
VMs for Resource
Multiplexing

Low-Power Computing
Carnegie Mellon University

David Andersen

HPC Background

• Types of hardware/clusters

• Types of workloads

• Management systems (condor, etc)

• Programming them

• Challenges

HPC Clusters

• Older: Sandia Red Storm: Cray XT3/4

• 13,000 nodes

• each w/2.4Ghz AMD Opteron, 2-4GB RAM

• Cray SeaStar network interface - 2GB/s
(That’s bytes...)

• 100 GB/s to 1159 TB of parallel disk

• 50 GB/s of external network b/w

Newer: Ranger

• SunBlade x6420

• 3,936 nodes / 62,976 cores (Q core, Q proc)

• 123TB memory (32GB per node)

• 1.73PB shared disk, 31.4TB local

• 579.4 TFlops

Local:

• PSC’s “Salk” cluster

• 36 bldes -- dual proc, dual core

• Itanium2, 8GB local memory

• NUMAlink interconnect - shared
memory (previous ones were message-
passing)

Evolution of HPC

• In the old days: Supercomputers. Vector
supercomputers.

• Then: Shared-memory MP machines

• Now: Clusters of commodity nodes

• Tomorrow?

HPC Frontiers

• Multiprocessor all along

• Multicore yesterday

• Tons of cores today (bluegene-L; reading next week -
uses Cell processor)

• Doubly tons of specialized cores tomorrow (NVidia
Tesla, Intel Larrabee - massive cores + vector proc)

• Have to map compute to them, but large benefits
iff you can

HPC vs “normal”
cluster?

• Typically the interconnect

• Infiniband, etc. - very low-latency, high
bandwidth switched networks

• e2e latency is in microseconds

• Cray used to make their own, etc.

HPC Challenges

• Reliability, reliability, reliability

• When you have 13,000 nodes, something’s going to crash.
Soon.

• Checkpoint + restart is the usual answer.

• Time to checkpoint becomes reliability limit.

• Data storage, I/O, reliability (see Schroeder/Gibson)

• Heat & Power

• Programming the damn thing!

HPC Power

• 1991: Cray C90, 600 sq ft, 500kW

• 1991: Intel Delta, 512 CPU (nearly as fast as C90),
53 kW, 200 sq ft

• 2002: ASCI Q machine: 17,000 sq feet, 3MW of
power.

• Performance grew 2000x since 1991

• But only 65x per square foot

• And only 20x per watt

More power

Source: Wu-chun Feng, ACM Queue Article

HPC Workloads

• CPU-bound: finite element simulations,
computational astrophysics/chemistry, etc.

• Common theme: Interactions between
(many!) particles, tiny timesteps, figure
out local changes, iterate.

• I/O: Loading models, storing results

Benchmarks

• Standard but not always helpful: LINPACK, etc. (Linear
algebra kernels, etc.)

• Better: NAS Parallel

• Best: Your own codes...

Table from NASA NAS parallel benchmark specification

What’s the real ?

• Given a workload that (usually) runs on multiple machines,

• Where the workload is divided into units that can be run
{somewhere}

• How to allocate that workload onto physical machines?

• Complications:

• Time-varying workload per unit

• Do workloads compose linearly?? (Cache; Disk sharing)

Interesting
observations

• Running full-bore

• Power goes up as workload leaves cache;
goes down as memory unable to saturate
CPU

• This kind of result likely to be very
workload dependent.

IBM paper results

• Cache-aware packing is critical. Heuristics:

• If WSS << cache,

• Pack such that sum(WSS) <= cache

• If WSS >> cache

• Pack with other >> cache apps, take tons of memory
(They’re slow anyway)

• In the middle -- your choice. Fewer machines vs.
performance.

VMs and HPC

• Earlier work by HP: Consolidation has
benefits - many jobs are idle sometimes;
some jobs are full-bore (testing & devel vs.
production runs)

• Huge performance fear - HPC workloads
often super-optimized...

