Storage Technologies Overview

Low-Power Computing Carnegie Mellon University David Andersen

What ?s should we ask?

- Volatile vs. Non-Volatile (pull the plug)
- Density: bits / area
- Cost: bits / \$
- Durability / lifetime
 - How long does data last? How many write cycles?
- Speed random, sequential, small, large, reads, writes

How can we store things?

- Charge
- Magnetic polarization (electron spin)
- Light in a loop
- Physical state / chemical bonds / etc.
 - punch cards, CD-ROMs, DVDs,
 - holographic storage, DNA..

Source: Samsung Electronics
"A PRAM and NAND Flash Hybrid Architecture for High-Performance Embedded Storage Subsystems"

Transistors: SRAM

- Typical SRAM uses 6 transistors to store one bit -- 4 store the data, 2 to control read or write. The 4 are basically a flip-flop.
- Read: Transistors drive BL high or low actively (Fast!). Write: complicated.:) (set BL low, set to bit, toggle WL)
- Idle: Inverters reinforce each other; nothing changes state low power

Tiny image from HowStuffWorks

SRAM

- High power when used @ high bandwidth
- Density: Bad. 6 transistors per bit. Ow!
- They're made of transistors -- easy to put directly on-chip (nice!) -> CPU caches
- Idle power draw is the same as CPUs leakage current. High-k can reduce this... for now.:)

Capacitors: DRAM

DRAM properties

- Pretty dense. IC + IT per bit.
- Pretty fast ~20ns random access, but very high bandwidth due to very parallel internal structure (1.6 * 10^9 32 bit words per second). Reads & writes both fast.
- Cost about \$10/GB
- Power: High. Up to 5-10W per DIMM. High (100s of mW) power draw when idle -- refresh bandwidth
- Leakage increases as size decreases so refresh happens more frequently (idle power goes up relative to active)

Example DRAM

- Micron 8GB FBDIMM, 240pin DDR2, 4 Gb/sec transfer rates (serial!)
- needs +1.8v, +3V for onboard controller
- 4.1W in lowest idle state
- 11.5W active
 - This is fast, ECC, server ram NOT low power, but nice example..
 - laptop 4GB SO-DIMM DDR3 @ 1333Mhz: ~1.5W active, 200mW power-down, 4.5W reading from all banks interleaved

Transistors again: NAND Flash

To reset: Apply even higher source voltage or negative control V (~10-20V)

- Obligatory stolen-from-Wikipedia image
- Flash stores one (or a few) bits per transistor -- "floating gate"
- So really, it's transistors-as-capacitors
- Key thing: High electric field causes electron tunneling (to or from float gate)
 - And causes the insulator oxide to break down a little bit...
 - (Caveat: Newer flash uses hot carriers, not tunneling faster, but hurts reliability a bit)

Schematic view of flash

SLC or MLC?

- Low power to read, medium power to write, higher power to erase. (Remember sensor paper - higher power to write; most writes require erases)
- Can store one bit (SLC) or multiple bits (MLC) per transistor by storing multiple levels of charge
- MLC higher density, more careful programming. Smaller amount of charge difference causes bit flips -> less robust.

	SLC	MLC	
Density	16Mbit	64Mbit	
Read	100ns	I 50ns	
Block	64K	128K	
Endurance	100k cycles	10k cycles	
Temp range	larger	smaller	

Table from SuperTalent Technology whitepaper, "SLC vs. MLC"

Tradeoffs in flash

- Cost/Density vs. reliability
- Power vs. Speed faster to program with higher voltage, draws more power.
- Speed vs. lifetime: thicker gate oxide retains data longer, slower to program

- Yoinked from comms daily
- Erase: 2ms

NAND Flash SSD is a little computer

◆ Storage: flash chips

◆ Access: multiple independent access channels

◆ Interface: SATA

- ◆ Controller: computer + RAM
 - Processes cmds
 - Drives channels
 - Write behind
 - Allocation
 - Wear leveling

