
Sensor Networks

David Andersen
Low-Power Computing

Carnegie Mellon University

Sensor Evolution

© 2005 Ma! We ls h " Harvard Unive rs i# 2

: Foundations Sensor Networks

Integration of sensing, computation, and communication
! Low-power, wireless “motes” with tiny amount of CPU/memory

! Large federated networks for high-resolution sensing of environment

WeC (1999) Rene (2000) Dot (2001)

MICA (2002) Speck (2003) Telos (2004)

slide credit: Matt Welsh

XSM
(2004)

Improvement
upon mica2

mote (better
sensors,
radio)

Antenna
(Centered)

 Piezo

 CPU Under
Here

The Hardware

• Some common µ-processors

• Atmel ATMega128L

• 128KB flash, 4K EEPROM, 4K SRAM

• 0-8Mhz adjustable clock

• 2.7 - 5.5V

• Unlike desktop procs, very detailed power
info available. :)

Typical Sensor Stuff

ADC

CPU

Vref

Sensor
(analog

out)

Timer
MCU
Core

Osc

CPU, no ADC

ADC, no CPU
Timer, no CPU

...

BusSensor
(digital
out)

Radio

Sleepy Time

• Most modules on sensor board can be shut
down (power supply gated)

• The CPU itself - can shut down ADC,
internal voltages (10 µA, to give an idea of
the power range), watchdog, i/o pins

• Idle, Power-down (ext interrupts wake
up)

Look familiar?

334

2467R–AVR–06/08

ATmega128

Figure 162. Active Supply Current vs. Frequency (1 - 20 MHz)

Figure 163. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY
1 - 20 MHz

5.0 V

4.5 V

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

2.7 V
3.0 V

3.3 V
3.6 V

4.0 V

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 1 MHz

85 ˚C

25 ˚C
-40 ˚C

1.5

2

2.5

3

3.5

4

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

This is
current -
so power
increases

even more
w/voltage

burp

8Mhz low-voltage: ~20mW
(paper measures 24)

ATMega 128L Sleeps

• Active 8Mhz: 20-24mW

• Idle 8Mhz: ~10mW

• Power-down, no watchdog: ~0.5µW

• Power-down, with w/d: ~30µW (paper)

• 1Mhz watchdog - non-negligible.

• Safety beats power in unattended sensor

Other option: TI

• MPS430 - 16bit - ex:

• 16KB RAM, 128KB Flash

• <= 18Mhz

• 1.8V-3.6V, 5-8.5mW active @ 8Mhz; less if
program fits in DRAM.

• $5 or so. Cool toy.

Telos Mote

© 2005 Ma! We ls h " Harvard Unive rs i# 3

 “ ”The Telos Mote

Several thousand produced, used by 100s of research groups

Great platform for experimentation (though not particularly small)
! Easy to integrate new sensors & actuators

! 15-20 mA active (5-6 days on 2 AAs)

! 5 µA sleeping (40+ years, but limited by shelf life of battery!)

! TI MSP430 processor

! 128 KB code, 2 KB data SRAM

! 512 KB flash

! CC2420 radio (2.4 Ghz, 802.15.4)

! 250 kbps, 100 m range

Power
XSM Telos

Standby 30µW 15µW

Idle ~10mW ~150µW*

Active
No radio

24mW 5mW

Rx 55mW 55mW

Tx 72mW 50mW

#s change, game is the same - but
favors more compute/less radio.

* Higher in
reality?

Irony

• Moteiv (maker of Telos Motes)

• Acquired by Sentilla

• Sentilla now sells...

• Datacenter energy consumption
monitors and analysis software. :)

• but no motes. :(TI, however, sells very
cute little dev boards.

And almost

• 32 bit platforms almost becoming usable for
sensor nets

• iMote2 (Crossbow - mica folks)

• Intel PXA271 - 256K SRAM, 32MB SDRAM
(woah), 32MB flash

• 31mA active @ 13Mhz no radio, 44mA tx/
rx. (at sub 1V?) Niiice. High sleep current,
but give it a few years.

But regardless...

• Reasonable-but-ambitious goal: 1 year, 1
AAA battery.