VMs

• Reason 0: Customize OS used on the nodes.

• Mayyybe: Faster OS (but VM...)

• Definitely: Usability (but maybe slower); Security

• Option 1: Consolidation

• Do any jobs use << CPU time than machine time?

• Option 2: Migration

Virt overhead for HPC

• Most virt runs native machine instructions

•

VM overhead

!"#$%&'(()*+,'-./01'-%%&

2*/'3,456478+9,:

; <=#'3848>>,>'2,+90784?@'AB3!"C'6D,4'E"3F'G+'H,+ IB',+DG46+7,+/

J "677*+G98/G6+'G+/,+@GD,'K,+90784?@'@06L'K8M'4,@*>/@

%

%N-

%NO

%N&

%N.

P

PN-

PNO

!" #$ %& '((&)
*
+
,
-
./
0
1
2
3%
4
1
5
6
7/
*
8
3"
/,
1 9:)-7/;1

.QN.R%&NSR%TNUR#3

.TNTR%ON%R%&NPR2E

TTN%R%%NQR%%N&RV3

&.N.RPQNPRP.NPR!#

U-NURP%NURP&N&R"W

X67YIBBX67%

; EG7,'3465G>G+Z'*@G+Z'H,+6[465

J B8+\'"3Y'9\9>,@'84,'@[,+/'G+'IBB'8+M'/0,'M,DG9,'M678G+'/6'

[469,@@'+,/L64?'!]'4,^*,@/@

Slide from Wei Huang ICS ’06 talk, “A Case for High Performance Computing with Virtual Machines”

HPC & VMs

• Data from RRC Kurchatov Institute (Moscow) HPC cluster - 100 nodes, 2.8
Ghz Xeon, 2GB, 80GB disks

• Comparison: Actual time (ACT) vs. Wall-clock (WCT)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

Logscale: Duration (min)

Wall CPU Time and Actual CPU Time per Job (Logscale)

 Job Duration
Actual Used CPU Time

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

C
D

F

Duration (min)

Overall CPU Usage (Wall Time) by Jobs of Different Duration

Overall_CPU_Usage

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

C
D

F

MBytes

 Memory and Virtual Memory Usage

Virtual Memory
Physical Memory

(c)
Fig. 2: Basic Trace Characterization.

performance incentive to move to a VM based architecture.
We analyze workloads from a Tier-2 Resource Center (a part
of the LCG infrastructure) supported by the Russian Research
Center “Kurchatov Institute” (Moscow, Russia). Our analysis
shows that the machines in the data center are relatively under-
utilized: 50% of the jobs use less than 2% CPU-time and 70%
use less than 14% of cpu-time during their lifetime. However,
existing LCG specifications do not support or require time
sharing; only a single job runs on a processor at a time. While
this simple resource allocation model provides guaranteed
access to the requested resources and supports performance
isolation between different Grid jobs, it may lead to significant
under-utilization of resources.
Our results indicate that assigning multiple Grid jobs to
the same node for processing may be beneficial for optimized
resource usage in the data center. Our analysis of memory
usage reveals that for 98% of the jobs virtual memory usage
is less than 512 MB. This means that we can spawn 4-8 virtual
machines per compute node (with 4 GB of memory) and have
no memory contention due to virtualization layer.
These statistics provide strong motivation for executing Grid
jobs inside different virtual machines for optimized resource
usage in data-center. For instance, our simulation results show
that a half-size infrastructure augmented with four VMs per
node can process 99% of the load executed by the original
system (see Section IV). In addition, the introduction of VMs
for Grid job execution enables policy-based resource allocation
and management in the data center: the administrator can
dynamically change the number of physical nodes allocated
for Grid jobs versus enterprise applications without degrading
performance support for Grid processing. Live migration of
VMs makes the management process even more flexible.
We next present our analysis of the Grid workload.