746, Spring 2009, Greg Ganger and Garth Gibson ©

15

Flash summary

- \$1-ish per gigabyte
- No power when idle. IW SSD = 100MB/s
- With wear leveling, lifetime of ~3Y continuous writing with good flash
- Data degrades it's a capacitor! Maybe a year? Reads cause somewhat faster degrade.
- Fast sequential writes, slow random writes (erase block),
 V fast sequential reads, quite fast random reads (but first byte more expensive)

Magnets: MRAM

- Store a bit as magnetic polarization -
- ---current--> Magnet |barrier| Magnet -->
- Resistance changes if polarities aligned or opposite
 - (Cute point: This is used in hard drives, too)
- The hype: Density and speed of DRAM, but non-volatile and no refresh current. Latency almost as fast as SRAM.
- The reality: A few MRAMs now exist. 180nm process. Many challenges in shrinking it. Far less dense than flash (coming later...)

Everspin MRAM

- (spin-off, no pun intended, from FreeScale. FreeScale was a spin-off from Motorolla)
- 4 Mbit MRAM chip (MEGA-bit; Micron will sell you a 4 GIGA-bit DRAM chip)
- 35ns read/write cycle (~roughly DRAM)
- Unlimited read/write cycles
- TPD of 0.6W for 4zMbit; read current ~80mA, write ~165mA, standby 12mA (but you can turn it off completely and it keeps its data, like flash)
- Cost...?

Physical State: Phase-Change Memory

- Idea: Find a material that changes phase with (heat, voltage, magnetic field, etc).
 - eg, amorphous vs. crystaline structure
 - (Analogy: gas vs. liquid, but that takes lots of power)
- One such material: chalcogenide glass.
 - Huh? -- It's the same stuff in rewriteabe DVDs.
 - Add sulfur, selenium, etc., to glass -> GeSbTe (Germanium-Antimony-Tellurium) (Germanium == same group as Silicon; GeO2 is a glass just like SiO2. It's popular for doping fiber optic cables.)

Amorphous Phase

TEM **Images**

Crystalline Phase

Electron Diffraction **Patterns**

Material Characteristics

- Short-range atomic orderLow free electron densityHigh activation energyHigh resistivity

- Long-range atomic orderHigh free electron densityLow activation energyLow resistivity

Credit: Ovonyx corp.

Making PCM

- Have to be able to rapidly heat & cool material
 - Luckily, that gets easier with scaling down (from a power perspective)
 - Maybe 100ns to cool down. Very small area.:)
- To heat: big current pulse (ImA)
 - (Requires constant current source)

PCM Characteristics

- Read: Fast. Measuring resistance (or optically). Speed will depend a lot on other decisions -MLC vs SLC, serial vs. parallel structure, etc. But nothing fundamentally slow.
- Non-volatile
- Writing: Probably slower than DRAM, but doesn't have to erase like Flash
- Density is tougher than DRAM
- Lifetime 10x that of flash?
- The reality: I shipping PRAM part; many companies say they have samples at surprisingly nice density (512Mbit, etc.)
- Similarish comments apply about FeRAM (uses

Separation of Read & Media

- Previous technologies directly read data out of cells
 - ~I transistor per cell, all were lithographic processes
- Why does the reading technology have to be attached? Many to I.... as long as you don't mind physically moving the read device.
- Density & cost vs. moving parts speed & power.
 (speed particularly == latency)