• 1500 mWh

• There are 8760 hours in a year.

• Avg draw: 171µW

• oof.

Application-Specific
Sleeping

• Must sleep a lot.

• Being useful while sleeping a lot:
application-specific schedules. Wake only
when needed.

• When is it needed?

Two apps

• “Classical” sensor nets:

• Sample temp & humidity every 5 minutes

• Send to base station via neighbors

• “Event” sensor nets:

• Watch frequently, report seldom

• Events possibly irregular, outside control

What draws power?

• The CPU

• The sensors themselves (they’re physical
devices...)

• The radio

• Including relaying/collecting/broadcasting

B-MAC

• The LPL mode from the paper

• Wake on timer interrupt

• Startup: Wait for XO to stabilize

• Receive; sample signal energy

• Turn radio off, start analyzing signal
strength

BMAC modes

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

30

Time (ms)

C
u
rr

e
n
t
(m
A

)

(a) (b) (c) (d) (e) (f) (g)

sleep sleepinit radio radio crystal startup rxµc adc

Figure 3: When turning on the radio, the node must perform

a sequence of operations. The node first starts in sleep state

(a), then wakes up on a timer interrupt (b). The node initial-

izes the radio configuration and commences the radio’s startup

phase. The startup phase (c) waits for the radio’s crystal oscil-

lator to stabilize. Upon stabilization, the radio enters receive

mode (d). After the receive mode switch time, the radio enters

receive mode (e) and a sample of the received signal energy may

begin. After the ADC starts acquisition, the radio is turned off

and the ADC value is analyzed (f). With LPL, if there is no

activity on the channel, the node returns to sleep (g).

floor estimate. An α value of 0.06 and FIFO queue size of 10 pro-
vided the best results for a typical wireless channel. Once a good

estimate of the noise floor is established, a request to transmit a

packet starts the process of monitoring the received signal from the

radio. A common method used in a variety of protocols, including

802.15.4, takes a single sample and compares it to the noise floor.

This thresholding method produces results with a large number of

false negatives that lower the effective channel bandwidth. Since

noise has significant variance in channel energy whereas packet re-

ception has fairly constant channel energy (as shown in Figure 2),

B-MAC searches for outliers in the received signal such that the

channel energy is significantly below the noise floor. If an out-

lier exists during the channel sampling period, B-MAC declares

the channel is clear since a valid packet could never have an outlier

significantly below the noise floor. If five samples are taken and no

outlier is found, the channel is busy. The effectiveness of outlier de-

tection as compared to thresholding on a trace from a CC1000 [3]

transceiver is shown in Figure 2.

The most basic mechanism allows services to turn CCA on or off

using the MacControl interface in Figure 1. By disabling CCA,

a scheduling protocol may be implemented above B-MAC. If CCA

is enabled, B-MAC uses an initial channel backoff when sending a

packet. B-MAC does not set the backoff time, instead an event is

signaled to the service that sent the packet via the MacBackoff

interface. The service may either return an initial backoff time or

ignore the event. If ignored, a small random backoff is used. After

the initial backoff, the CCA outlier algorithm is run. If the channel

is not clear, an event signals the service for a congestion backoff

time. If no backoff time is given, again a small random backoff

is used. Enabling or disabling CCA and configuring the backoff

allows services to change the fairness and available throughput.

B-MAC provides optional link-layer acknowledgment support.

If acknowledgments are enabled, B-MAC immediately transfers an

acknowledgment code after receiving a unicast packet. If the trans-

mitting node receives the acknowledgment, an acknowledge bit is

set in the sender’s transmission message buffer.

B-MAC duty cycles the radio through periodic channel sampling

that we call Low Power Listening (LPL). Our technique is similar

to preamble sampling in Aloha [4] but tailored to different radio

characteristics. Each time the node wakes up, it turns on the ra-

dio and checks for activity. If activity is detected, the node powers

up and stays awake for the time required to receive the incoming

packet. After reception, the node returns to sleep. If no packet is

received (a false positive), a timeout forces the node back to sleep.