II. WORKLOAD ANALYSIS
The RRC Kurchatov Institute (RRC-KI) in Moscow con-
tributes a part of their data-center to the LCG infrastructure
(100 nodes with Xeon 2.8 GHz CPU processor, 2GB of
memory, and 80 GB ATA or SCSI disks). LCG requires access
logs for each job to generate the accounting records [8]. We
analyzed the access logs for Grid job processing at RRC-
KI between 04/29/2005 and 05/25/2006, spanning almost 390
days of operation. The original trace has 65,368 entries. Each
trace entry has information about the origin of the job, its start
and end time, as well as a summary of resources used by the
job. For our analysis, we concentrated on the following fields:

• start and end times;

• Virtual Organization (VO) that originated the job;
• CPU time used per job processing (sec)’
• memory and virtual memory used (MB)
For CPU time, we make the distinction between Wall CPU

Time (WCT) and Actual CPU Time (ACT). WCT is the overall
time taken for a job to finish. ACT reflects the actual CPU time
consumed by the job.
First, we filter the data to remove erroneous entries. There
were numerous for failed Grid jobs (jobs that could not be
executed or failed due to some mis-configuration): entries with
zero job duration (i.e., when start time = end time), as well
as entries with zero ACT, or zero memory/virtual memory
consumption. After the filtering, 44,183 entries out of the
original 65,368 entries are left for analysis.
Figure 2(a) shows the Cumulative Distribution Function
(CDF) of the job duration: the WCT is shown by the solid line.
We can see that there is a large variation in the job durations:

• 58% of jobs have a duration less than 10 min;
• 91% of jobs have a duration less than 60 min (i.e., 34%
of jobs have duration between 10 min and 1 hour);

• 96% of jobs have a duration less than 1440 min (i.e., 5%
of jobs have duration between 1 hour and 1 day);

• 99.96% of jobs have a duration less than 4325 min (i.e.,
3.96% of jobs have duration between 1 day and 3 days);
The dotted (green) line in Figure 2(a) shows the CDF of
the ACT for the jobs. It is evident from the figure that the
ACT for a job is typically much lower than the WCT. For
example, 95% of the jobs use less than 1 hour of actual CPU
time during their processing.
Figure 2(b) presents the fraction of wall CPU time summed
over jobs of different duration out of the overall CPU time
consumed by all the jobs. We can see that longer jobs are
responsible for most of the CPU time consumed by the jobs
in the entire trace. For example,

• jobs that are less than 1 day in duration are responsible
for only 20% of all consumed CPU resources while they
constitute 91% of all the jobs;

• jobs that execute for about 3 days are responsible for 42%
of all consumed CPU resources while they constitute only
2% of all the jobs.
Finally, Figure 2(c) shows the CDF of memory and virtual
memory consumed per job in mega-bytes (MB). For 98% of
the jobs virtual memory usage is less than 512 MB. Only
0.7% of the jobs are using more than 1 GB of virtual memory.
Such reasonable memory consumption means that we can use
4-8 virtual machines per node with 4 GB of memory and
practically support the same memory performance per job.

Source: Optimizing Grid Site Manager Performance with Virtual Machines, Cherkasova, Gupta, et al.

Job Distribution

• Long jobs (> 1 day) consume 80% of the
CPU resources

• 2% of jobs last longer than 3 days, but
consume 42% of the CPU resource

Source: Optimizing Grid Site Manager Performance with Virtual Machines, Cherkasova, Gupta, et al.

50% of jobs
use less than
2% of their

WCT

Whole-DC Power
Management

• Qs: Model <X> vs power, or dynamically measure?

• Generality vs. (possibly) response time vs. (possibly)
correctness

• Scaling & stat mux -- P2 had a very stat-mux-like flavor
(increasing time-scales at increasing granularity)

• Only 2 p-states needed? (recall earlier “dominant p-
states” thoughts) -- VM consolidation might help here
by shifting machines more towards “full” or “off”

