Denial-of-Service

David Andersen
CMU CS 15-744

Today’s Lecture

* What is Denial of Service?

* Attacks and Defenses
- Packet-flooding attacks
 Attack: SYN Floods
* Defenses: Ingress Filtering, SYN Cookies, Client puzzles
- Low-rate attacks
* Detection: Single-packet IP Traceback

* Network-level defenses: sinkholes and blackholes

Inferring Denial of Service Activity
Distributed Denial of Service

* Worms

Other resource exhaustion: spam

Denial of Service: What is it?

Attacker Victim

vyvYyYVYYyYyY

* Crash victim (exploit software flaws)

* Attempt to exhaust victim's resources
— Network: Bandwidth

— Host
* Kernel: TCP connection state tables, etc.

* Application: CPU, memory, etc.
— Often high-rate attacks, but not always

graphics credit: Feamster

TCP: 3-Way Handshake

C S
SYN_
Create TCB
SYN,, ACK.
Wait
ACK,
Connected

4

slide credit: Feamster

Example: TCP SYN Floods

* Each arriving SYN stores state at the server
— TCP Control Block (TCB)

— ~ 280 bytes

* FlowlD, timer info, Sequence number, flow control
status, out-of-band data, MSS, other options

* Attack:

— Send TCP SYN packets with bogus src addr
— Half-open TCB entries exist until timeout
— Kernel limits on # of TCBs

* Resources exhausted = requests rejected

Preventing SYN floods

* Principle 1: Minimize state before “auth”

- (3 way handshake == auth)

- Compressed TCP state: Very tiny state
representation for half-open conns
» Don't create the full TCB

- A few bytes per connection == can store 100,000s
of half-open connections

SYN Cookies (generalizes!)

» |ldea: Keep no state until auth.

- In response to SYN, send back self-validating token
to source that source must attach to ACK

- SYN -> SYN/ACK+token -> ACK+token
» Validates that the receiver's IP is valid
- How to do in SYN? sequence #s!
* top 5 bits: time counter
* next 3: Encode the MSS
» bottom 24: F(client IP, port, server IP, port, 1)
- Downside to this encoding: Loses options. 7

Bandwidth Floods

 1990s: Brute force from a few machines

- Pretty easy to stop: Filter the sources
- Until they spoof their src addr!

 Late 90s, early 00s: Traffic Amplifiers
- Spoofed source addrs (next)
* Modern era: Botnets

- Use a worm to compromise 1000s+ of machines
- Often don't need to bother with spoofing

Reflector Attacks

» Spoof source address
* Send query to service
» Response goes to victim

- If response >> query, “amplifies” attack
- Hides real attack source from victim
« Amplifiers:
— DNS responses (50 byte query -> 400 byte resp)
- ICMP to broadcast addr (1 pkt -> 50 pkts) (“smurf”)

9

ISpoofing 1: Ingress/Egress Filtering

Drop all packets with
source address other than
204.69.207.0/24

204.69.207.0/24

* RFC 2827: Routers install filters to drop packets
from networks that are not downstream

* Feasible at edges; harder at “core”
* Deployment incentive mismatch

10

Slide derived from Feamster

ISpoofing 2: uRPF Checks

Accept packet from interface only if forwarding table entry
for source IP address matches ingress interface

Strict Mode

URPF Enabled 10.0.18.3 from wrong interface

10.0.18.3

Destination Next Hop
10.0.1.0/24 Int. 1
10.0.18.0/24 Int. 2

[“A” Routing Table |

* Unicast Reverse Path Forwarding
- Cisco: “ip verify unicast reverse-path”

* Requires symmetric routing n

Slide Credit: Feamster

Filters & Pushback

« Assumption: Can identify anomalous traffic
(Coming in 2™ half of lecture)

» Add “filters” that drop this traffic

— Access control lists in routers
— €.g. deny ip from dave.cmu.edu to victim.com tcp port 80
» Pushback: Push filters further into network towards the source
- Need to know where to push the filters (traceback)
- Need authentication of filters...