2006 Laptop Drive

Perpendicular Recording

Notebook Drive

Drive Capacity (GB)	160		
Number of Discs	2		
Capacity (GB/disc)	80		
KTPI (avg)	147		
KBPI (nom)	885		
Product Areal Density (Gb/in²)	130.1		
Transfer Rate (MB/sec)	44		
RPM	5400		
Seek Time (ms)			
Average Read	10		
Average Write	11		

slide credit: Mark Kryder, Seagate

Magnetic Disk

Recording Basics

Image credit: Mark Kryder, Seagate

Disk Power

- Spin down: ~4 seconds
- Spin up: ~5 seconds
- Seagate Cheetah 15.5 (15k RPM), 300GB
 - 2.0ms avg latency (impressive)
 - ~100MB/sec transfer 4 discs, 8 heads
 - 17.6W active, 12.5W idle
- Seagate Momentus laptop, 5400 RPM, 500GB
 - I.54W seek, 2.6W read, 2.85W write
 - 0.81 W idle (spinning)
 - 0.22W standby (spun down, electronics up)
- Power propto RPM squared, and 4th power of radius (drag)
 - Capacity propto radius ^2... doh -> 2.5" disks.

MEMS

slide credit: Mark Kryder, Seagate

MEMS Discussion

- Lots of read heads massively parallel?
- Smaller movement needed lower latency, lower power
- Doesn't move when idle low-power
- Uses normal-ish magnetic media
- Can't buy one off the shelf...

Optical Media

- We saw it before same tech as PCM for -RW; organic dye for writeonce
 - (write-never: pressed physically. cheap!)
- But on spinning media like hard drive
- Lifetime unknown (years, but how many?)
- Speed poor seek latency and slower rotational velocity (10k RPM limit plastic)
- Density low: ~7GB for a DVD vs. 250GB for an equivalent drive platter, but media pretty cheap.
- Denser media slower write times (have to focus laser on spot long enough to heat it) -- 6x for DVD-RW (=~ 3400 RPM).

The Far-Off

- Holographic storage (write-once, 3D, who knows...)
- FeRAM, Nanotube-based RAM, ...

Performance

- Mechanical disk seeks are slow
 - A few milliseconds to move head, a few more for rotate
 - At most 100-200 positionings per second
- ◆ Solid-state is transistors, word lines, RAM-like
 - Accesses per second limited by "RPC" overhead
- Measurements:
 - Random read
 - SSD NAND flash vs magnetic disk
 - Laptop (Mtron, Memoright)
 - Server (Intel X25, Fusion-io iodrive)

SSDs use lower power than disks

- Nothing needs to be spun (always!)
- Nothing needs to be seeked
- Serial bits use faster logic than parallel

Intel® Mainstream SATA SSDs Save Power: SATA Power Rails With 2 Hour Mobile Workload

For more detail see EBLS003: "Extending Battery Life of Mobile PCs Using Intel® High Performance SATA Solid-State Drives"

746, Spring 2009, Greg Ganger and Garth Gibson ©

Source: Intel

34

SSDs use lower power than disks (2)

Intel® Mainstream SATA SSDs Save Power: SATA Power Rails With 2 Hour Mobile Workload

- SSD uses almost no power most of the time
- Disks take time to spin down
 have to be careful.

746, Spring 2009, Greg Ganger and Garth Gibson ©

Source: Intel

35

Slightly old but representative #s

Drive Type	Model	Erase cycles	Capacity	Price	Dollars/Gigabyte	Access Time
Consumer SATA SSD	MTron Mobi	100,000	16 GB	\$370	\$23.13	0.1 msec
Consumer SATA SSD	Memoright GT	100,000	16 GB	\$510	\$31.88	0.1 msec
Enterprise SATA SSD	Intel X25-M	10,000	80 GB	\$730	\$9.13	0.085 msec
Enterprise SATA SSD	Intel X25-E	100,000	32 GB	\$810	\$25.31	0.085 msec
Enterprise PCIe SSD	FusionIO ioDrive	100,000	80 GB	\$2400	\$30.00	0.05 msec
7200 RPM SATA Drive	Seagate Barracuda 7200.11	∞	750 GB	\$110	\$0.15	4.2 msec
10K RPM SCSI 320 Drive	Seagate ST3300007LW	∞	300 GB	\$350	\$1.17	4.7 msec
15K RPM SCSI 160 Drive	Seagate ST3300655LC	∞	300 GB	\$425	\$1.42	3.9 msec