Accurate channel assessment (CCA) is critical to achieving low

power operation with this method. We use the noise floor estima-

tion of B-MAC not only for finding a clear channel on transmission

but also for determining if the channel is active during LPL. False

positives in the CCA algorithm (such as those caused by thresh-

olding) severely affect the duty cycle of LPL due to increased idle

listening.

To reliably receive data, the preamble length is matched to the

interval that the channel is checked for activity. If the channel is

checked every 100 ms, the preamble must be at least 100 ms long

for a node to wake up, detect activity on the channel, receive the

preamble, and then receive the message. Idle listening occurs when

the node wakes up to sample the channel and there is no activity.

The interval between LPL samples is maximized so that the time

spent sampling the channel is minimized. The check interval and

preamble length are examples of parameters exposed through B-

MAC’s LowPowerListening interface in Figure 1. Transmit

mode corresponds to the preamble length and the listening mode

corresponds to the check interval. We provide a selection of 8 dif-

ferent modes (corresponding to 10, 20, 50, 100, 200, 400, 800, and

1600ms for the check interval). Protocols may also set their own

preamble length and check interval through the interface. The ef-

fect of varying the preamble size and check interval is discussed in

more detail in Section 4. Examples of services that use the LPL

interface are given in Subsection 4.3 and Section 8.

A trace of the power consumption while sampling the channel

on a Mica2 mote [17] is shown in Figure 3. The process in Figure 3

applies to essentially any MAC protocol for sensor networks. It

performs initial configuration of the radio (b), starts the radio and

its oscillator (c), switch the radio to receive mode (d), and then per-

form the actions of the protocol. As a result, the cost for powering

up the radio is the same for all protocols. The difference between

protocols is how long the radio is on after it has been started and

how many times the radio is started.

In sensor networks, each node typically runs a single applica-

tion. Since the RAM and ROM available on sensor nodes are ex-

tremely limited, keeping the size of the MAC implementation small

is important. Reducing the complexity of the protocol reduces state

and the likelihood of race conditions We implemented B-MAC in

TinyOS [11] to evaluate its efficacy in meeting our goals. Since B-

MAC does not have the RTS-CTS mechanism or synchronization

requirements of S-MAC2, the implementation is both simpler and

smaller as shown in Table 1. B-MAC does not hinder efficient im-

plementation of network protocols; above B-MACwe implemented

an RTS-CTS scheme and a message fragmentation service using

B-MAC’s control interfaces that have equivalent functionality to

S-MAC RTS-CTS and fragmentation services.

2All tests with S-MAC were performed with the implementa-
tion in tinyos-1.x/contrib/s-mac/ in the TinyOS CVS
repository [18] as of March 30, 2004. The B-MAC implemen-
tation for the Mica2 is located in the TinyOS CVS repository at
tinyos-1.x/contrib/ucb/tos/lib/CC1000Pulse/.

MAC Design goals

• Low power

• Tiny implementation (4616 bytes in ROM, 277
bytes of RAM)

• But nasty to sender: If check channel every
100ms, then Tx preamble must be 100ms long.

• Assumption: Very infrequent Tx.

• No time sync as in BSD/802.11

“Classical” alternative

• Option 1: Batch the heck out of it;

• use LPL

• Option 2: Schedule a wake-up time for reporting

• Much more BSD-like.

• Which? Depends - how up-to-date do your
measurements need to be?

Sensors...

• Are a bit of a PITA to program.

• Mica2: 8-bit RISC-like system

• Telos: 16-bit (HUGE improvement, but
still...)

• No memory protection, no conventional
OS, processes, scheduler, etc. Not even
what a rt-OS like VxWorks gives you

TinyOS

• popular OS platform for motes

• Fairly standard OS challenge:

• Writing individual modules is OK

• Making the system coherent is hard.

• Provides a basic scheduler, interrupt
support, etc., plus glue to link
components

Paranoid Energy Mgmt

• Go back to that picture about timing in BMAC

• Sample channel;
tell ADC to take reading;
immediately put radio to sleep again;
while it’s in that process, figure out if channel
was busy

• And hey - maybe I also use the ADC for reading
my light sensor... and... and...