- Tough problems. Filters usually deployed near victim.
12

Capabilities

* Filters: prevent the bad stuff
» Capabilities: must have permission to talk

» Sender must first ask dst for permission

- If OK, dst gives capabilitiy to src
— capability proves to routers that traffic is OK

 Good feature: stateless at routers

13

TVA

» Routers put pre-capability in src->dst request
- Timestamp | Hash(src, dst, time, router secret)
- secret changes slowly

— dst sees these pre-capabilities and can echo them
back to src if it wants to.

- Routers can verify pre-capability w/out state
 Limited time & b/w:

- Timestamp | H(pre-caps, N bytes, Time T)

— dst gives src more N, T as appropriate

14

More TVA

 Cute trick in paper for monitoring “heavy” flows

« Similar trick for caching capabilities (space
overhead in pkts vs. state in routers)

15

Discussion

“Denial-Of-Capability” - first pkt must get through
- But once one pkt makes it, flow is good.
- Vast improvement over today...

b/w exhaustion: cooperating attackers give each other
many tokens

- Need fair queueing or similar

Route changes? Need new capability

How does dst know if sender is evil or not?

16

Detecting Attacks

* Intrusion Detection Systems at host or net

- Assumes attack traffic is identifiable
- Hard with botnets that request legit web pages

» Captchas? Computational puzzles?
- Reasonable with many attacks

17

Traceback with Packet Markings

With probability p, each router marks packet hdr:
- Router IP

- Distance d from the source (increments @ each rtr)

Re-assemble the list of routers w/enough pkts

- Have to resist spoofing attacks at src

» But can trace back to where attacker controls

Improvement: edge sampling (src/dst IP of link)

Needs new IP header, or cute encoding tricks

- Increases # of packets that must be heard...

- Everyone abuses these fields. :)

18

Single packet traceback

» Marking can ID bandwidth floods
« But what about single-pkt DDoS or exploits?

« Strawman 1: Log all packets!
- 500Gbit/sec through a big core router
- 4 TB for one minute of logging (!)

- Just headers? Maybe 100GB/minute. (!)

» Okay start, but ...
» A fast hard drive can write 4.2GB/minute...

19

Log Packet Digests

» Goal: Receiver has copy of the packet

» Ask router: “Have you seen this packet?”

- Mask out changing parts of pkt (TTL, TOS,
checksum, opts)

- Include first 8 bytes of payload (TCP/UDP headers)
» Hash these bytes -> 32 bits
* Is this enough?

- BFRouter: 1B packets/sec = 4GBytes/sec
- That's a lot of pretty fast memory, but nearly there

Hash input: Invariant Content

Ver | HLen
Identification
TTL Protocol

28 Source Address
bytes

Total Length

Fragment Offset

Destination Address

First 8 bytes of Payload

Remainder of Payload

21

Bloom Filters

« Useful algorithmic trick: More space efficiency at
cost of some false positives

« Compute k independent hashes of the packet
- h1, h2, ..., hk each nbits long

« Create an array of size 2"n bits

» Set bits corresponding to h1, h2, ..., hk

- Can control FP rate by choosing n, k for the
expected # elements in array

- e.9., 8 bits/entry: FP rate 2% ”

Traceback w/Bloom Filters

» Down to 8 bits/packet: 1GB/sec (reasonable)

« What about false positives?
- May get false neighbors saying “l saw it!”
- If false neighbors' neighbors don't, query dies

- So FP rate must be low enough to prevent query
explosion

» To query: Recursively query neighbors of router
that says it saw packet

23

Inferring DoS Activity: Backscatter

IP address spoofing creates random backscatter.

SYN+ACK backscatter

SYN packets s
- B /
L_L——
= —= & Victim
Attacker
—p Attack
é-) < Backscatter
=

24
pretty diagram courtesy of Feamster

Backscatter Analysis

Use a big block of addresses (N of them)
- People often use a /16 or /8
Observe x backscatter packets/sec
How big is actual attack?
- X *(2"32 /' N)
- Assuming uniform distribution
Sometimes called “network telescope”
- 2001: 12,805 attacks in 3 weeks (not all types!)
- Some > 600,000 packets per second.
- Today's botnets probably MUCH larger (next time. :)

25

