
Saving Power with OS
and VM Scheduling

Low-Power Computing
Carnegie Mellon University

David Andersen

OS Tasks

• OSes handle many periodic tasks

• Applications blocked on select(), sleep(),
usleep(), ...

• Networking: Timeouts (TCP, arp, etc);

• Network polling

• At high packet rates, interrupts are expensive
- poll device and get all packets that arrived in
last few ms

Interrupts

• Are (kind of) expensive

• They wake the CPU

• They cause a context switch

• Which causes some cache and TLB misses and
takes time to save/restore register state, etc.

Packet handling

• Packet arrives in card

• Card interrupts CPU

• CPU pulls packet from card
inspects packet

• CPU sends packet to (other) card

• card interrupts CPU saying “xmit done!”

Example: Routers

• Building a router with a conventional machine
(using, e.g., Click or just BSD/Linux)

• Gigabit ethernet can deliver ~1M small (125
byte) packets per second. If interrupt handler
takes a few hundred cycles...

• FreeBSD 3.3, 500Mhz PIII Xeon: Interrupt
overhead 4.36 µs.

Interrupt overhead

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

T
h

ro
u

g
h

p
u

t
(c

o
n

n
/s

)

Frequency (KHz)

Figure 2. Apache throughput

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

O
v

er
h

ea
d

 (
%

)

Frequency (KHz)

Figure 3. Base interrupt overhead

when either (a) there are no soft timer events scheduled at
times prior to the next hardware timer interrupt, or (b) an-
other idle CPU is already checking for soft timer events.

In our next experiment, we scheduled a periodic soft
timer event such that a handler was invoked whenever the
system reaches a trigger state. That is, we programmed the
soft timer facility to invoke a soft timer event handler at the
maximal frequency possible, given the Web server work-
load. As with the hardware timer, a “null handler” was in-
voked whenever the soft timer fired.

The soft timer handler invocations caused no observable
difference in the Web server’s throughput. This implies that
the base overhead imposed by our soft timer approach is neg-
ligible. This is intuitive because the calls to the handler ex-
ecute with the overhead of a procedure call, whereas a hard-
ware interrupt involves saving and restoring the CPU state.
With soft timers, the event handler was called every 31.5

secs on average. We observe that using a hardware inter-
rupt timer at a frequency of one event every 30 secs (33.3
KHz) would have a base overhead of approximately 15%.

5.3 Soft timer event granularity under differ-

ent workloads

Recall that once a soft timer event is due, the associated han-
dler is executed at the earliest time when the system reaches
a trigger state. The performance of a soft timer facility,
i.e., the granularity and precision with which it can sched-
ule events, therefore depends on the frequency at which the
system reaches trigger states.

We measured the distribution of times between succes-
sive trigger states for a variety of workloads. Figure 4 shows
the cumulative distribution function of time between succes-
sive trigger states.

The workloads are as follows. “ST-Apache” corresponds
to the Apache Web server workload from the previous ex-
periment. In “ST-Apache-compute”, an additional compute-
bound background process is running concurrently with the
Web server. “ST-Flash” is a Web server workload using a
fast event-driven Web server called Flash [20]. “ST-real-
audio” was measured with a copy of the RealPlayer [22] run-
ning on the machine, playing back a live audio source from

0 50 100 150
0

20

40

60

80

100

ST!nfs

ST!kernel!build

ST!real!audio

ST!Flash

ST!Apache!compute

ST!Apache

C
u
m

u
la

ti
v
e

S
am

p
le

s
(%

)
Trigger state interval (usec)

Figure 4. Trigger state interval, CDF

the Internet. “ST-nfs” reflects the trigger state inter-arrival
times when the workload is a NFS fileserver. Finally, “ST-
kernel-build” was measured while a copy of the FreeBSD-
2.2.6 kernel was built on the machine from the sources.

Additional information about the distribution with each
workload is given in Table 1. Two million samples were
taken in each workload to measure the distributions.

The results show that under a workload typical of a busy
Web server, the soft timer facility can schedule events at
a mean granularity of tens of secs with negligible over-
head and with delays over 100 secs in less than 6% of the
samples. As shown below, this performance is sufficient to
perform rate-based clocking of 1500 byte packets at several
hundreds of Mbits/sec and it allows effective polling of net-
work interface events at the same rate.

In a busy Web server, it is intuitive that the many net-
work packet arrivals, disk device interrupts and system calls
provide frequent trigger states. One concern is that the
presence of compute-bound background computations may
cause long periods where the system does not encounter
a trigger state, thus degrading the performance of the soft
timer facility.

To measure this effect, we added a compute-bound back-

237

Source: Aron & Druschel

300Mhz P-II
(Old experiments, but the point holds)

Conventional solution

• Set HZ=1000

• Deal with it.

• May want higher rates, though: 1000Hz ->
sometimes adds 1ms of delay to packets.
Matters, e.g., for traffic shaping.

• Ex: Emulab Dummynet nodes use HZ=10,000
if you’ve asked for very fine-grained delay
shaping

Two alternatives

• SoftTimers approach

• Check timer Q when system is interrupted for other
reasons - every interrupt handler, system call entry, etc.
Even page faults, TLB misses on software TLB architectures.

• Cache/TLB/etc. already disturbed at some “trigger” states;
others (SYSENTER) don’t mess things up as much

• Read clock (CPU register, etc.)

• Compare with head of timer queue

• Can be done quick-like-bunny.

When SoftTimers?

• Very good for busy, I/O and system-call
intensive servers and workloads

• Lots of context switches, etc., already
going on, so just make use of what’s
already happening

• Not so useful on an idle system - might
wait forever!

Tickless Kernels

• Depends on old-but-new hardware:
Programmable timers. RTC, HPET, etc.

• Instead of

• Every 1ms, check queue

• Check queue, find next expiry

• Set timer to fire in expiry time units

• Is this good or bad? Depends on cost of
scheduling a timer interrupt.

Challenges

• These are scheduling challenges: How do we meet
{deadlines, performance targets, etc.} while being
efficient

• Timer expiration

• Work units inside VMs

• In all of them:

• How do we know what deadlines are?

• How do we schedule to meet them?

Themes

• Make scheduling explicit (we’ve seen this
before) instead of poking people and saying “do
you want to be awake yet? huh?”

• Expose enough options for people to tell you
what they really really want, not just what the
hardware can provide - e.g., 800Mhz P-state;
helps when you’re combining multiple VMs

• When you’re already awake, do as much other
work as possible

VirtPower

• Consolidation + Hardware Scaling

• Run (whatever) power management inside
VM

• Use this as a signal to the management
system for how much the VM needs

