reable, since buckets are discarded less frequently and more items
quired only on an acceptance (assumingihe 1 bucket sizes are are added to the B4EE (some of which are discarded later). A
cached in memory). Note that to access the selected item in flashsmall value of§ is not desirable either, because then the tail bucket
(line 5), one must traverse the chain of blocks of the corresponding contains a large number of items, increasing the cost of log unroll.
bucket. The number of pointers required to follow in order to locate If a user has the freedom to choose a value,gf.: (Or s,.:») for a

the selected item can be reduced by using skip lists (Section 5.2),8IVEN S (OF Smaz, respectively), the value must be chosen care-
and the number of page reads required to extract the pointers carfully to balance the trade-off.

be reduced by maintaining the skip pointers in separate pages (Sec- If the approximate size of the stream is known a priori, it is pos-

tion 6.3). sible to determine the optimal,.... given ans.,» (or vice versa).
We here briefly outline how this can be done. Suppose the sam-

Algorithm 4 Search(Bucketm _bucket, Timety, Timets) ple is being collected over a stream of sj£| and the B-FLE is

1: 2 — m_bucket.header configured to maintaiV individual buckets. Then, it is possible

2 for i = m_bucket.level downto 1 do (applying Lemma 4.3) to compute the expected number of times

3:  while the first item in blocke. forward]i] has timestamp- t2 do the tail bucket is unrolledsr: the expected size of the tail bucket

4: z — x. forward|i] just prior to an unroll, and: the expected number of items added

5! 2 — z.forward[l] . ) ) to the B-ALE, all as functions o6min, Smas, [S’|, andN. Then,

6: Binary search block: for the pagep containing the itenfy with the

the total cost of maintaining the sample can be computed numeri-
callyasC =a-W +t-sr-(R+ W), whereR andW are as
defined in Section 4.2.2.

One can use the above cost function to search the design space
Of $min @ndsmaqz fOor combinations that minimize the total cost.
Our experiments show that for a given,..,, the cost function is
Searching within a skip list bucket. Algorithm 4 shows the pseu-  convex with a single minima, thus the optimal... can be found
docode of the algorithm, described in Section 5.2, to locate the first by simple binary search.

largest timestamgg ¢

: Sequentially read the bucket starting from pagefor as long as
the timestamp is> t;; if needed jump to the next block by using
forward[1] of the current block

~
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B. ADDITIONAL EXPERIMENTAL RESULTS

Additional Measurements of Flash Devices.Table 5 shows the
energy costs of the different flash I/Os discussed in Section 2. It
presents the basic I/O costs, demonstrates the advantage of ap-
pending over overwriting data, and demonstrates the advantage of
batching record deletions. Note that consumed energy is roughly
proportional to latency, and hence any advantage in energy natu-
rally translates to an advantage in latency.

Experimental Validation of Optimal B-File Parameters. Fig-
ure 10 shows the effect of doing log unroll in batch (from this point
on we use energy measure as the cost andsHCARD as the flash
media). As discussed in Section 4.2.2, the cost per sampled item
depends on how many unrolls, are batched together and there is
an optimal value for.. For our particular experimental setup, our
analysis in Section 4.2.2 gives,: = 5, same as what we see from
our experiment (Figure 10).

Figure 11 shows the effect of differest,... with a fixed s;in
= 1GB. As explained in Appendix A, the cost is optimized for a
certain value ok,,.., and for our experimental setup, the optimal
value is~ 1.5GB. The numerical analysis outlined in Appendix A
also gives the value 1.5GB.

Cost of queries with concurrent sampling. Figure 12 shows the
average subsampling cost reported by the query threads when the
sampling thread uses different sampling schemes. It shows that
the impact of concurrent sampling on query latency is very small
(< 5%).



