Saving Power with OS
and VM Scheduling

Low-Power Computing
Carnegie Mellon University
David Andersen

OS Tasks

® OSes handle many periodic tasks

e Applications blocked on select(), sleep(),
usleep(), ...

® Networking: Timeouts (TCP, arp, etc);
® Network polling

® At high packet rates, interrupts are expensive
- poll device and get all packets that arrived in
last few ms

Interrupts

® Are (kind of) expensive
® They wake the CPU
® They cause a context switch

® Which causes some cache and TLB misses and
takes time to save/restore register state, etc.

Packet handling

Packet arrives in card

Card interrupts CPU

CPU pulls packet from card
inspects packet

CPU sends packet to (other) card

card interrupts CPU saying “xmit done!”




Example: Routers Interrupt overhead

w
=]

® Building a router with a conventional machine s Ol xperiments bt the: pont hokds)
(using, e.g., Click or just BSD/Linux) i
351
® Gigabit ethernet can deliver ~IM small (125 £30r
byte) packets per second. If interrupt handler £
320t
takes a few hundred cycles... isf
10
® FreeBSD 3.3, 500Mhz PIll Xeon: Interrupt st

overhead 4.36 us. o 2 0 P " 100

Frequency (KHz)

Figure 3. Base interrupt overhead

Source: Aron & Druschel

Conventional solution Two alternatives

® Set HZ=1000

® SoftTimers approach

® Deal with it. ® Check timer Q when system is interrupted for other

reasons - every interrupt handler, system call entry, etc.
Even page faults, TLB misses on software TLB architectures.

® May want higher rates, though: 1000Hz ->
sometimes adds | ms of delay to packets. ® Cache/TLB/etc. already disturbed at some “trigger” states;
Matters, e.g., for traffic shaping. others (SYSENTER) don’t mess things up as much

® Read clock (CPU register, etc.)
® Ex: Emulab Dummynet nodes use HZ=10,000

if you've asked for very fine-grained delay
shaping

® Compare with head of timer queue

® Can be done quick-like-bunny.




When SoftTimers!?

® Very good for busy, I/O and system-call
intensive servers and workloads

® | ots of context switches, etc., already
going on, so just make use of what’s
already happening

® Not so useful on an idle system - might
wait forever!

Tickless Kernels

® Depends on old-but-new hardware:
Programmable timers. RTC, HPET, etc.

® |nstead of
® Every Ims, check queue
® Check queue, find next expiry
® Set timer to fire in expiry time units

® |s this good or bad? Depends on cost of
scheduling a timer interrupt.

Challenges

® These are scheduling challenges: How do we meet
{deadlines, performance targets, etc.} while being
efficient

® Timer expiration
® Work units inside VMs
® |n all of them:
® How do we know what deadlines are?

® How do we schedule to meet them?

Themes

® Make scheduling explicit (we’ve seen this
before) instead of poking people and saying “do
you want to be awake yet? huh?”

® Expose enough options for people to tell you
what they really really want, not just what the
hardware can provide - e.g., 800Mhz P-state;
helps when you’re combining multiple VMs

® When you're already awake, do as much other
work as possible




VirtPower

® Consolidation + Hardware Scaling

® Run (whatever) power management inside
VM

® Use this as a signal to the management
system for how much the VM needs




