
The Network 1

Low Power Computing
David Andersen

Carnegie Mellon University

Themes

• Last two classes: Saving power by running
more slowly and sleeping more.

• This time: Network intro; saving power by
architecting for less power; optics

• Later lecture: Saving power on the
network by running more slowly and
sleeping

Energy in the DC:
~15% network?

Chart from CUBIN report (Melbourne)

Energy by Technology

Chart from CUBIN report (Melbourne)

So...

• Network energy still dominated by server
energy

• But servers are going to get a lot better.

• And faster. 10GE draws a lot of power
today, and is starting to show up on
motherboards.

• Good time to start figuring out how to solve
the problem.

Third Generation Routers

Line
Card

MAC

Local
Buffer

Memory

CPU
Card

Line
Card

MAC

Local
Buffer

Memory

“Crossbar”: Switched Backplane

Line Interface

CPU

M
em

ory
Fwding
Table

Routing
Table

Fwding
Table

Typically <50Gb/s aggregate capacity

Periodic

Control

updates

Crossbars

• N input ports, N output ports

–(One per line card usually)

• Every line card has its own forwarding table/
classifier/etc – removes CPU bottleneck

What’s so hard here?

• Back-of-the-envelope numbers

–Line cards can be 40 Gbit/sec today (OC-768)
• Undoubtedly faster in a few more years, so scale these #s

appropriately!

–To handle minimum-sized packets (~40b)
• 125 Mpps, or 8ns per packet

• But note that this can be deeply pipelined, at the cost of buffering
and complexity. Some lookup chips do this, though still with
SRAM, not DRAM. Good lookup algos needed still.

• For every packet, you must:

–Do a routing lookup (where to send it)

–Schedule the crossbar

–Maybe buffer, maybe QoS, maybe filtering by ACLs

Crossbars get Tough

• Speed (reconfiguration rate): w/electronics,
going past 40Gbps is quite tough.

• N - the number of ports on a single crossbar
switch

• Crossbar complexity is N2

• Scheduling becomes a big challenge

• Which input port -> output port at time t

Switch Scheduling

• Variable length packets are segmented into fixed-sized cells

• Input linecards have queue of cells to send to output linecard(s)

• Crossbar switch - can make an arbitrary bipartite matching of
input & output ports

• Scheduling computes this matching

• Must run fast, be implementable in hardware

• Must be fair over time (don’t starve any inputs)

• Must achieve 100% throughput

• Example (not used): maximum weight bipartite matching.
Runs in O(N3 log N)

Clos network, N line
cards - non-blocking

L Lx2L
N/L
xN/L

N/L
xN/L

N/L
xN/L

N/L
xN/L

2L-1 of these

2LxL

Lx2L

N/L
of these

...

This is old stuff -
1953 telecom world.

(Clos worked for Bell Labs)

Clos isn’t enough

• Definite improvement

• Network of 676 line cards could be:

• 26 groups of 26 line cards

• 52 switches of 26x52

• 52 switches of 26x26

• We can build those switches...

• Scheduling a nonblocking Clos network like that is a
beast.

Load Balanced
Switching

• If scheduling is hard... don’t!

• Input switches spread packets round-robin
among middle-stage switches

• Middle stage switches direct to correct
output switch

• Combining this idea with clos still works...

“Scaling” arch - re-
imaged

L Lx N/

N/

2L

Lx

L Lx N/

N/

2L

Lx

Clos network Clos network

“Intermediate” line cards maintain
VOQs. But they’re really just the

same line cards.

Looking at one real
router

• Cisco CRS-1

• Largest router in the world

• Multiple racks, integrated with
high-speed switching fabric

• Terabits of capacity

• Fabric chassis: ~10 kW

• Line card chassis: ~11 kW

Cisco CRS-1

• Multi-rack system; capacity <= 92 Tbps (eventually).

• Looks like the arch from Keslassy: sends to middle
switches in round-robin fashion, which relay to 3rd.

• Shelves interconnected with parallel optical links.

• Other power features: Line cards have a massively multi-
core (188 cores, 32 bit RISC processors) processor to
do work.

• Packet processing is very parallelizable

• This is the “HFR” - prev generation was the “BFR”. :)

Datacenter Ethernet

• Ethernet uses spanning tree to prevent
loops.

• (Illustration)

• Only one link from each switch to root

• In a tree, 1/2 of traffic goes through the
root. => bottleneck. Huge, fast switch.

L
hosts LxL LxL

LxL

LxL

LxL

L of these

LxL

L
of these

...

L Lx Lx

Lx

Lx

Lx

L of

Lx

L
.

L Lx Lx

Lx

Lx

Lx

L of

Lx

L
.

2L of these “pods”

L2 core switches

Each has one link
to every pod
(via different

switches in the pod)

...

Fat Trees / Clos
networks

• A Fat Tree is a Clos network, with parameters chosen
to maximize possible size for a given size switch

• This paper differs from the “Scaling” paper in the load
balancing scheme.
(One might imagine combining them, since the load
balancing enabled passive optical links. Warning: MEMS
are expensive. :)

• “... A central scheduler ... with global knowledge of all
active large flows in the network.”

Combining challenge:
Packet Reordering

• Practically, networks must avoid re-ordering packets within
a flow

• TCP treats this as loss. Too much reordering kills
throughput.

• The “Scaling” approach: bound mis-sequencing (might be
hard in datacenter with heterogenous distances, etc)
Re-sequencing buffer in third stage of bounded size

• Fat tree paper: Pinned route per flow.
(Note relwork about thinking machines!)

