
Denial-of-Service

David Andersen

CMU CS 15-744

 2

Today’s Lecture

� What is Denial of Service?
� Attacks and Defenses

� Packet-flooding attacks
• Attack: SYN Floods
• Defenses: Ingress Filtering, SYN Cookies, Client puzzles

� Low-rate attacks
• Detection: Single-packet IP Traceback

• Network-level defenses: sinkholes and blackholes

� Inferring Denial of Service Activity
� Distributed Denial of Service
� Worms
� Other resource exhaustion: spam

 3

Denial of Service: What is it?

� Crash victim (exploit software flaws)
� Attempt to exhaust victim's resources

– Network: Bandwidth

– Host
• Kernel: TCP connection state tables, etc.

• Application: CPU, memory, etc.

– Often high-rate attacks, but not always

Attacker Victim

graphics credit: Feamster

 4

TCP: 3-Way Handshake

C S

SYNC

SYNS, ACKC

ACKS

Listening

Create TCB

Wait

Connected

slide credit: Feamster

 5

Example: TCP SYN Floods
• Each arriving SYN stores state at the server

– TCP Control Block (TCB)

– ~ 280 bytes

• FlowID, timer info, Sequence number, flow control

status, out-of-band data, MSS, other options

• Attack:

– Send TCP SYN packets with bogus src addr

– Half-open TCB entries exist until timeout

– Kernel limits on # of TCBs

• Resources exhausted ⇒ requests rejected

 6

Preventing SYN floods

� Principle 1: Minimize state before “auth”

� (3 way handshake == auth)

� Compressed TCP state: Very tiny state

representation for half-open conns

� Don't create the full TCB

� A few bytes per connection == can store 100,000s

of half-open connections

�

 7

SYN Cookies (generalizes!)

� Idea: Keep no state until auth.

� In response to SYN, send back self-validating token

to source that source must attach to ACK

� SYN -> SYN/ACK+token -> ACK+token

� Validates that the receiver's IP is valid

� How to do in SYN? sequence #s!

� top 5 bits: time counter

� next 3: Encode the MSS

� bottom 24: F(client IP, port, server IP, port, t)

� Downside to this encoding: Loses options.

 8

Bandwidth Floods

� 1990s: Brute force from a few machines

� Pretty easy to stop: Filter the sources

� Until they spoof their src addr!

� Late 90s, early 00s: Traffic Amplifiers

� Spoofed source addrs (next)

� Modern era: Botnets

� Use a worm to compromise 1000s+ of machines

� Often don't need to bother with spoofing

 9

Reflector Attacks

� Spoof source address

� Send query to service

� Response goes to victim

� If response >> query, “amplifies” attack

� Hides real attack source from victim

� Amplifiers:

� DNS responses (50 byte query -> 400 byte resp)

� ICMP to broadcast addr (1 pkt -> 50 pkts) (“smurf”)

 10

!Spoofing 1: Ingress/Egress Filtering

• RFC 2827: Routers install filters to drop packets
from networks that are not downstream

� Feasible at edges; harder at “core”
� Deployment incentive mismatch

204.69.207.0/24

Internet

Drop all packets with
source address other than

204.69.207.0/24

Slide derived from Feamster

 11

!Spoofing 2: uRPF Checks

� Unicast Reverse Path Forwarding
� Cisco: “ip verify unicast reverse-path”

� Requires symmetric routing

Accept packet from interface only if forwarding table entry
for source IP address matches ingress interface

10.0.18.3

A
10.0.1.8

10.0.1.5

10.12.0.3

10.0.18.1/ 24

10.0.1.1/ 24

Strict Mode
uRPF Enabled

�A� Routing Table
Destination Next Hop

10.0.1.0/24 Int. 1

10.0.18.0/24 Int. 2

10.0.18.3 from wrong interface

Slide Credit: Feamster

 12

Filters & Pushback

� Assumption: Can identify anomalous traffic

(Coming in 2nd half of lecture)

� Add “filters” that drop this traffic

� Access control lists in routers

� e.g. deny ip from dave.cmu.edu to victim.com tcp port 80

� Pushback: Push filters further into network towards the source

� Need to know where to push the filters (traceback)

� Need authentication of filters...

� Tough problems. Filters usually deployed near victim.

 13

Capabilities

� Filters: prevent the bad stuff

� Capabilities: must have permission to talk

� Sender must first ask dst for permission

� If OK, dst gives capabilitiy to src

� capability proves to routers that traffic is OK

� Good feature: stateless at routers

 14

TVA

� Routers put pre-capability in src->dst request

� Timestamp | Hash(src, dst, time, router secret)

� secret changes slowly

� dst sees these pre-capabilities and can echo them

back to src if it wants to.

� Routers can verify pre-capability w/out state

� Limited time & b/w:

� Timestamp | H(pre-caps, N bytes, Time T)

� dst gives src more N,T as appropriate

 15

More TVA

� Cute trick in paper for monitoring “heavy” flows

� Similar trick for caching capabilities (space

overhead in pkts vs. state in routers)

 16

Discussion

� “Denial-Of-Capability” - first pkt must get through

� But once one pkt makes it, flow is good.

� Vast improvement over today...

� b/w exhaustion: cooperating attackers give each other

many tokens

� Need fair queueing or similar

� Route changes? Need new capability

� How does dst know if sender is evil or not?

 17

Detecting Attacks

� Intrusion Detection Systems at host or net

� Assumes attack traffic is identifiable

� Hard with botnets that request legit web pages

� Captchas? Computational puzzles?

� Reasonable with many attacks

 18

Traceback with Packet Markings

� With probability p, each router marks packet hdr:

� Router IP

� Distance d from the source (increments @ each rtr)

� Re-assemble the list of routers w/enough pkts

� Have to resist spoofing attacks at src

� But can trace back to where attacker controls

� Improvement: edge sampling (src/dst IP of link)

� Needs new IP header, or cute encoding tricks

� Increases # of packets that must be heard...

� Everyone abuses these fields. :)

 19

Single packet traceback

� Marking can ID bandwidth floods

� But what about single-pkt DDoS or exploits?

� Strawman 1: Log all packets!

� 500Gbit/sec through a big core router

� 4 TB for one minute of logging (!)

� Just headers? Maybe 100GB/minute. (!)

� Okay start, but ...

� A fast hard drive can write 4.2GB/minute...

 20

Log Packet Digests

� Goal: Receiver has copy of the packet

� Ask router: “Have you seen this packet?”

� Mask out changing parts of pkt (TTL, TOS,

checksum, opts)

� Include first 8 bytes of payload (TCP/UDP headers)

� Hash these bytes -> 32 bits

� Is this enough?

� BFRouter: 1B packets/sec = 4GBytes/sec

� That's a lot of pretty fast memory, but nearly there

 21

Hash input: Invariant Content

Total Length

Identification

Checksum

Ver TOSHLen

TTL Protocol

Source Address

Destination Address

Fragment Offset
M
F

D
F

Options

Remainder of Payload

First 8 bytes of Payload

28

bytes

 22

Bloom Filters

� Useful algorithmic trick: More space efficiency at

cost of some false positives

� Compute k independent hashes of the packet

� h1, h2, ..., hk each n bits long

� Create an array of size 2^n bits

� Set bits corresponding to h1, h2, ..., hk

� Can control FP rate by choosing n, k for the

expected # elements in array

� e.g., 8 bits/entry: FP rate 2%

 23

Traceback w/Bloom Filters

� Down to 8 bits/packet: 1GB/sec (reasonable)

� What about false positives?

� May get false neighbors saying “I saw it!”

� If false neighbors' neighbors don't, query dies

� So FP rate must be low enough to prevent query

explosion

� To query: Recursively query neighbors of router

that says it saw packet

 24

Inferring DoS Activity: Backscatter

IP address spoofing creates random backscatter.

pretty diagram courtesy of Feamster

 25

Backscatter Analysis

� Use a big block of addresses (N of them)

� People often use a /16 or /8

� Observe x backscatter packets/sec

� How big is actual attack?

� x * (2^32 / N)

� Assuming uniform distribution

� Sometimes called “network telescope”

� 2001: 12,805 attacks in 3 weeks (not all types!)

� Some > 600,000 packets per second.

� Today's botnets probably MUCH larger (next time. :)

